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THE WEAK BRUHAT ORDER OF S,, CONSISTENT SETS, AND
CATALAN NUMBERS*

JAMES ABELLO-

Abstract. Chains in the weak Bruhat order of Sz (the symmetric group on ) belong to the class of
subsets of Sz over which unrestricted choice necessarily produces transitive relations under pairwise simple
majority vote (consistent sets). If for A c Sz we let T(A) tpg T(p) where T(p) (Pi, Pj, Pk)li < < k
and (A) w e Sz T(w) T(A) the following theorem (among others) is obtained.

THEOREM. For all q Sz, irA is a saturated chain under then (qA is an upper semimodular sublattice

ofcardinality II,(qA)l <
/(2[l;I / The ],lth Catalan number.

I1/1 1
From the Arrow’s Impossibility Theorem point of view, the results obtained here indicate that majority

rule produces transitive results if the collection of voters as a whole can be partitioned into no more than
(1212 + I])/2 groups which can be ordered according to the level of disagreement they have with respect to
a fixed permutation p. On the other hand, by viewing Sz as a Coxetergroup a "novel" combinatorial interpretation
of the collection of maximal chains that can be obtained from one another by using only one type of Coxeter
transformation is obtained.

Key words, weak Bruhat order, upper semimodular lattice, Catalan numbers, Arrow’s Impossibility Theorem,
Coxeter groups
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Introduction. The Marquis de Condorcet recognized nearly 200 years ago 12 that
majority rule can produce intransitive group preferences if the domain of possible (tran-
sitive) individual preference orderings is unrestricted. This phenomenon is commonly
known as the voting paradox (see Black [9] and Riker [20] for an excellent historical
account).

Domains for which the simple majority rule produces transitive results are called
here "Transitive Simple Majority" domains (TSM). The study of the structure and
cardinality of TSM domains has proven to be a combinatorial problem of an unusual
sort (Abello ], 2 ], 4 ], Abello and Johnson 3 ], Arrow 5 ], Black 9 ], Fishburn
[15], Good [17], Ward [25]).

By restricting our attention to TSM domains that are subsets ofthe symmetric group
(called here "consistent sets") we have given general constructions that produce "con-
sistent" sets of greater cardinality than all those offered in the past (Abello 2 ], Abello
and Johnson 3 ]). All the constructed sets are maximally transitive and they achieve the
best known (uniform) general lower bound.

A unified view of several seemingly different constructions of "consistent" sets has
been obtained by Abello via the weak Bruhat order, , ofSn (Bourbaki 10 ], Lehmann
19 ], Savage 21 ], Yanagimoto and Okamoto 26 ).

In this paper we will present the only known global structural properties of "con-
sistent" sets. Namely, we prove that each maximal "consistent" set that contains a max-
imal chain in is an upper semimodular sublattice of Sn, fl). This offers a "novel"
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combinatorial interpretation of each collection of maximal chains in/3 whose elements
can be obtained from one another by using one type of Coxeter transformation (Benson
and Grove [6], Coxeter and Moser [13]). Moreover, we prove that each ofthese maximal
transitive sets has cardinality bounded by the nth Catalan number. This provides the
unique nontrivial upper bound known to date.

We must remark that even though we restrict our attention to subsets of the sym-
metric group, many of the ideas contained here are extendable to the more general
domains discussed in Chapter of Abello 4 ], as they stand or with modification.

1. Preliminaries. Let (Z, =<) be a totally ordered set of symbols of cardinality
I1 n e z / and Sz the group ofpermutations on Z (we will be using one line notation
for permutations).

DEFINITION 1.1. A set { u, v, w } c Sz is called a cyclic three-set if there are three
symbols x, y, z 6 Z such that u-l(x) < u-l(y) < u-l(z), v-l(y) < v-l(z) < v-l(x),
w-l(z) < w-(x) < w-(y).

DEFINITION 1.2. A subset C ofS is called consistent if it contains no cyclic three-
set; otherwise C is called a cyclic set.

DEFINITION 1.3.
i. For p Sz, let:

T(p) { (x, y, z) p-(x) <p- (y) <p-(z) }
I’(p) {(x,y)lp-(x) <p-(y)}
r(p) { (x, y) I’(p) p- (x) + =p-(y)).

We will refer to T(p), P(p), and r(p) as the sets of triples, pairs, and admissible adjacent
transpositions determined by p, respectively. If t e z(p) then t(p) will denote the per-
mutation obtained from p by interchanging the symbols x and y where (x, y) t.

ii. For C S, let T C [,..Jp c T p ), F(C [,.,Jp c I(P ), r(C Up c r(p ). Note
that T(p)I (I1) for ZI >= 3. We will say that T(C) is a cyclic or consistent set of
triples depending on whether C is a cyclic or consistent subset of S, respectively.

The following are some elementary properties of consistent sets.
FACT 1.1.
i. Any subset ofa consistent set is consistent and any superset ofa cyclic set is cyclic.
ii. The intersection ofconsistent sets is consistent but their union is not always con-

sistent.
iii. IT(S)I the number ofdifferent 3-permutations out ofa set of , I-elements.
iv. IfC is a consistent subset ofS then T(C)I < 4 lyI3 ).

2. A closure operator on S. The results in this section are independent of con-
sistency.

DEFINITION 2.1.
i. Let :2s

__
2s be given by (A) MA { w S IT(w)

_
T(A)).

ii. If A
_
S is such that (A) A then A is called a closed subset and if K

_
A

satisfies that (K) (A) where KI min BI (taken over all subsets B of A such
that T(B) T(A)), then K is called a kernel for A.

Let CK { A
_
SIK is a kernel for A ). The following facts are immediate from

the preceding definitions.
FACT 2.1.
i. is a closure operator on S, namely, A

_
(A); ira

_
B then (A)

_
,(B

and 2(A) (A).
ii. There is a unique closed set in CK, namely, X (K).
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iii. IlK and K’ are kernels for CK and CK,, respectively, and T(K) c T(K’) then
(K) (K’).

The preceding result means that a closed set is completely determined by its
kernels; moreover, any kernel K of a closed set XK will do in the sense that if K
{ K1 K2 Kj } then a chain of subsets, { i }Ji= 1, can be constructed such that XII
xIti+l for 1, j and i XK, namely, XIt XII( { K1, K }). Note also
that by letting A1 XItl and Ai + xIti + xI/i for l, j l, we obtain a partition
(AI, A2, A3) of XK. So, if we can characterize the dependencies between Ai +1 and
Ai we will have (perhaps) some information about the cardinality ofAi, [Ai[, which will
give us at least bounds for [XK[ Z i--1 JAil. Therefore the study of the class of closed
sets in an independence system coming from a closure operator may be reduced to the
study oftheir corresponding kernels. Unfortunately determination ofeven a single kernel
K, for a closed set XK seems to be a hard computational problem because if K and K’
are kernels for XK and x K it is not true, in general, that there exists y K’ such that
K { x } U y } is a kernel, so there is not a suitable interchange property based on q
(see Williamson [24] for related topics). However, by relaxing the minimality assumption
of a kernel and by imposing a mild restriction on each Ai we are able to characterize the
elements of Ai +I. This is our intention in what follows.

DEFINITION 2.2.
i. A set of triples O

_
T(Sz) is called realizable if there exists A Sz such that

T(A) O. In this case we will denote MA q(A) by Mo.
ii. A set M (A) is called extensible if there is a transposition t (x, y) and

an element p M such that t r(p), (x and y are adjacent in p), and for all w M,
w-l(x) < w-1 (y). In this case we will say that M is extensible by the pair (t, p). Note
that a set may be extensible by many different pairs (t, p).

THEOREM 2:1. Let M c Sz be extensible by the pair t, p) where t (x, y ), p
uxyv and let O T(M). Ifw MouT(t(p))/Mo then w u’yxv’ where u’ Su, v’ Sv,
S, and S denote the symmetric groups on the synmbols ofu and v, respectively).

Proof. i. First note that because O tO T t(p)) is a realizable set oftriples the notation
MouT(t(p)) makes sense, w MouT(t(p)/Mo --* T(w) fl [T(t(p))/O] va bythe definition
of and because O T(M).

ii. 4: T(w) fl [T(t(p))/O] c T(t(p))/O (-, y, x), (y, x, -) } --* w cannot
be of the form w u’xyv’.

iii. So, w is oftheform w u’yAxv’ for some A 2;. The triples in w of the form
(y, A, x) (if any) must be in T(t(p))/O because x precedes y in every permutation in
Mo by hypothesis. On the other hand T(t(p)) does not contain triples of the form
(y, A, x) because t r(p);therefore, A and w u’yxv’.

iv. Suppose now that u’ S where p uxyv. This means that there exists a sym-
bol c symbols of u’/symbols of u and w c...yxv’, p uxy...c... (p)
uyx. -c.

v. The triple (c, y, x) O because x precedes y in every permutation in Mo, also
(c, y, x) T(t(p)) by (iv), so (c, y, x) O U T(t(p)) which means that w MouT(t(p)),
(contradiction); therefore, symbols of u’ c symbols of u.

vi. Finally, assume that there exists a symbol c which appears in u but not in u’.
We can assume that w u’yxv’ and t(p)= u’...c...yxv" (by v). In this case we
have that c appears in v’ but not in v", then w u’yx...c..-and again the triple
(y, x, c) O U T(t(p)), which means that w MouT(t(p)), (contradiction); therefore,
symbols of u c symbols of u’.

(v) and (vi) together give us that if p uxyv then w u’yxv’ where u’ S, and
V’ Sv. I--1



4 JAMES ABELLO

The preceding theorem allows us to express in a very explicit way the relationship
between MouT(p) and Mo as stated in the following corollary.

COROLLARY 2.1. Let M c Sz be extensible by (t, p) where t (x, y), p uxyv
and let O T(M). Ifw MoT(t(p))/Mo then t-l(w) Mo.

Proof. Let p uxyv and t (x, y). w MotT(t(p))/Mo w u’yxv’, u’
_

Su,
v’ Sv by the preceding theorem. This in turn implies that T(w) /O T(t(p)) / O,
and T(t-(w))/T(w)cT(p) because t-(w) u’xyv’, e S, v’eSo; therefore,
T(t-1 (W) C2 T(p) U O O, which means that t-1 (W) ( Mo. V1

Corollary 2.1 tells us that the "extension" of a set M by a pair (t, p) is completely
determined by a subset of it, namely, { q e M lq u’xy v’ with u’ S,, v’ Sv, p uxyv
and t (x, y) }. Note that the reciprocal of Corollary 2.1 is not true in the sense that it
can happen that t- (w) e Mo and however w MotT(t(p)). This motivates the following
definition.

DEFINITION 2.3. IfM Sz is extensible by a pair (t, p), then the projection set of
M with respect to (t, p) will be denoted by 1-I and is defined as follows.t,p

t,p { q Mlq u’xyv where u’ Su, v’ Sv, p uxyv, t (x, y) }. With this
definition we have the following corollary.

COROLLARY 2.2. IfM is extensible by (t, p) and O T(M) then MouT(t(p))
M U t(1-I Mt,p)"

Proof. The proof follows from Theorem 2.1 and the definition of I-I Mt,p
We close this section by menti.oning that ifX is a closed set under and if there

exists a sequence of pairs { (ti, Pi)}J , such that T(K) Ul T(Pi) and each of the
sets i ({ P, Pi }) is extensible by (ti, Pi) for 1, j 1, then by letting
A1 , Ai+ i+. i for 1, ,j we obtain a partition (A1, Aj) of
X, even though { Pi }= is not, in general, a kernel for X. All ofthis is true independent
of the consistency of X:. In the case that X: is consistent then we can characterize
algorithmically I-[ for by looking at the weak Bruhat order of Szti,Pi

This is the purpose of the next section.

3. The weak Bruhat order of Sx versus consistent sets.
DEFINITION 3.1.
i. For u u-.- Un, let E(u) { (ui, uj) < j, ui < uj ). E (u) is commonly known

as the set of noninversions of u.
ii. For { u, v S we write,
a) u --} v if there exists t e E(u) f z(u) such that t(u) v.

We say in this case that u eakly coers v;
b) u _2} v if there exists t e E(u) such that t(u) v. In this case we say that u

strongly coers v.
iii. The weak Brukat order of S, 3, is defined as follows.
u 3 v if there exists a sequence (P0, Pm), Pi S such that u P0, Pm V and

Pi- --} Pi for 1, m (Lehmann 19 ], Savage 21 ).
iv. The strong Brukat order of S, , is given by u v if u Po, Pm V and

Pi- - Pi for 1, m (Savage [21 ], [22]. Clearly u B v - u v.
FACT 3.1 (see Fig. 3.1 ).
i. u v ifand only ifE(u)

_
E(v).

ii. Tke maps f(u) u. I R and f(u) IR’u are order reversing involutions of
Sz, ), i.e., f 2 (u) u and u B v - f(v) 3 f(u); similarlyfor f ’(u), (I is tke identity

in S, IR is its reverse and denotes tke usual permutation multiplication).
iii. (S, ) and ( S, ) areposers witk maximum element and minimum element

I R. Moreover S, ) is a lattice by defining tke join u v v ofto elements u and v as
tke minimum element p (in tke eak Brukat order ) suck tkat p u and p v kile



THE WEAK BRUHAT ORDER OF S 5
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FIG. 3.1. Bruhat orders on S for Z 1, 2, 3, 4 }. Solid lines denote the covering relations in the weak
order and dotted lines correspond to the additional covering relations in the strong ordering. The relevant trans-
positions are indicated on each edge.

defining the meet u/ v dually, namely, as the maximum element p’ such that u/3 p’,
v p’. In other words u V v least upper bound ofu and v in and u/ v greatest
lower bound ofu and v in

Proofofi. That u/3 v implies E(u)
_
E(v) follows from the definition of/3. In the

other direction, let j be the minimum such that ui 4: vi, (if such j does not exist then
u v and we are done). For this choice of we have that uj < vj (< is the order of Z)
and if v Uk then uk_ < u because we are assuming that E(u) E(v); therefore,
E(u) D E(t(u))

_
E(v) where t (u_ 1, u). By repeating the argument we con-

struct a chain u P0 -- - Pm with E(Pm) E(v), so Pm v, which completes the
proof.

Proof ofii. Without loss of generality, take Z { 1, 2, n }. Then we have
f(u) u. I R uR, f,(u) IR’u U’ with uj (n + u and the result immediately
follows.

Proofofiii. For the proof see Yanagimoto and Okamoto [26].
The following two lemmas give the first relation between the poset (S,/3) and the

class of consistent subsets of S. These results appear in Abello and Johnson [3] and
Abello [1], [4] but we reproduce their proofs here for completeness.

LEMMA 3.1. IfL is a chain in ( S, /3) then L is a consistent subset ofSz.
Proof(by contradiction). Assume that L is cyclic. Then there are three permutations

u, v, w in L and three symbols x, y, z in Z such that

u x. .y. .z.

v y...z...x...

w z. .x. .y....
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We can assume without loss of generality that x < y < z (the only other essentially
different case is x > y > z, which can be treated similarly).

i. E(u) contains the ordered pairs (x, y), (x, z), (y, z) and at least two of these
pairs do not belong to E(v); thus E(v) E(u) which means that v u. Similarly
E(w) E(u) and then w u. On the other hand E(v) contains (y, z), which does not
belong to E(w), then E(w) E (v), which means w v.

ii. E (w) contains (x, y), which does not belong to E(v), then E(v) E(w) and

VWo
(i) and (ii) together give us that v and w are not comparable and therefore u, v, and

w cannot be in the same chain (a contradiction).
Example 3.1. The set {1234, 1243, 1423, 4123, 4132, 4312, 4321}, which is a

subset of 8{1,2,3,4}, is consistent because it is a chain in (S 1,2,3,4}, ) (see Fig. 3.1 ).
It is interesting to notice that Lemma 3.1 is not true for the strong Bruhat ordering

/. For example, { 2143, 3142, 4321} is a chain in (Sz, ); however, it is not consistent.
This is due to the fact that/ allows the interchange of nonadjacent elements.

The following is a simple but important property of maximal chains in/3.
LEMMA 3.2. IfL is a maximal chain in (Sz, 3) then L is a consistent subset ofSz

such that IT(L)[ 4() and ILl () + 1.

Proof. That L is consistent follows from the preceding lemma. Now, IT(L)[
() + () (n 2) 4() because maximal chains in/3 have length equal to (). [2

The interest of the preceding lemmas is thatfor any consistent set C it must be true
that T(C) _-< 4 () (see Fact 1.1 (iv)) so a maximal chain has the maximum number
possible of consistent triples; therefore, any maximal (with respect to the noncyclicity
property) consistent set M which contains a maximal chain L must satisfy that
T(M) T(L). Now, if L (I P0, P, P() I R) with ti+(Pi) Pi+ for
0, () and if Li denotes the unrefinable subchain of L running from I to Pi,
i.e., Li { q e L, I/3 q/3 Pi }, then we have that for each (as above) q(Li) is a consistent
set which is extensible by the pair (Pi, ti +) in the sense of 2; therefore, Theorem 3.2.1
gives important information about the class of maximal consistent sets which contain a
maximal chain in the weak Bruhat order. In fact it provides the basis of an algorithm to
construct these sets (Abello ], 2 ).

The preceding ideas carry over to a more general class of consistent sets which
contain subsets that are structurally equivalent to chains in the weak Bruhat erder. To
this end the following definitions are in order.

DEFINITION 3.2.
i. L Sz is called a pseudochain under/3 if there exists p e L and a map m:u -p-.u such that m(L) is a chain under 3. Ifwe want to indicate the dependency between

L and p we write L(p) for L. For our purposes any adjectives that apply to chains can
be used with pseudochains. Stanley [23 has counted the number of maximal chains,
[C[, in/3; then it follows that the number of maximal pseudochains is (n!/2)[C[.

ii. IfL(p) is a maximal pseudochain and m(L) (I P0, P() I R) we write

Li--- { q e L, I/3 m(q)/3 Pi}.
iii. For A Sz, let Cov (A) (p, q) A A, p covers q under/3} and let ,:

Cov (Sz) -- {(x, y) e Z Z, x < y} be given by ?(p, q) (x, y) ift(p) q and t
(x, y). , is called a labelling of the edges in the Hasse diagram of (S,/3). With these
conventions let TRAN (A) (Cov (A)).

iv. G, will denote the undirected (edge labelled) version of the Hasse diagram of
(Sz,/3), namely Gn (V, E) (Sz, Cov (Sz)) where the edge (p, t(p)) is labelled by
the two subset { x, y } if t (x, y).

The following lemma states the equivalence between chains and pseudochains from
the consistency point of view and it identifies pseudochains in (Sz, /3) with shortest
paths in Gn.
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LEMMA 3.3. Let L(p) be a pseudochain in ( Sz,
i. q(L(p)) is a consistent subset ofSz (see definition of in 2).
ii. Ift, TRAN (L(p)) then t 4 and t -1 4:1 (ift (x, y), t -1 (y, x)).
iii. L(p) is a saturated (unrefinable) pseudochainfrom p to q ifand only ifL(p) is

a shortest pathfrom p to q in Gn.
iv. IfSPATH (p, q) denotes a shortest path from p to q in Gn then SPATH (p, q)

is consistent.

Proof. For (i) note that L(p) is consistent because it is the image of a chain in
under a uniform relabelling, m, of the symbols of , and chains in/3 are consistent by
Lemma 3.1; therefore, q(L(p)) is consistent.

For (ii) and (iii) note that if p plP2" "Pn Sz and t (Pi, Pi+ 1) then t(p)
p-/(I) where (i, + ). Now, left multiplication by a fixed permutation is an auto-
morphism of Sz that preserves adjacency in the weak Bruhat order (for example, p
p-1. p I and t(p) --) p- 1. t (p) l(I)); therefore, it does preserve distances. In particular
a shortest path SPATH (p, q) is mapped by left multiplication to SPATH (I, p-1 .q).
But shortest paths, in Gn, from the identity I to any permutation w are saturated chains
in/3. This can be seen by induction on the path length which is nothing else than the
number of inversions of w.

(iv) is just the result of putting (i) and (iii) together.
The preceding lemma will allow us to state consistency results in terms of shortest

paths in Gn even if we give proofs of them only in terms of chains in (Sz,
The following result gives information about certain subconfigurations of any con-

sistent subset M of Sz. Note that no assumptions are made about the connectivity (in
the graph sense) or maximality of M.

LEMMA 3.4. Let M be a consistent subset ofS, q M, p S and let
SPATH (p, q) and SPATH’ (p, q) be two different shortest paths from p to q such that
t(p) 6 SPATH (p, q), t’(p) 6 SPATH’ (p, q) where t and t’ are two different adjacent
transpositions (see Fig. 3.2 below). Under these conditions, { t(p), t’(p) } c M
t f’lt’ .

Proof(by contradiction). (i) Assume that t f) t’ 4: and without loss of generality
let t (x, y), t’ (y, z) and suppose that SPATH (p, q) and SPATH’ (p, q) are chains
in (Sz, 3. With these assumptions q becomes a lower bound for t(p) and t’(p) which
means that the set of inversions of q, INV (q), contains INV (t(p)) LJ INV (t’(p));
therefore, INV q D { (y, x ), z, y) }, which implies that z, y, x 6 T(q) because SPATH
and SPATH’ are shortest paths.

P

(x,y)/’(y,z)
...yxz... t(P)o

- ..., y
FIG. 3.2. Illustration ofLemma 3.4. Note that P is not required to be in M.
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(ii) On the other hand, the fact that t 71 t’ 4: forces (y, x, z) e T(t(p)) and
(x, z, y) T(t’(p)). (i) and (ii) together contradict the consistency of M.

The fact that (Sz,/3) is a lattice (Fact 1.iii) gives us the following corollary as a
special case.

COROLLARY 3.1. Let { q, w, v } c M Sz and let t, t’ be two different adjacent
transpositions.

i. Ift(w v v) w, t’(w v v) v, w/3 q, v/3 q and ifM is consistent then
t71t’ .

Dually we have,
ii. Ift(w) w / v, t’(v) w / v, q /w, q/3 v and ifM is consistent then

tt’= .
Proof. (i) and (ii) follow from the preceding lemma by taking p w V v and p

w/ v, respectively.
Maximal consistent subsets in the weak Bruhat order exhibit a "local semimodu-

larity" property which does not hold for the strong Bruhat order. This is stated precisely
in the following corollary whose content will be referred to as the Quadrilateral rule or
the Q rule.

COROLLARY 3.2 (the Quadrilateral rule). Let M be a consistent subset ofSz and
{ w, v } M. Ifthere exist { p, q } Sz and two different adjacent transpositions t and
such that/(w) q t(v) and t-(w) p =/-(v) then {w, v, p, q} c q(M) (see
Fig. 3.3).

Proof. The conditions imposed to and t in the hypothesis hold if and only if
N t and this in turn implies that T( { p, q }) T( { w, v }) T(M); therefore,

{ p, q, w, v } c q(M) (this is not true if t and are not adjacent transpositions and then
it is not true in the strong Bruhat order). []

In terms of the weak Bruhat order, the Q rule says that for any two elements w, v
of a maximal consistent set q(M), if their join, w V v, covers both w and v and if their
meet, w/ v, is covered also by both w and v then { w, v, w V v, w/ v } c q(M). This
resembles the definition of an Upper Semimodular lattice (Birkhoff [8]). However, the
problem here is that both conditions w V v -- { w, v } and { w, v } - w/ v are necessary,
neither one implies the other, and moreover it is not true in general that (M) is even
a sublattice of (Sz,/3). On the other hand, if M is a chain in/3 then (M) is not only
a sublattice but an upper semimodular one as will be established in Theorem 3.3.

The following result is basically an iterated application of the Quadrilateral rule.
THEOREM 3.1. Let M be a consistent subset of Sz and let p, q(M)

such that p uxyv, q u’xyv’ where u’ Su, v’ Sv. If there exists a shortest path
SPATH (q, p) c q(M) such that for all w SPATH (q, p), w - (x) < w-1 (y) then for
all w e SPATH (q, p), w u"xyv" where u" Su, v" Sv.

Proof(by induction on SPATH (q, p) ).

FIG. 3.3. The Quadrilateral rule.
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Notation. If p Sz and a ;, denote by P/a the permutation in Sz-{a} obtained
by erasing a from p.

Basis. If SPATH (q, p)[ then there is nothing to prove.
(i) Induction Hypothesis. Assume it is true for SPATH (q, p)l J =< k <

and let SPATH (q, p) k + 1. Let w’ e SPATH (q, p) and l’(q) w’ where 1’
TRAN (SPATH (q, p)) and assume that l’ fq { x, y } 4: . Without loss of generality
let ’= (a, x). By assumption u’e Su and therefore a must precede x in p; therefore,
there exists TRAN ([w’, p]) such that l (x, a), ([w, p] denotes the subpath of
SPATH (q, p) running from w down to p). Take the first such l in TRAN ([w’, p]) and
let w be the permutation in SPATH (q, p) to which is applied, so w u"xav" and w’
(U’/a)xa(yv’). Assume now that there exists c e u" such that c U’/a, so c 4: a because
a g u" and c 4: y because w-l(x) < w- (y) by hypothesis; therefore, (c, x, a) e T(w),
(x, a, c) T(w’), which imply that (c, a, x) T(l(w)) and (a, x, c) T(p) f3 T(q).
This forces [w’, w] to contain a permutation w" which contains the triple (x, c, a) be-
cause to go from w’ to w, a and c must be interchanged without interchanging (x, a)
by the choice of l, and for c to precede x in w, at some point in [w’, w l, c must be be-
tween x and a (the preceding argument depends exclusively on the connectivity of
SPATH (q, p) and on the choice of (x, a)). Therefore, {w",/(w), p} contains a
cyclic triple, namely, { (x, c, a), (c, a, x), (a, x, c)} contradicting the consistency of
M. Up to this point we have proved that symbols of u" symbols of U’/a and by a
symmetric argument we obtain that symbols of U’/a symbols of u", which means
that u" 6 Su’/a, w u"xav", w’= (U’/a)xa(yv’); therefore, the subpath [w’, w] has length
I[w’, w]l --< k and satisfies the hypothesis of the theorem, so by Induction Hypothesis
every permutation on it is of the form u’"xav’" with u’"
TRAN ([w’, w]) then t f’) .

(ii) Now, the maximality of (M), the fact that [w’, w] (M), and (i) allow us
to apply iteratively the Quadrilateral rule to get that /([w’, w]) (M), giving us
that the path (q,/(w’),/([w’, w]), [/(w), p]) is a path from q to p that is shorter than
SPATH (q, p), which is a contradiction; therefore, the original assumption that
f) { x, y } 4: was false.

By (ii), fq {x, y) and then/(q) and p satisfy the hypothesis of the theorem,
and by induction we will be done.

Theorem 3.1, coupled with the results of 2, gives the following characterization
of extensible consistent subsets of Sx.

THEOREM 3.2 (see 2 for related definitions). Let M be a consistent subset ofS
which is also extensible by a pair t, p) and let w t I-I Mt,o). Ifthere exists a shortest path
SPATH (t- (w), p) c (M) and if TRAN SPATH (t-
We will refer to this theorem as the projection theorem).

(i) Proof. Ifw t(1-I Mt,v) then t- (w) 6 (M by Corollary 2.1 and by the definition
ofrI M,p

Now, p rIM and SPATH (t- (w) p) c (M) satisfy the hypothesis of Theoremt,p

3.1 because M is an extensible consistent subset of S; therefore, SPATH (t-(w), p)
HM which means that f) t for every 6 TRAN (SPATH (tt,p

The preceding theorem tells us that within each connected component of an exten-
sible set, which is also consistent, the elements of M are precisely those that are connectedt,p

by paths all of whose transpositions are disjoint from t.

A lattice semimodular property of consistent sets. Recall that a lattice L is upper
semimodular if it satisfies the following condition:

The U.S. Condition: For all elements w and v of L if w covers w A v then w V v
covers v. The following seemingly weaker condition is sufficient to prove upper semi-
modularity (Birkhoff 8 ):
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The W.U.S. Condition: For all elements w and v of L, ifw/ v is covered by both
w and v then w V v must cover both w and v.

As another application of the Q-rule we have the following result.
LEMMA 3.5. LetM be a consistent subset of( Sz, {3). Ifg(M is a meet subsemilattice

(join subsemilattice) of (Sz,/3) with a maximum element (minimum element) then
9(M) is an upper semimodular sublattice of(Sz,/3).

Proof. That 9(M) is a meet sublattice with a maximum element automatically
implies that 9(M) is a lattice.

To prove that 9(M) is upper semimodular is enough to prove that 9(M) satisfies
the W.U.S. condition. To this end let w and v 6 9(M), w/ v 6 9(M). Now let q be
some upper bound for both v and w and assume that there are adjacent transpositions t
and t’ such that t(w) w/ v, t’(v) w/ v (i.e., w/ v is covered by both v and w).
The consistency of 9(M) allows us then to apply Corollary 3.1 (ii) to conclude that
t 71 t’ , which in turn implies by the quadrilateral rule that the element w V v
t- (v) 9(M) satisfies that t’(w V v) w. This proves that w V v covers both w and
v which is the conclusion of the W.U.S. condition. []

Notation. For the remainder of this section we will follow the following notational
conventions.

i. Ch will always denote a saturated chain (or pseudochain) Ch (P0, P, Pk)
whereti+(Pi)=Pi+fori=0,...,k- 1.

ii. [P0, Pi] {pc Ch[Po /p Pi}; Chi 9([P0, Pi]).
The following basic properties of the weak Bruhat order will be instrumental in the

proof of the main result of this section.
LEMMA 3.6. For p Sz consider the set E(p) of noninversions of p as a binary

relation on Z, and denote by (E(p))* its transitive closure. With these conventions,
we have"

i. p V q is the unique permutation satisfying that E (p V q) (E (p) to E (q)) *;
ii. Ifp uxyv and q u’xyv’ where x < y, u and u’ in Sz, v and v’ in Sz2, then

p V q (u V u’)xy(v W v’);
iii. If t (x, y) E(p) f3 E(q) and if t is an admissible transposition ofp then

p V q t(p) V q.
Proof.
i. For the proof, see Berge [7].
ii. Note that E(p) and E(q) differ only in E(u), E(u’), E(v), and E(v’), respectively.

This forces (E(p) tO E(q))* to be equal to E((u V u’)xy(v V v’)), which together with
(i) implies that p V q ((u V u’)xy(v V v’)).

iii. The fact that (x, y) e E(p) E(t(p)), E(t(p)) c E(p), and (x, y) e E(q)
implies that E (t(p)) to E (q) E(p) to E (q) and again by (i), t(p) V q p V q. ff]

Theorem 3.2 (the projection theorem) and the Q-rule, together with the fact that
Po, Pi] is a saturated chain (or pseudochain) imply that Chi 9( P0, Pi] is a connected
subset of Sz.

Now, if 1, 9([P0, Pi]) (P0, P), which is clearly a join sublattice with top
element Po. For the general case note that Chk + Chk tk + H tkChk+l,Pk) by Corollary
2.2. But this is saying that Chk + Chk is obtained from 1-[ Chk by fight multiplicationtk l,Pk

by a fixed permutation, namely the one corresponding to the transposition tk + 1. Moreover,
if two elements are adjacent in 1-[ Chk their images under tk + must be adjacent. Sotk l,rk

we have here a one-to-one mapping that preserves adjacencies and therefore distances
under/3. Therefore, if v, w e Chk + Chk then t{+ (w) and t{1+ (v) e ]-[ c and bytk l,Pk

Lemma 3.6 (ii) we can assume that z t+ (w) W t{+ (v) e ]-I c which allows ustk 1,r’k

to conclude that tk + (Z) W k/ V Chk + Chk. If v e Chk and w e Chk + Chk, then
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the fact that Chk is extensible by (tk + 1, Pk) allows us to apply Lemma 3.6 (iii) by letting
q v and p t+l(W) to obtain that v V w Chk +l.

The preceding arguments show that Chi is a sublattice of (Sz,/3) with top element,
and therefore by Lemma 3.5 we have the following promised result.

THEOREM 3.3. IfM is a saturated chain in the weak Bruhat order then (M) is
an upper semimodular sublattice of( S, .

Remarks. The preceding results play a central role in the algorithmic construction
of maximal consistent sets which contain a saturated chain (or pseudochain) Ch in

(Sz /3). It says that if Chi xIt([P0 Pi] has been constructed then to find I-[ Chi
ti+ l,Pi one

backtracks (in Chi) from Pi by following any path whose transpositions are disjoint from
ti +l. At every step all that is required is to find one incoming transposition disjoint
from ti / . Theorem 3.3 guarantees that the process will stop if and only if at some point
we reach one permutation all ofwhose incoming transpositions intercept ti + (the formal
algorithm can be found in Abello [1], [4], where it is called the MCCS algorithm).

4. Weak Bruhat order, consistent sets and Catalan numbers. We will prove here
that the nth Catalan number is an upper bound for those consistent sets containing a
Maximal pseudochain in the weak Bruhat order.

DEFINITION 4.1.
i. IfM is a connected subset of S, its diameter, diam (M), is defined as diam (M)

max SPATH (P, Q)I.
{P,Q}c M

ii. For a saturated chain (pseudochain) Ch [P, Q] in (Sz, B) denote by
OTRAN (Ch) the ordered set of transpositions used in Ch, namely OTRAN (Ch)
{ti}i=lChl-1 where ti+I(Pi):Pi+I, PiCh; and let Ch be the subsequence of
OTRAN (Ch) consisting of transpositions involving x . Elements of Ch will be
distinguished by having a superscript x, namely, Ch (t, t, tj’).

iii. l,/k] { li OTRAN (Ch) such that j =< _-< k }.
iv. For a subsequence (l, l, l) of Ch and a permutation Q, we will write

(l, l)(Q) to denote the sequence of permutations (Q Q0, Q1, Q) where
Qi+l =/i(Qi) for 1, ,j 1.

The following is a technical lemma that will allow us to single out a very special
canonical subchain in Mch.

FACT 4.1. Assume that [p, v] is a saturated chain in (Sz, such that pl vi
x and Pn Vi +1 Y e Z and let us recall that tfp Sz, z(p) denotes its admissible
set oftranspositions. Iftq, tr OTRAN ([p, v]) are such that tq t (x, a), tr t
(X, b), a 4: y, b 4: y with tq e z(Q), tr ’(R) and [Q, R] [p, v] then MIo,R
M[p,Q]t(tq,tr_ ,-.. ,tq+)(Q). We will say in this case that the sequence (tq+ 1, , tr- ) has
been lifted by the transposition tq (see Fig. 4.1 ).

Proof. M[p,R] M[p,Q](t_, ,tq+,tq)<Q) by the definition Of tq and tr.
(i) tr t[ - each transposition in (tq + , tr-) does not involve x.
(ii) tq t and the assumption that [Q, R] is a chain - each transposition in

(tq + , tr-l) does not involve the symbol a.
Therefore, the Quadrilateral rule (Corollary 3.2), can be applied (iteratively) to

(tq+, tr_)by(i) and (ii)andthe result follows by the maximality ofMtp,R1.
Remark. The idea of lifting one sequence, by one transposition (Fact 4.1 ),

can be used iteratively, in certain cases, to lift one sequence by another as follows. Con-
sider two permutations p and q such that p/3 q, pj qj x and assume that there is
a saturated chain Ch from p to q such that if t (a, b) e OTRAN (Ch) then a :/: x 4:
b. Now, let LEFT (Ch)= (ti, tik) denote the subsequence of OTRAN (Ch) ob-
tained by deleting from it those transpositions using symbols in { Pl, P- }. Simi-
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P x.,..y P=x.y
Q xa..y.. xa.-y..

tq(Q) ax. -y--

(tq/ ,..., t,_) xab..y

R axb..y R axb..y..

,t,(R) abx.y., t,(R) abx.y..
v ..-xy.. v ..xy..

(tq+l, tr-1)

FIG. 4.1. The lifting ofa sequence tq 1, tr- by a transposition o.

larly, let RIGHT (Ch) (tjl tjk ,) denote the subsequence ofOTRAN (Ch) obtained
by deleting from it those transpositions using symbols in {pj+l, Pk }. (For our
purpose assume that both LEFT (Ch) and RIGHT (Ch) are nonempty and that the
last transposition of OTRAN (Ch) is an element of RIGHT (Ch)). Note that if
t e LEFT (Ch) and t’ e RIGHT (Ch) then t N t’ . This together with the as-
sumption that Ch is a saturated chain in all of whose elements have the symbol x
exactly in the same position implies that the sets of permutations (tik, til)(P) and
(tjk,,-.., tl)(p) are saturated chains in (Sx, /3). This can be seen by an iterated
lifting of certain subsegments of the sequence LEFT (Ch) by each of the elements of
RIGHT (Ch) (in reverse order) in an iterated fashion. The figure below illustrates
this process for the case where RIGHT (Ch) consists of two transpositions only. Note
that because here we use only the Quadrilateral rule, then the set of ordered triples of
(tik, ti)(P), T((tik, til)(P)), together with the set of ordered triples of
(t,, tl)(p), T((t,, t,)(p)), is precisely equal to the set of ordered triples
of Ch, T(Ch).

Note that because the process depicted in Fig. 4.2 consists of repeated applications
of the Quadrilateral rule, we can be sure that all the saturated chains Ch’ from p to q
that are obtained in this manner satisfy that T(Ch’) T(Ch) which means that Ch’ c
(Ch). In particular this is true for the chain determined by using first (in order) the

transpositions of LEFT (Ch) and then the transpositions of RIGHT (Ch), which in our
unwanted (very clumsy) notation is denoted by ((q,, tjl)(tik, til))(P).

We collect the preceding remarks and the process depicted in Fig. 4.2 in the following
result.

FACT 4.2. Let p, q be permutations in Sz that satisfy p q, pi qj x and let Ch
denote a saturated chain from p to q such that if t (a, b) e OTRAN (Ch) then a 4:
x 4: b. Under these conditions it is possible to find a saturated chain Ch’ from p to q
such that:

i. OTRAN (Ch’) consists first of all tranpositions in OTRAN (Ch) which use
only symbols in { p+l, Pn } (call this set LEFT (Ch)) followed by all transpo-
sitions in OTRAN (Ch) using only symbols in { Pl, p-1} (call this set RIGHT
(Ch)) (or vice versa). In symbols: OTRAN (Ch’) (LEFT (Ch), RIGHT (Ch)) or
OTRAN (Ch’) (RIGHT (Ch), LEFT (Ch)).

ii. T(Ch’) T(Ch) or equivalently Ch’ (Ch).
iii. (a) If RIGHT (Ch)= (tl, t,) then all the permutations in the set

(tjk,, tl)(p) have as a common suffix the subpermutation p+ l"’’Pn. By delet-
ing this common suffix from all of them we obtain a saturated pseudochain in
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FIG. 4.2. Lifting ofa sequence LEFT(Ch) by another sequence RIGHT(Ch) (ti,, ti2). This assumes that
all the elements in the chain Chfrom p to q contain afixed symbol x in exactly the same position.

(S{p,,...,pj_,}, fl) from pl’"Pj-i to ql"’qj-1. Call this pseudochain RE-
STRICTED_RIGHT (Ch) and its closure FIRST_HALF xIt(Ch).

(b) If LEFT(Ch)=(ti,, ,tik) then all the permutations in the set
(tik, ti)(P) have as a common prefix pl...pj_ . By deleting this common prefix
from all ofthem we obtain a saturated pseudochain in ( S{pj+ ,,... ,p,},/3 from pj + "Pn
to q +... qn. Call this pseudochain RESTRICTED_LEFT (Ch) and its closure SEC-
OND_HALF xIt(Ch).

As a justification (if any) for the definitions given in (a) and (b) above we have
the following:

(c) For a chain Ch satisfying the restrictions given above we have that (Ch)
FIRST_HALF ((Ch)) [x] SECOND_HALF ((Ch)), (here denotes cross
product).

Note. Everything we have discussed after Fact 4.1 is put very concisely in the fol-
lowing definition and theorem. However, if the reader feels comfortable he/she may
jump directly to the remarks preceding Theorem 4.2 without losing continuity.

DEFINITION 4.2.
i. For (ti,,ti2, ,ti) a subsequence of OTRAN([p, pR]) such that

(ti,, ti, tii) (t, t, tj’) denote by { Ql}= the subchain of[P, pR] such that
t’ e -(Q/).

ii. Let LEFT(t’, t’+) denote the subsequence of [tiz, tiz+,] obtained
by deleting from it those transpositions using symbols that precede x in Qz. Similarly,
let RIGHT (t}’, t’+ ) denote the subsequence of [tiz, tiz+] obtained by deleting from it
those transpositions using symbols that follow x in Q.

iii. Let TRANSFORM (t’, t’+ ) (RIGHT (t}’, t’+ ), LEFT (t’, t’+ 1), t’) and
TRANSFORM (t’, t’) (TRANSFORM (t’, t}’+l), TRANSFORM (t’+, t’+2),
-., TRANSFORM (t’_ , t]’)).

The following result is just an iterated application of Fact 4.1 in which a sequence
was lifted by one transposition. In the following theorem a sequence is lifted by another
sequence.

THEOREM 4.1. If (ti,, ti:, tij) (t, t, t’) with t (Q), t)’ ts 6

-(S)and [Q, S] c [p, v] then Mtp,S] Mtp,QIU(t]C,TRANSFORM(t,t]c))(Q).

Proof. (By induction on j ).
Basis. Ifj 2, the result follows from Fact 4.1.
Induction Hypothesis. Assuming the result is true for j, we will prove it for + 1.
Suppose (ti,, "’,ti,ti+,) (t,t, ,t]’,t]’+l) and let tie(R), ti+

(u) with [p, R] U JR, u] c [p, v]. By Induction Hypothesis M[p,R]
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M[p,QIU(t;,TRANSFORM (t,t;))(Q). By definition of tj’+ every transposition in
OTRAN tij (R), u does not use the symbol x. This implies that the quadrilateral rule
may be applied to OTRAN [tij(R), u] to lift the transpositions in LEFT (t;, t+l) by
those transpositions in RIGHT (t’, t]’+l)/t’+l. But this means that instead of
OTRAN [tij(R), ul we may use (RIGHT (t]’, t]’+ 1), LEFT (t;, t’+ 1)). Therefore, Mp,u

M[p,Q] u (t]+ I,RIGHT (t;,t]+ 1),LEFT (t;,t;+ I),(t;,TRANSFORM (t,t])))(Q) by Induction Hypothesis and
by the maximality ofMlp,ul. Now, by noticing that the fight-hand side ofthe last equation
is equal to M[p,Q]t(t+ I,TRANSFORM (t,t+ )) the result follows.

Remarks. We have seen that a shortest path SPATH (p, q) is mapped bijectively
to a saturated chain Ch in (Sz,/3) by left multiplication by p-1. This induces a
map from the ordered triples of SPATH (p, q), T(SPATH (p, q)), to the ordered
triples of Ch, T(Ch); namely, if R SPATH (p, q), (x, y, z) T(R) if and only if
(p-1 (x), p-1 (y), p-1 Z t T(p -1o R). But this means that w e (SPATH (p, q)) if
and only if p-1. w (Ch); therefore, (SPATH (p, q)) xIt(Ch) I. Therefore, for
every maximal connected consistent set (m.c.c.s.) M c Sz of diameter () where n
there exists a m.c.c.s. M’ Sz that contains a maximal chain such that MI M’I.
This is not saying that all such sets (with the same diameters) have the same cardinality
(in fact their cardinalities are in general quite different as proved in Abello 2-4 ). With
this in mind we will denote by M anY maximal connected consistent subset of Sz where

I1 J. Now if M has diameter () we may assume that it contains a maximal chain
under/3.

Finally, we will prove the next result which relates Catalan numbers and maximal
connected consistent sets.

THEOREM 4.2. For 121 n. If Mn denotes a maximum connected consistent subset
of (S, [3) ofdiameter, diam (M,) () then (Mn, /3) is an upper semimodular lattice
with cardinality Mn < /n + (2) the nth Catalan number Cn for n > 2.

Proof. The upper semimodularity of(Mn,/3) was established in the preceding section
(Theorem 3.3), so we will prove here that M, =< Cn.

For simplicity in notation we will write I f to denote the projection set I-[ ,, of B
with respect to (t, P), if there is no danger of confusion.

(i) By the remarks preceding this theorem we may assume that Mn contains a max-
imal chain Ch [I, I R] in/3. Let I1 x and In y e . By noting that x never moves
to the left in Ch we have that OTRAN (Ch) (tl, t()) imposes a total order < on

x given by bi < b if and only if ti (x, bi), t (x, b) and < j.
(ii) Now, by letting M { w e Mn" wi x} we have an ordered partition of M,

namely, (M l, Mn) and u e M such that ti(u) e M +l where ti (x, bi) and bi is
as defined in (i).

(iii) By the projection theorem (Theorem 3.2), the definition of M and (ii), we
M Mhave that I-I ti c M and ti(I-[ t c M +1

i)(iv) On the other hand, if veMi+i/ti(]-Iti then the set of symbols{v, <
+ } { bt, < + } by (i) and by the order imposed on Ch.

(v) (iii), (iv), and the fact that vi +l x allow us to conclude that
M +

___
(Ch i)

(vi) where Ch is the saturated chain of Ch between ti-l(P) and t-l(q), with the
understanding that t0(p) should be taken as I. By Fact 4.2 (iii) (c) we know that
(Ch i) FIRST_HALF (Chi)) x { x} x SECOND_HALF (Chi)) where FIRST_
HALF((Chi)) c Sbl,l<i+l and SECOND_HALF(xIt(Chi)) c S-bl,l<i+ are
consistent and connected sets, each of which contains a pseudochain. Therefore,
IFIRST-HALF((Chi))I--< IMil and ISECOND_HALF(,I,(Chi))I _-< IMn-i-ll,
which in turn imply by (v) that IMi+ll _-< IMil.lMn-i-ll.

(vii) This, together with (ii) above, give us Mn 2; P2o [M + 11 =< Z P=-01 Mil*
IMn-i-ll with IM01 1, IMll 1, IM21 2, IM3I 4.
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Inequality (vii) and the fact that the Catalan numbers { Cn satisfy that Cn
Y I2-01 Ci,Cn-i- with the same boundary conditions allow us to apply induction on n
to get that [Mn < Cn for every n > 2. V1

COROLLARY 4.1. If Mn is a maximal consistent subset of Sz of diameter
diam (Mn) () then [Mn < 4n 1.

Proof. The proof follows from the preceding theorem and from the fact that Cn =<
4 n-1 ]

Remarks. The preceding results suggest the possibility of studying the structure of
maximal consistent sets by looking at them as representing a certain restricted collection
of binary trees or as a certain subcollection of stack permutations (de Bruijn [11 ]). The
multiple interpretations offered in the literature to the Catalan numbers, Cn, (de Bruijn
[11], Feller [14], Gardner [16], Klamer [18]), could be a good source of ideas to shed
new light on the problem in question. This approach has not yet been pursued.

The unexpected relationship between Cn and Mnl established in Theorem 4.3
offers the (unique) best known upper bound at present. In a forthcoming paper we will
prove that [Mn is not bounded by 2 for all n, as was conjectured in 2 ]. We conjecture
that in general any consistent set M c S satisfies that IMI < 4 i1- for I;I > 2 and
that ifM contains a maximal pseudochain in the weak Bruhat order then MI < 3 i1- .

We suspect that a general bound for connected consistent sets between 3 Il- and
4 zl- is a very hard result to obtain because the structure of general connected sets is
as random as that of unconnected ones. Moreover, relating connected consistent sets to
unconnected ones appears to be a very hard problem. In Abello [1 we present a very
surprising bijection of this type that gives a unified view of several constructions (con-
nected and unconnected) offered in the past.

Conclusions. We have seen that maximal pseudochains in (S,/3) are a very im-
portant substructure of those maximal consistent sets which contain them. From the
Arrow’s Impossibility Theorem point ofview (Abello [4 ], Arrow [5 ]), the results obtained
here indicate that the majority rule produces transitive results if the collection of voters
as a whole (at least in the extensible cases covered by Theorem 3.2), can be partitioned
into no more than (n 2 + n)/2 groups that can be ordered according to the level of
disagreement they have with respect to a fixed permutation p. On the other hand, by
viewing Sx as a Coxeter group (Benson and Grove [6 ], Bourbaki [10], Coxeter and
Moser 13 ], Stanley 23 ]), these results provide a "novel" interpretation ofthe following
partition of the collection f of maximal chains in the weak Bruhat order. Namely, if for
Ch and Ch’ ft we let Mch and Mch, be the maximal consistent sets containing them,
respectively, then the relation given by Ch Ch’ if and only if Mch Mch, parti-
tion ft and our results say that (UCh,. Ch Ch’, ) is an upper semimodular sublattice of
(Sz,/3) such that [JCh,.Ch Cht] the 12; Ith Catalan number. Now, if 3’ (t, ti)
is a reduced decomposition ofwo minimum element in (Sz,/3), any other reduced
decomposition of w0 may be obtained from 3’ by using two types of transformations
known as Coxeter relations of type I and of type II (see Benson and Grove [6 ]). Our
Projection Theorem (Theorem 3.2) shows that Ch Ch’ if and only if Ch’ may be
obtained from Ch by using transformations of type I only; therefore, we have obtained
a "new" combinatorial interpretation of the collection of chains which can be obtained
from one another by using Coxeter transformations of type I or type II exclusively.
Namely, for Ch’ ft, if 2Ch, { Ch 2: Ch can be obtained from Ch’ by using Coxeter
transformations of type I only } then the set UChch, Ch does not contain a cyclic triple
(or Latin square) in the sense of Definition 1.1.

If one is puzzled by the fact that we never said what these transformations were, it
should suffice to say that what we call transformations of type I correspond to inter-
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changing ti and ti +l, in the reduced decomposition 3’ of w0, if and only if they are
"disjoint."

We close with the following question: What is the corresponding combinatorial
interpretation of the projection theorem for general coxeter groups?
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AN EXTREMAL PROBLEM ON SPARSE 0-1 MATRICES*

DAN BIENSTOCKf aND ERVIN GYORI:

Abstract. The problem of estimating the number of l’s in a square 0-1 matrix with certain forbidden
configurations is considered, and nearly tight bounds are provided. This is motivated by a problem in com-
putational geometry.

Key words, extremal problems

1. Introduction. In this paper we study a problem of a nature typical to extremal
combinatorics: that of finding the maximum number of ’s that can occur in a 0-1 n
n matrix with a certain forbidden configuration of ’s.

We remark that various problems in extremal graph theory may be described in a
similar way. For example, Zarankiewicz’s problem, which asks for the largest number
of edges in an n-vertex graph with no 4-circuit, can be stated as follows. What is the
maximum number of ’s in a 0-1 n n matrix with O’s on the main diagonal, that
contains no "rectangle" with a at each corner? It is well known that the tight answer
is/7 3/2 (see [B]).

We call the forbidden configurations in our problem trapezoids. For integers =<
i _-< i2 < i3 /7 and _-< j < j2 --< j3 r/, a trapezoid is a pattern of four ’s, occurring
at entries (given by (row, column) in standard numbering) (i, jl ), i2, j2), i3, jl ),
and (i3, j3) (see Fig. ). We denote by t, the maximum number of ’s in a trapezoid-
free n n matrix. The problem of computing t has appeal of its own, as the proofs are
not immediate. Moreover, this problem arises in computational geometry, as out-
lined next.

Recently, Mitchell produced an algorithm for computing a shortest rectilinear path
to join two points in the plane while avoiding certain rectilinear obstacles. The complexity
of this algorithm is difficult to estimate, but may be shown to be bounded above (up to
other, unrelated factors) by t [M 1]. Thus, it is important to investigate t. Our results,
described below, imply that Mitchell’s algorithm is one of two best algorithms for the
geometry problem. We prove the following theorem.

THEOREM 1.
There exists a constant c > O, so thatfor all n >= 1, t <= c n log n.

(ii) There exists a constant c2 > 0, so thatfor infinitely many n >= 1, t >= c n log n/
log log n.

We conjecture that the lower bound in (ii) is the correct answer.
We will use the following definitions and conventions.
In what follows, the rows of matrices will be numbered from bottom to top, and

the columns from left to right. Thus, the 1, entry of a matrix is its bottom left corner
entry. We say that two columns of a matrix overlap at a given row if both columns
contain a in that row. Given a matrix A, the submatrix corresponding to the column
indices c, c, Cm is denoted by A[Cl, c, Cm].

Let A be a 0-1 matrix. The total number of ’s in A is denoted by #(A). Let c be a
column ofA. Then:
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trape-oid
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I,I

!

right-trapezoid

FIG.

If X is a subset of the entries in c, the interval spanned by X is the set of all
entries of c (including those not in X), in the rows between the lowest and the highest
containing an element ofX (inclusive). The row-set of the interval consists precisely of
those rows ofA that contain the elements of the interval.

(2) We say that a set Z of ’s of c are consecutive if the interval they span contains
no other ’s but those in Z. We define the spread of c to be the minimum number of
rows spanned by any three consecutive ’s in c. The spread ofA, sp (A), is the minimum
spread of any column ofA.

2. The upper bound. Given integers =< il -<- i2 < i3 =< n and _-< jl < j2 n, a
right trapezoid is a pattern of four ’s, at positions i, jl ), i2, j2), i3, jl ), and i3, j2).
Let T, denote the class of n n 0-1 fight trapezoid-free matrices, and t the maximum
number of ’s in a matrix of T,. Clearly, tn --< t,. We will show that t, O(n log n).
Below we prove the following theorem.

THEOREM 2. There are constants e >= O, > 1, so that ifA T’, there exists B
T’ satisfying sp (B) >_- X sp (A) and such that A has at most e n more l’s than B.

Pending the proof ofTheorem 2, the upper bound on t, is clear. For ifA e T;,, after
applying Theorem 20(log n) times we will obtain a matrix in T, with O(n) l’s, but
also at most O(n log n) fewer l’s than A. This would conclude the proof of the
upper bound.
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The proof of Theorem 2 will be broken up into several steps. First we will give an
informal description. We stress that this description will be slightly incorrect but will
contain the main ideas.

2.1. Informal description of the construction. The heart ofthe proof is an algorithm
that processes the columns ofA from left to fight, generating the corresponding columns
of B in the process. Thus, after such steps, we will have generated the first
columns of B. We will also have generated a fight trapezoid-free matrix Ci-1, which
corresponds to the semiprocessed matrix A. In other words, the last (rightmost) n +
columns of C;_ are identical to the last n + columns of A. The remaining

(lefimost) columns ofCi_ 1, on the other hand, have a very special structure, and intuitively
can be regarded as containing some carefully rearranged ’s obtained from the leftmost

columns ofA. The objective of the rearrangement is to facilitate the processing of
59additional columns of A, in particular to attain the desired increase of the spread in
B. More precisely, let Ci- have rni_ + n columns (possibly rni_ 4 1, but for
intuition, first regard mi- ).

The ’s in the first m;_ columns of Ci-1 satisfy the following crucial property, to
be maintained inductively. For each such column, consider the interval spanned by the
highest and lowest ’s occurring in the column. Then the row-sets of all such intervals
are pairwise disjoint, and each interval is "long." Here, long means having at least a
prescribed number of rows (this will be made precise later). We stress here that a given
interval may contain O’s; what is important is that it is spanned by the extreme ’s in
the column. The fact that the intervals are long is used in the following way.

Suppose the construction has been carried out in steps and now we want to
process the ith column ofA (i.e., the ith column of Ci- 1). Call this column v;. The ’s
of v are classified into two types.

First, consider the ’s where v; overlaps any ofthe first m;_ columns of Ci- 1. Note
that because C;_ is fight trapezoid-free (and thus rectangle-free), and because of the
interval structure that we have constructed, the gaps between successive overlaps, on the
average, have to be "long" (no three overlaps can correspond to the same interval). The
column containing a precisely on those rows where an overlap occurs will be the th
column orB. This new column satisfies the desired sparsity condition ofthe gaps between
consecutive ’s, on the average, being long. This is the heart of the procedure. What we
must show now is how to deal with the remaining ’s in vi without having to remove an
excessive number of these (ideally, a bounded number per column).

We partition these remaining ’s into consecutive blocks that correspond to the
intervals of C;_ and the gaps between these intervals. We will use most of the ’s in
these blocks to define a new column Ci. Now, the ’s in any block except the top one
may be jointly shifted to the left (this is possible since there is no overlap anymore). For
example, if a block Bj. corresponds to an interval Ih of C_ 1, we can shift all ’s in
from column mi- + of Ci- to the column containing Ih (here, each shifted remains
in its original row). It is seen that this will not create a fight trapezoid because of the
existence ofthe top block. Similarly, the blocks corresponding to gaps can also be shifted
to an appropriate column. Thus, we are left with a single block B1. If B contains few

’s (say, a bounded number), then just remove them. If B corresponds to a gap, then
make a new interval out ofB.

The difficult case occurs when B corresponds to some interval I, and B1 has many
’s. But let us assume for now that the difficult case does not arise. Then we define C to

be the matrix obtained from C;_ by the above shifting and removal operations. Note
that the number of l’s that were removed, if any, is bounded.

Proceeding inductively then, we will eventually process all the columns of A. At
this point, the matrix B will have the desired sparsity condition, and the total number
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of ’s that were permanently removed in the process is at most linear. Furthermore, the
matrix Cn does not have more than one in any row (because of the disjoint interval
structure). Hence ifwe also permanently remove all those ’s, altogether a linear number
of ’s is removed in the worst case. In other words, the difference between the number
of ’s in A and that in B is at most O(n), as desired.

However, we have to consider the possibility of the difficult case arising when pro-
cessing the top block B of some column, say in the ith step, to keep notation as above.
Thus, B corresponds to some interval I, and B has many ’s. In this case, no matter
what we do, it appears that we may have to remove many ’s. This potentially dangerous
situation is remedied by making a stronger inductive assumption about the interval
structure. Given one of the first mi- columns of Ci-, consider, within the interval
corresponding to that column, the largest subinterval, starting from the top, such that
the gap between any two consecutive ’s is "small" (made precise later). The rows in
this subinterval (there is always at least one such row) are the "special rows" of the
column. The inductive assumption is that the total number of special rows (added over
the first m;_ columns) does not decrease, i.e., for any a > b the total number of special
rows of Ca is at least that of Cb.

How can we use this assumption to handle B and I as above? The general idea is
to use ’s from B to increase the number of special rows in I. This involves moving ’s
within I, and from B to I, to enlarge the interval of special rows in I (and thus, a move
may involve a change ofthe row occupied by the ). Naturally, such a set of moves may
create fight trapezoids, with one of the moved ’s acting as the left-bottom element, and
one of the ’s in the rightmost n columns of Ci-1 acting as the top fight element.
But a counting argument shows that the total number ofsuch right trapezoids is at most
proportional to the increase in the number ofspecial rows. We eliminate such trapezoids
by removing their fight top elements, and we will be done processing the new column
of A. This removal operation, on the average, will not be expensive: since the total
number of special rows is nondecreasing, altogether we will not remove more than O(n)

’s in this manner, in the course of processing all columns ofA.
This concludes the informal description. To summarize the above, there are two

main facts concerning the construction. First, the interval structure in the leftmost
columns of the matrices Ci is used to achieve the sparsity condition of the matrix B. (2)
To achieve the interval structure, some ofthe ’s are shifted left (with a few also changing
rows). That the shifting usually works is a consequence ofthe matrix being right trapezoid-
free (this is the main instance in the proof that this fact is actually used). But we also
have to remove some ’s. To avoid too many removals, we introduce the special row
structure of the intervals (this is the only reason why the special rows are used), which
in turn must be inductively maintained.

2.2. Formal statement of the inductive assumption and its proof. Let k > 4 be a
fixed (independent of n) integer. The proof of Theorem 2 will be based on the follow-
ing lemma.

LEMMA 1. There exists B T’, andfor <= <= n, there exist integers mi and 0-1
matrices Ci, so that Ci is n mi + n i), and

1.1 Ci is right trapezoid-free.
(1.2) The last n columns ofCi are a copy ofthe last n columns ofA, possibly

with some ’s removed (changed into 0’s).
(1.3) Thefirst column ofB is made up of O’s, andfor > B[ i] contains l’s pre-

ciselyon those rows where Ci- mi- + overlaps any ofthefirst leftmost) mi- columns
ofCi-1.
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(1.4) Let <= j <= mi. The row-set of the interval Ij, spanned by the highest and
lowest in Ci[j] has cardinality at least l k 2)/2/sp (A). The row-sets ofthe intervals
I,i, <= j <- mi, are pairwise disjoint.

(1.5) Let <- j <= mi. For some hj, >= (possibly hj, ), the first (topmost) h,i
’s oflj, have the property that the number ofrows spanned by each and the next is at

most [sp (A)/2], and h,i is defined largest with this property. The rows spanned by these
hj, "s are called the special rows ofI,i.

(1.6) If denotes the total number ofspecial rows ofC, then di/ >= di,for < n.
(1.7) #(A) =< #(C;) + #(B[1, 2, ..., i]) + O(k(i + kdi)).
Figure 2 shows a typical matrix C;. The function of these matrices is auxiliary. We

postpone the proofofLemma until later. Let us next see how to use it to prove Theorem
2. We have the following results.

LEMMA 2. sp (B) >-_ [(k- 2)/21 sp (A).
Proof. Consider three consecutive ’s of some column of B, say column B[ i]. By

(1.3) these ’s indicate overlaps of column Ci-1[ mi-1 + 1] with previous columns of
Ci-1. Since by 1.1 Ci- is fight trapezoid-free (and thus rectangle-free), these overlaps
must correspond to different intervals in Ci-1. Consequently, the number of rows from
the first to the third isatleast[(k-2)/2Jsp(A),by(1.4),asdesired. I

LEMMA 3. #(A) _-< #(C,) + #(B) + O(n).
Proof. The result follows from (1.7), since dn =< n. [q

Now by Lemmas 2 and 3, the proof of Theorem 2 is complete with ,
/(k 2)/2/and e O(k), since no row of Cn contains more than one 1, by the row-
disjoint property of the intervals, as in (1.4).

In the remainder of this section, we will prove Lemma 1.

2.3. Proof of Lemma 1. We will prove 1.1 )-(1.7) by induction on i. For 1,
we set B[ to consist of O’s. IfA has at least k ’s, we let m 1, C1 A, and we set
I1, to be the set of rows spanned by the l’s in A[1], and, if necessary, set h1,1 1.
If A[1] contains fewer than k l’s, we remove them, and set m 0 and C
A[2, n]. Clearly, this satisfies 1.1 )-(1.7).

To prove the general inductive step, we will use an algorithmic construction given
next. The algorithm will be described in full, with proofs afterwards. We will assume
> 1, and assume that the constructions and proofs in 1.1 )-(1.7) have been carried

out for 1, 2, ..., i- 1.

II

r’ows

m columns n-I columns to be processed

A typical C

FIG. 2
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Algorithm
Step (I). Let B[ i] be the column that contains ’s precisely where Ci-1[ mi-1 + 1]

overlaps any of Ci- l[j], <= j <= mi- 1. This choice ofB[ i] clearly satisfies the inductive
hypothesis (3).

Step (II). We proceed as follows to define Ci. Replace Ci-l[mi-1 + 1] by
Cg-l[mi-i + 1] B[i] to obtain a matrix C (that is C[mg_l + 1] contains a
on those rows where Cg_ 1[ m;_ + contains a and does not overlap any of Cg_

<-j <= mi-l).
Step (III). Consider the partition of C[mi_ + 1] into intervals induced by the

row-sets of the intervals/,i-1, _-< j _-< m;_ 1, as well as the "gaps" between them. To
simplify notation, we call such intervals blocks (note that a block does not necessarily
begin or end with a ). Suppose that X0, Xs, s >_- 0, are the blocks that contain ’s,
numbered as they appear from bottom to top. Then, for 0 =< r < s, do the following: if

Xr corresponds to some/,i-1, then shift all ’s in Xr from column m;_ + to column
j (keeping them on the same row). IfXr corresponds to the gap between some Ix,i-1 and
Iy,i-1; with Ix,i-1 "higher" than Iy,i-1, then we shift all the l’s in X from column

mi- + to column x (changing Ix,i- ).
Denote by vi the column obtained from C[ rag_ + 1] after the shifts (i.e., after

removing the ’s in the blocks Xo, Xs_ 1), and let C7 denote the resulting matrix.
Step (IV). If vg contains fewer than 2k + 2 ’s, then remove column vi from C7.

The resulting matrix is Cg, where mi rag_ 1. Algorithm terminates.
Otherwise, proceed with:
Step (V). IfX corresponds to a gap, we set mg mi-1 + and create an interval

in column mi spanned by the ’s in
Algorithm terminates.
IfX does not correspond to a gap, proceed with:
Step (VI). Let X correspond to some/,i-1 I*. Refer to Fig. 3.
We partition I* into two consecutive intervals, I], I’, where the row-set of

contains exactly k + 2 ’s ofX, and the row-set of I* contains at least k ’s of X2 (the
numbering of the intervals is from bottom to top). Let YI, Y2 be the corresponding
blocks of Xs. Now we split the column containing I* into 2 columns, each containing
one interval If. in the obvious way. (The idea here will be to shift the ’s in Y to If.,
while removing few ’s. This will require special care in the case of Y2 and I.) There
are two cases.

The set of special rows of I* is contained within I.
(2) The set of special rows of I* extends beyond I.

In either case, we first shift all the ’s from YI to I*1.
Case 1. Let h * be the number of l’s that span the special rows ofI* (see Fig. 3 (a)).

Now, if/* has at least/(k- 2)/23 sp (A) special rows, we are done: we simply remove
all ’s from Y2, and the resulting matrix will be called Cg (with mi mg_ + ). Otherwise,
we consider the (h* + )st in I, and shift it up so that the gap to the previous is
exactly [sp (A)/2] (thus, we add [sp (A)/2] special rows). If no such exists, then use
the first from Y2.

This action, of course, may create some fight trapezoids. The ’s in the top fight
positions of the fight trapezoids are removed (note that this may involve removing ’s
from the rightmost n columns of C7).

Next, we consider the (h * + 2)nd in I and we shift it up to reduce the gap to
the (h*, + )st to [sp (A)/2], if necessary. We continue inductively, until I contains
at least [(k- 2)/23 sp (A) special rows, or else we run out of ’s of I. In the latter case,
we start using the ’s from Y2, and clearly, these will suffice, since there are k of them.
Once we are done, we remove any remaining ’s from Y2.
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The resulting matrix is C., and the transformed interval I will be a new interval
in C;. This concludes the description of Case 1.

Case 2. Let j be the first (lowest) row where I contains a 1. We remove all ’s
from Y2, and place a new in the same column as I, on rowj (unless a is already
present there). The effect ofsuch changes will be that a new interval of special rows starts
at the top of I.

The resulting matrix is C;. This concludes Case 2.
We set mi mi_ + 1. In either Case or 2, the interval Z (Z2), spanned by the

top and bottom ’s in the column corresponding to I (I), will be an interval in matrix
Cg, and we retain all other ones except, of course, I*.

End of Algorithm

Now we will prove 1.1 )-(1.7) of Lemma 1. By construction, (1.2), (1.3), and
1.5 hold.

CLAIM 1. Statement (1.4) holds.
Proof. Inductively, 1.4) held before executing the algorithm, and it is clear that if

additional ’s are placed in a given interval, then (1.4) still holds for that interval. We
have to verify that (1.4) holds after Step (VI). This is clear for Z, since we moved into
its column at least k ’s. Furthermore, the bottom of Z2 must be no more than sp (A)/
2 rows higher than the bottom of I, by definition ofCase 2. But in the column containing
Xs. those rows cannot contain more than two ’s ofXs. In other words, the row-set of Z2
must contain at least k ’s of Xs, and the result follows. [3

CLAIM 2. Statement (1.6) holds.
Proof. Again, we only need to check that the condition is maintained after Step

(VI). This is clear in Case 1. In Case 2, the added at the top of I ensures that Z1,
together with Z2, contains at least as many special rows as I*. []

CLAIM 3. Statement 1.1 holds.

h* (too small)

New

rows

(a) Case

FIG. 3 (a)
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(b) Case 2

FIG. 3 (b)

Proof. We only have to check that the shifts in Step (III), or the execution of Case
2 in Step (VI), do not create any right trapezoids. Consider first Step (III).

If one ofthe shifted ’s is the bottom left corner of a fight trapezoid, then C, before
the shifts, had a fight trapezoid, using a in Xs as the top left corner--a contradiction.
Similarly, if a shifted is a top left corner, then we must have shifted this into some
interval/,i-1, and thus C} has a fight trapezoid with both left corners either in/,i-1, or
in column C}[ mi-1 + ]--again a contradiction. The analysis is similar for Case 2 of
Step (VI). V]

CLAIM 4. Statement (1.7) holds.
Proof. Suppose Case of Step (VI) is not executed. Then (1.7) holds since it does

for and we only removed at most O(k) l’s in processing the new column. So
assume Case of Step (VI) was executed.

Here, we may create fight trapezoids every time a is moved to increase the number
ofspecial rows in I, which was currently less than [ (k 2 / 2 J sp (A) (and by construc-
tion, the move increased the number of special rows by exactly [sp (A)/2I). It is not
difficult to see that the moved must be the bottom left element ofall such right trapezoids
(and hence the bottom fight elements of the fight trapezoids are all on the same row).
But since C’ is rectangle-free, the total number of these fight trapezoids is at most
[(k- 2)/2J sp (A). Consequently, the number of l’s removed to eliminate all the fight
trapezoids, per added special row, is O(k). This concludes the proof. V1

The proof of Lemma is now complete.
Remarks. With a little care, the proof above will in fact show that A has at

most O(k- n logk n) ’s. Thus, it is best to choose k bounded as a function of n.
(2) The upper bound O(n log n) on t, is in fact tight [M2 ]. In fact, the lower

bound example for tn that we give in the next section can be modified to yield a cn log n
lower bound on t, as well.
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3. The lower bound. In this section we prove the n log n/log log n lower bound.
For an arbitrary integer k >= 2, and n kk, we will construct a 0-1 matrix A with n rows
and cn columns (c a constant), such that A is trapezoid-free and A contains k l’s in
every column.

We will use the following notation. If B is a matrix, then B { m } will denote the
matrix obtained by removing the top m rows of B and adding m new rows, consisting
of O’s only, at the bottom. If B1, B2, Bm are matrices with equal number of rows,
then [B1, B2, Bm] is the matrix obtained by putting side by side, from left to fight,
Bl, B2, Bm.

Choose k _>- 3. We will construct, inductively, matrices N1, Nk-1, with n rows
each, and we will set A [Nz, N3, Nk-]. Figure 4 shows the matrix for k 3.
The matrices N; are defined inductively, as follows.

For 0 _-<j =< k- 1, let Mj. be the n (n/k+ )matrix such that the column M[r],
<= r <= n/k+1, contains l’s at rows + (r- 1)kJ+1 + sk, 0 =< s =< k 1. Then

Ul [Mk-l{kk-Z},Mk-,{zkk-2}, ,Mk-l{(k- 1)kk-2}].
Assuming we have defined N1, Ni-, let Pi Mk-i, Mk-i+1, Mk-1,

Ni-1] We then set N Pg { kk-i-l}, Pg { Zkk- - } Pi { k 1) kk- i-1)
Some remarks will be useful before proving the desired facts about A. These remarks

are not difficult to prove.
Remark 1. Let 0 _-< j =< k 1. In M, each column contains exactly k ’s, spaced

kJ rows between each other. For r > 1, the lowest in Mj.[ r] is exactly kJ rows higher
than the highest in Mj.[ r ]. Thus, M contains ’s in precisely all rows of the form

+ bk-;k, where 0 =< bk-j <= kk-j- 1.

The top kJ rows ofM contain only O’s.

_-_-_-

I’12

|.

1

N2 =A

FIG. 4. Example with k 3.
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Remark 2. Inductively, we may easily show that Ni, >= l, contains ’s in precisely
all rows of the form, for _-< r _-< and _-< s =< r,

+ cjkk-j-1 +bskk-s, where <=cj<=k 1, O<=bs<=k- 1.
j=r

From we deduce that each column of Ni contains exactly k ’s.
Note that for >_- 1, every column Ni[ a] is essentially a copy of a column of some

M, "shifted up" a certain positive number of rows. We call this amount the shift of
Ni[a]. The highest power ofk in the shift of any copy of a column ofM is at most kj- .
By induction, the following is not hard to prove.

Remark 3. Every shift of a column of Nk-i- is of the form

cjkj, wherel <=cj<=k 1, i<=j<=t
j=i

and, in such a case, it corresponds to a column of some Mh with < h.
Now, M has kk- i-1 columns. By induction, we may prove that Ni, > 1, has

(k- 1)-
k{k’-(k-1)i}-

k-2

columns. A calculation shows then that the number of columns in A is

kk k k + o( kk) e- n.

Therefore, the number of ’s in A is

n logn

log log n

as desired.
THEOREM 3. A is trapezoid-free.
Proof. Assume that there is a trapezoid. Let us first investigate under which con-

ditions the "L" of the trapezoid can occur. Let A[r] denote the column containing the
fight corner of the trapezoid, and A l] the column containing the two left corners of the
trapezoid. Let k- i(r) denote the spacing between consecutive ’s in A[r], and k k
i(l) the spacing between consecutive ’s in A[I]. Thus, for x r, l, A [x] is a shifted-up
copy of a column of Mk- i(z).

Let x be one of l, r, and y the other. Note that if any term in the shift ofA[x] is a
multiple of a power of k smaller than kk- i(y), then this term must also be a term in the
shift ofA [y]. Since A[r] is to the fight ofA[l], this fact is easily seen to imply that k
i(l) < k i(r). Furthermore, there is a smallest number so that A l] and A r] are both
in a shifted-up copy Z of Pt, and in that case A r] is in the copy ofNt- but A l] is not.

Clearly k < k i(l). Note that the shift of A[r] has a term in k-(t- 1)-1

k- (which the shift of A[l] does not have), and therefore we must have that i(l),
and consequently A[l] is in the copy ofM_ i() contained in Z. It is easily seen that the
fourth in the trapezoid clearly cannot occur in any of the columns of the copies of
Mk- i(/), Mk- . It also cannot occur in the copy ofNi(l)- because ofthe convention
in defining Ni(l)- (the first shift of Pi(l)- is by ki(l), the second by 2ki(1), and so on).

Hence there is no trapezoid, a contradiction as desired.



AN EXTREMAL PROBLEM ON SPARSE 0-1 MATRICES 27

We conjecture that the lower bound (n log n/log log n) for In is in fact tight. A
special case that might prove more tractable for improving the upper bound is that in
which the matrix is regular; that is, it contains the same number of ’s in every row or
column.
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A POLYNOMIAL TIME OPTIMAL ALGORITHM FOR SATELLITE-
SWITCHED TIME-DIVISION MULTIPLE ACCESS SATELLITE
COMMUNICATIONS WITH GENERAL SWITCHING MODES*

M. A. BONUCCELLI

Abstract. The Satellite-Switched Time-Division Multiple Access (SS/TDMA) is a technique effectively
used in wideband communication satellites. A very important problem for SS/TDMA systems is the proper
communications scheduling over the satellite equipment. This problem is equivalent to decomposing a given
traffic matrix Tinto a positive linear combination of(0, )-matrices satisfying additional technology-dependant
constraints. The sum of the multiplying constants represents the time taken by the satellite to handle the
communications and must be minimum in order to achieve an efficient use of the equipment. A polynomial
time optimal algorithm for the SS/TDMA scheduling problem for systems with variable bandwidth beams and
restricted multiplexing and demultiplexing is presented. As a corollary of the presented results, another gener-
alization of the classical Birkhoff-von Neumann Theorem is established.

Key words, network flow, combinatorial optimization, polynomial time algorithm, Birkhoff-von Neumann
Theorem

AMS(MOS) subject classifications. 08-04, 90C27

1. Introduction. The rapidly growing demand of satellite communications services
is exhausting the Radio Frequencies spectrum. An efficient use of such a spectrum can
be achieved by the Satellite-Switched Time-Division Multiple Access SS !TDMA) tech-
nique, which is conveniently used in wideband satellite communication systems 11 ]. In
an SS/TDMA system, the satellite is equipped with a number of spot-beam antennas
coveting several geographical zones by disjoint communication channels, and a solid-
state RF switch allowing a simultaneous interconnectivity between many uplink and
downlink beams, and so between earth stations. Each earth station issues its connection
needs at specific times. All the connection needs are gathered in a matrix T, the traffic
matrix. Entry tij of T represents the time (in multiples of a minimal transmission time)
that uplink needs to be connected with downlink j. The transmission of the traffic
described by T is called a frame, and is divided into subframes, called time slots. Each
time slot represents the traffic transmitted during a specific switch configuration (also
called a switching mode). A switching mode can be depicted as a (0, )-matrix, where
the l’s denote the connected uplink-downlink pairs. These switching mode matrices
must have some specific properties imposed by the technological features of the system
under consideration.

A given traffic matrix can be decomposed in a variety of sequences (i.e., positive
linear combinations) of switching modes, each of which represents a distinct frame.
Different frames take different times to be completed. A very important problem in this
setting is to find a frame of minimum transmission time for a given traffic matrix T.
Such a frame increases the system efficiency, and therefore the operational profits. The
above problem is often referred to as time slot assignment (TSA) and has been studied
for several system configurations (e.g., see 2 4 ], 7 ], 8 ). In 3 ], 7 ], systems with
variable bandwidth beams and restricted multiplexing and demultiplexing have been
considered. In these systems, each uplink and downlink beam can simultaneously transmit
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a mix of several signals. Hardware limitations impose an upper bound on the number
of signals that can be mixed in each beam. In terms of TSA, this means that there is an
upper bound on the number of ’s in each row and column of every switching mode.
Lewandowski and Liu [7] proposed polynomial time algorithms based on a generalization
ofthe celebrated Birkhoff-von Neumann theorem for this TSA problem. Such algorithms
are optimal when the switching modes are restricted to have exactly as many ’s as the
rows and columns upper bounds and have been proposed as suboptimal heuristics for
the more general case of switching modes with at most as many ’s as the upper bounds.
In this paper we present an optimal TSA algorithm for the last, general problem, with a
further limit on the maximum number of ’s in each switching mode. Our algorithm is
based on network flow in bipartite graphs and has the same time complexity of those
given in 7 ]. The algorithm can be easily used to establish yet another generalization of
the Birkhoff-von Neumann theorem.

In 2 we formally define the problem under investigation, and give the definitions
needed in the paper. In 3 the polynomial time optimal algorithm is presented, as well
as its relations to a generalization of the Birkhoff-von Neumann theorem.

2. Definitions and problem formulation. Let us assume that the system under in-
vestigation has m uplink and n downlink beams. Then, the traffic matrix T is an m n
matrix with nonnegative integer entries. Entry tij of T represents the amount to traffic to
be transmitted from uplink to downlink j, and is expressed in multiples of time slot
length. Each uplink and downlink beam is a multiplex of several different signals. The
hardware limitations of the system impose an upper bound on the number of different
signals that can be multiplexed in each beam. Specifically, there are given two integer
vectors, p (pl, Pm) and ), (X1, Xn), such that ’_- Pi -= kj. Uplink
beam can be demultiplexed in at most Pi different signals, and downlinkj is the multiplex
of up to ),j signals. Besides, there is an integer upper bound 3’ on the total number of
messages that can be simultaneously handled by the satellite. 3" is called the satellite
capacity. Obviously, 0 =< 3’ =< Z im= Pi. Note that the satellites considered in [7] had an
unlimited capacity, i.e., 3" >= 2;= pi.

The sum of all entries in the th row of T is called th row sum and is denoted by
Ri. Thejth column sum C is similarly defined as the sum of all entries in column j. The
symbol S is used to represent the sum of all entries in T.

Let V(p, X, 3") denote the class of m n (0, )-matrices having at most/9 ’s in
the ith row, _-< _-< m, at most Xj. ’s in the jth column, _-< j _-< n, and at most 3" ’s
in the whole matrix. The TSA problem considered in this paper can be formulated as
follows.

Given an m n integer nonnegative matrix T, find integer positive constants v l, ,
h and matrices Z1, Zh in V(O, X, 3") (the switching modes) such that

h

T= iZi
i=1

and 2; )= /)i (the cost or length ofthe TSA) is minimum. Constant/i denotes the number
of (not necessarily consecutive) time slots during which switching mode Z,. is used.

Note that the problem formulation given in [7 does not require integer values for
the entries 0 and the constants ui. Our integrality constraint is more realistic. Besides, it
makes the problem computationally more difficult. In fact, our algorithm also solves the
problem with no integrality constraint since it is based on network flow.
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3. The optimal algorithm. The length of a TSA for a given traffic matrix T cannot
be smaller than L, where

(2) L max o, Ri/oi, Cj/,j, S/’)/’ }.
This lower bound follows directly from the problem formulation. In fact, the traffic
represented by an entry tij must be transmitted in a strictly sequential way. Furthermore,
at most oi () entries in row (column j) can be allocated in a given time slot. Finally,
L >= S/3’ since the system has a limited capacity.

The following inequalities hold true as a consequence of the lower bound given
in (2).

(3) Z Z ti<=L,
i=lj=l

(4) , tij<= )L for
i=1

each j, <j_-< n,

(5) tig<-_oiL for each i, <=i<=m,
j=l

(6) ti<=L for each iandj, i<=m, <=j<=n.

A row (column) such that Ri piL (Cj )jL) is called critical. Similarly, the
matrix T is critical if S 3,L, and the entry ti is also critical when ti L. Let us define
the following parameters:

max { 0; Ri- oi(L- ), for each i, =< =< m;
max { 0; Cj. ,j.(L ), for each j, _-<j _-< n;

max { 0; S- (L )

/30 if tij L, and /30 0 if o < L, for each and j, =< m, =<j =< n.
Let Z be a switching mode for T. If there are less than 6i ’s in row of Z, then any

TSA for T containing Z will be longer than L, since the matrix T’ T Z will have a
lower bound ofL, and so the length of this TSA will be L + at least. Thus, a necessary
condition for a length L TSA for T is to have at least 6i ’s in row of any switching
mode. A similar meaning pertains to the other parameters, namely t for column j, o
for the whole matrix, and /ij for the entry in row and column j.

Given a traffic matrix T, we want to find a switching mode Z with at least dii ’s in
row i, u ’s in column j, and a total number of ’s not smaller than o. Besides, entry
zo in Z must be equal to if o L. Such a switching mode is called provident (as
opposed to greedy) since it does not contain the maximum number of ’s, but the min-
imum number of l’s necessary for a length L TSA; it can be obtained by means of
network flow in a bipartite network with lower bounds and capacities.

Let (a, b) denote the arc oriented from node a to node b. We derive a network
with m + n + 2 nodes labeled s, r, rm, Cl, Cn, t, from the matrix T. The node
s is called a source node, and is linked by one arc with each node r, rm. Each such
arc is oriented from s to ri, (1 <= <- m), and has lower bound 6i and capacity oi.
Furthermore, there are arcs from nodes labeled r to nodes labeled c. In particular, there
is the arc (r;, cj.) if and only if entry o is greater than zero. Such arc has capacity and
lower bound/30. Each node cj is connected by an arc (c, t) with the sink node t. The
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(11.1.1)

, t)

FIG. 1. Network associated to a traffic matrix. Some (lower bound, capacity) pairs are not shown.

capacity of this arc is kj and the lower bound is #j.. Finally, there is the arc (t, s) with
capacity 3 and lower bound p. It follows from (3)-(6) and from the definition of the
above parameters that all the capacities and lower bounds are nonnegative. Note that in
deriving the network from a traffic matrix, we put the constraints of our TSA problem
as arc capacities, and the previously defined parameters as lower bounds. Figure shows
a network derived from a traffic matrix.

A circulation in a network is an assignment of numbers to the arcs such that (i) the
number assigned to an arc (the arc flow) is not smaller than the lower bound and not
greater than the capacity; (ii) for each node, the sum of the flows of the incoming arcs
is equal to the flow sum of the outgoing arcs (the conservation law).

A circulation in a network derived from the traffic matrix T can be used to get a
provident switching mode. Let Z be the m n matrix with entry zi equal to the flow in
the arc (ri, cj). We claim that Z is a provident switching mode. In fact, Z is a (0, )-
matrix since the network flow problem (and so the circulation problem) is totally uni-
modular, and the networks derived from traffic matrices have integer capacities and
lower bounds. Furthermore, Z has at most/9 ’s in row i, and kj. ’s in column j since
the capacity of the arc (s, ri) is Pi, and that of the arc (c, t) is ,. The lower bounds on
these arcs guarantee that at least 6; (uj.) ’s are present in row (column j). Besides, Z
has at least o and at most " l’s, owing to the lower bound and the capacity of the
arc (t, s). Finally, if ti L, then zi since ti is 1.

The existence of circulations in networks depends on the arcs capacities and lower
bounds. A cutset (a, -) in a network is a partition of the nodes in two subsets a and
such that s e a and e . The following classical theorem states a necessary and sufficient
condition for the existence of a circulation in networks. Let ij and xij denote the lower
bound and the capacity of the arc (i, j), respectively.

HOFFMAN’S THEOREM. In a network with lower bounds and capacities, a circulation
exists ifand only if

for all cutsets (r, ’).
The proof of this theorem can be found, e.g., in [6, p. 139 ].
THEOREM 1. Ira network is derivedfrom a traffic matrix, then it has a circulation.
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and

Proof. Let (r, r) be a cutset for a network derived from a traffic matrix T. Then,

Z Z ij-" Z Z ij "+qg,
irjtr rircja

iajr rir cj_a rjacjr

where ai is if tij > O, and is 0 otheise.
By Hoffman’s theorem we must have

ieajer ierjea rier cja riaQr rircja

Since tij L, for each and j, m, j n, then

aij[1/Z( lij)].
ri cj ri cje

Hence,

rieaCjer rierj cjea rircjea

We have that

riercjea

by definition. Then,

(8) Z Z Olij 1/L(’y(L-1)+)- Z P;- Z Xj+ Z Z ij.
riacjr ritz cja rircja

Substituting (8) in (7), we get 1/L(q(L + o) o >= 0, and so 3’(L 1) + ,
Lo >_- O.

Therefore, ,(L o(L >= O, which is true since 0 =< o =< 3’, by definition.
The theorem then follows from the generality of the cutset (, ). [2]

The networks derived from traffic matrices have circulations, and therefore it is
always possible to obtain provident switching modes from them. A circulation in a network
derived from a traffic matrix, and so a provident switching mode, can efficiently be found
by means ofmax flow algorithms (e.g., see 5, p. 65 ). For instance, the MPM algorithm
[10] can be used.

The optimal algorithm produces a TSA by repeatedly generating provident switching
modes via circulations in the networks derived from traffic matrices. Let us assume that
the TSA has been found and that it is formed by h switching modes. In order to complete
the TSA, we must also find a proper set of integer positive constants u, u2, "", Uh, the
switching modes multipliers. Let us consider the switching mode Z obtained from a
circulation in the network derived from T. We want to find the largest multiplier constant
u such that the lower bound of the traffic matrix TI T- uZ is L u. This constant
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must satisfy the following inequalities:

(9) , <= Lpi Ri pi zij for each such that z0 < pi;
"= j=l

O) <= (LXj- Cj) Xj- , z0 for each j such that z0 < X;
i=1 i=1

(11) u<-_ (L7-S) 7- ,zo provided that z0<7;
1j lj

(12) <- L to if zo O, and <- to if zo for each and j, <= <- m <=j <- n.

We are now in a position to state the algorithm.

ALGORITHM OPTIMAL.
Step 1:

Set up the network derived from T.
Step 2:

Find a circulation in the network, e.g., by using MPM algorithm.
Step 3:

Get a provident switching mode Ze from the circulation found in Step 2 by using
the flow of the arcs (ri, cj).

Step 4:
Compute the largest solution of the inequalities system (9)-(12), and let it be the
multiplier Ue.

Step 5:
Subtract leZ from T. If T has some nonzero entry, then go to Step 1, else Halt.

THEOREM 2. Algorithm Optimal generates a minimum length TSA in 0( 05) time,
where 0 is the larger ofm and n.

Proof. Let Tbe the original traffic matrix and L its lower bound. Moreover, let Z1,
Z2, Zh be the switching modes generated in Steps 2 and 3, and let ul, u2, h
be the multiplier constants computed in Step 4. Finally, let Tk T- ulZl u2Z2

1)kZk Tk-1 1)kZk, <= k <= h be the matrix containing the traffic not yet as-
signed after the kth iteration of the algorithm, and let Lk be its lower bound. We now

_(k)\show that L Z hk= uk by induction. Let tlk) (z0.) be the entry in row and column j
Of Tk (Zk).

Since T is a traffic matrix, then (by the above discussion on circulations) Z1 is a
provident switching mode. Consider now the inequalities (9):

111 (Zpi-Ri) Pi zij for each such that z)
j=l

()Thus, if ’]= zij < /9 we have:

l N (Lpi-Ri) Pi zo

or, equivalently,
n

(1) <Lpi Ri.lPi- tl zij
j=l



34 M. A. BONUCCELLI

So,

(1) <Lpi 1)Ri- 1)1 z ij lPi.
j=l

we have:Since Ri 1)1 = zij(1) jn= tij(l)
n

(1)<tij =pi(L-
j=l

Assume now that E’= (l)
Z ij Pi. Then,

n
(1)if zo

j=l

nn
(1) ()<Lpi pi(Lto- z0 t0 -1)lp/-- --1)1

j=l j=l j=l

(1)A similar argument (applied to (1 O) and (11 )) can be used to show that = 0
(1) <k(L u ), for each j, j n, and that = Z]= ti T(L u ). Fuheore,

ifz(i)i 0, thent) ti=< L- ul, andt) o- UlL- ulwheneverzl)i 1,
by (2).

Thus, T is a traffic matrix with lower bound L Ul. Let us assume now that T_
is a traffic matrix with lower bound L_ L 2 u_ . Then Z is a
provident switching mode, and T is a traffic matrix with lower bound L L u
u2 u_ u. In fact,

Pi t; Pi Z

provided that Z]= Z(iJk’) < Pi Hence,

Similarly,

lij Z tij v z pi(L- v:) Pi L- vp
j=l j=l j=l p=l

j=l p=l i=lj=l p=l

and
k

p=l

Therefore, Algorithm Optimal generates a minimum length TSA.
For the time complexity of the algorithm, note that if 1) is equal to an entry

t(k-)o Tk has more zero entries than Tg_ 1. Otherwise, either Tg becomes critical, or it
has more critical items (rows, columns, entries). Since there are at most mn nonzero
entries in the original traffic matrix, and we can have at most mn + m + n critical items,
at most 2mn + m + n + switching modes are sufficient for the optimal TSA. Steps 1-
5 are performed each time a switching mode is generated, namely 2ran + m + n +
times at most. Step 2 is the most time-consuming one, and needs 0(0 3) time when
MPM algorithm is used. Therefore, the total time complexity of Algorithm Optimal is
0(05).
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The network must be set up only the first time that Step is performed, since
subtracting a switching mode from T can eventually lead to the deletion of some
(ri, cj) arc and the change of the lower bound of some arc.

The problem considered in [7 is a special case of that investigated in this paper.
In particular, if we drop the integrality constraint and the one that the switching modes
must have 3" ’s at most, we get Lewandowski and Liu’s problem. It is easy to see that
our algorithm optimally also solves in O(05) time this last problem. It is also easy to see
that we have algorithmically established the following generalization ofthe Birkhoff-von
Neumann Theorem ], 9 ], as a corollary.

THEOREM 3. Let T be an rn n matrix with nonnegative entries tij. Then T, hi= uiZi where Zi is a (0, matrix in V(o, , 3’)), and L Z uk ifand only if

i=lj=l

, o <= )L for each j, <=j <= n
i=l

, ti <= taiL for each i, <= <= m

ti <= L for each and j, <- <= m, <=j <= n.
4. Conclusions. In this paper we investigated the time slot assignment problem for

SS/TDMA systems with variable bandwidth beams and restricted multiplexing/demul-
tiplexing. We presented a polynomial time algorithm for the above problem, and showed
that it generates minimum cost TSA’s. As a corollary, we proved another generalization
of the celebrated Birkhoff-von Neumann Theorem.
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A ZERO-ONE LAW FOR BOOLEAN PRIVACY*

BENNY CHOR’: AND EYAL KUSHILEVITZ"

Abstract. A Boolean function f" A A2 X X An 0, is t-private if there exists a protocol for
computing f so that no coalition of size _-< can infer any additional information from the execution, other
than the value of the function. It is shown that f is n 2] -private if and only if it can be represented as

f( x,x2, ,Xn) f(x)(R)A(X2)(R) (R)L(x,),

where the f are arbitrary Boolean functions. It follows that if f is [n/2q-private, then it is also n-private.
Combining this with a result of Ben-Or, Goldwasser, and Wigderson, and of Chaum, Crepeau, and Damgard,
[Proc. 20th Symposium on Theory of Computing, 1988, pp. 1-10 and pp. 11-19] an interesting "zero-one"
law for private distributed computation of Boolean functions is derived: every Boolean function defined over
a finite domain is either n-private, or it is [(n )/2J-private but not [n/2q-private.

A weaker notion of privacy is also investigated, where (a) coalitions are allowed to infer a limited amount
of additional information, and (b) there is a probability of error in the final output of the protocol. It is shown
that the same characterization of n 2] -private Boolean functions holds, even under these weaker requirements.
In particular, this implies that for Boolean functions, the strong and the weak notions ofprivacy are equivalent.

Key words, private distributed computations, Boolean functions

AMS(MOS) subject classifications. 94A15, 94A60, 68R05

1. Introduction. A set of n parties, each holding an input value xi, wishes to dis-
tributively compute the value of a Boolean function f(xl, x2, xn) e (0, }. The
participants communicate via a complete network of secure channels (no eavesdropping).
The participants are honest--they send messages according to the prescribed protocol
forf. However, honesty is no deterrent against curiosity. A subset of the participants (a
coalition) might get together after the execution of the protocol and compare notes in
an attempt to infer additional information on the inputs ofnoncoalition parties. Additional
information is any information that does not follow from the value of the function and
the inputs of the coalition parties. As an example of additional information consider a
case where f(0, 0, 0, 0, 0) f(0, 0, 0, 0, and, based on the execution of
the protocol, the first n/2 participants can infer that the nth input is more likely to be
than 0. In general, any information-theoretic advantage can be used by the coalition
even if this requires, for example, exponential computational resources.

A function f is called t-private if there is a protocol for computing f so that no
coalition of size _-< can get any additional information. The fundamental result in this
area is due to Ben-Or, Goldwasser, and Wigderson [BGW] who have shown that every
n-variable function defined over a finite domain is [(n / 2J-private. (A similar result
was independently obtained by Chaum, Crepeau, and Damgard [CCD].) Ben-Or, Gold-
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wasser, and Widgerson also showed that certain functions (e.g., the OR function) are
not [n/2q-private, while certain others (e.g., the XOR function) are n-private. Other
than these two examples, very little was known about t-private functions for >= Fn2q.

In this paper we address the general problem of t-privacy in the range n/2q =< =<
n. We raise two major questions:

1. What is the structure of the "privacy hierarchy"? Is it the case that for every in
the range In/2q =< < n there are functions that are t-private but not + 1-private, or
does the hierarchy consist of two isolated levels /(n )/2 J-privacy and n-privacy)?

2. It is possible to relate the form of a function f to its attainable privacy?
We resolve both questions for Boolean functions f A A2 X X An { O, }

defined over arbitrary (possibly infinite) domains. We give a complete characterization
of Boolean functions that are [ n/2]-private. It is shown that every such function can be
expressed as the "exclusive-or" ofn Boolean functions, each depending on a single variable.
There is a simple n-private randomized protocol [Bh] for computing functions of the
form f( x, x2, Xn) f (x) (R) f(x) (R) (R) fn (Xn). Thus our characterization
implies that ifa Boolean function f is n/2q-private, then it is also n-private. Interestingly,
the same characterization remains valid under a weaker definition of privacy. Specifically,
this weaker definition allows coalitions to infer a limited (quite substantial) amount of
additional information, and there can be a positive probability of error in computing the
final output ofthe protocol. Finally, combining our result with [BGW we conclude that
there is a surprising gap in the Boolean privacy hierarchy: Every Boolean function, defined
over a finite domain, is either exactly (n / 2 J-private or exactly n-private, and there
is nothing in between.

The rest of this paper is organized as follows: In 2 we present the model and the
definitions ofprivacy. In 3 we consider the two-party case. Section 4 contains our main
results: the characterization for the multiparty case as well as some implications and
conclusions.

2. Model and definitions. In this section we define the model of distributed com-
putation that is used in the following. We then give formal definitions ofstrong and weak
privacy in this model.

The system consists of a complete synchronous network of n honest parties P,
P2, Pn with secure reliable point-to-point communication (no eavesdropping). (By
saying that the parties are honest it is meant that they send messages according to the
protocol.) At the beginning of an execution, each party Pi has an input X taken from a
nonempty set ofpossible inputs Ai (no probability space is associated with Ai). In addition,
each party has a random input r taken from a source of randomness Ri. The parties
wish to compute a Boolean function f" A A2 An -- 0, }. To this end they
exchange messages as prescribed by a protocol F. Messages are sent in rounds, where in
each round every processor sends a message to every other processor. Each message a
party sends in the kth round is determined using its input, its random input, the messages
it received so far, and the identity of the receiver. As commonly assumed, the messages
sent at each round are prefix-free. We say that a protocol F computes the function f if
the last message in the protocol, F(x, ..., xn), is an identical message sent by party P1
to all parties, which contains the valuef(x, Xn).

The communication passed in the network when the parties have inputs and
random inputs - is denoted S( , -?). Formally the communication S is an n-by-n matrix
whose (i, j) entry is the concatenation of all messages sent from Pi to P. For any T c
{ 1, 2, n }, ST denotes the matrix S where entries (i, j) with either i, j e T or i, j
T are omitted. That is, ST is the communication between processors in T and in T.
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We say that a coalition (i.e., a set of parties) T does not learn any additional infor-
mation (other than what follows from its input and the function value) from the execution
of a randomized protocol F, which computes f, if the following holds: For every two
inputs Y, y e A A2 An that agree in their T entries (i.e., for all T" xi
y;) and satisfy f(Y) f(y), and for every choice ofrandom inputs { r i T, the messages
passed between T and T are identically distributed. That is:

(ST( {Xi }leT, {ri}ieT, {Xi }ie$))= (ST( {Yi}ieT,

where the probability space is over all random inputs in T, namely r }i (each r is
distributed according to R and they are all independent).

We say that a protocol F for computing f is (strongly) t-private if any coalition T
of size =< does not learn any additional information from the execution ofthe protocol.
We say that a function f is (strongly) t-private if there exists a (strongly) t-private protocol
that computes it.

The weak notion of privacy is different from the strong one, described above, in
two ways: (a) coalitions may get some (limited) additional information other than what
follows from the inputs of the coalition members and the function value), and (b) the
protocol may not always compute the correct value of the function. This is formalized
as follows:

(a) Given 0 _-< 6 =< 1, we say that a protocol F for computing f is (6, t)-private if
the following holds: Let T be any coalition of size =< and let Y, e A1 A2
A, be any two inputs that agree in their T entries and satisfy f(Y) f(). Then the
variation distance on the space OT (messages passed between T and T), given Y and
given , is bounded above by 5. That is,

2 s.r
IPr (sl.)-Pr (sl )l 6.

(b) Given 0 _-< e < 1, we say that a protocol F has e-error in computing f if

VY" Pr (F( Y) =f( )) >_- -e,

(in both (a) and (b) the probabilities are taken over the random inputs of all the partic-
ipants).

We remark that even for 6 0, error free (5, t)-privacy is a weaker requirement
than (strong) t-privacy. In the special case of n 2 we say that a function is (strongly)
private if it is (strongly) 1-private, and it is 6-private if it is (5, )-private.

3. The two-party case. In this section we consider the case where f is a Boolean
function of two variables. We show that if f is weakly private then it can be expressed
asf( xl, x2) f (x) )f2(x2), wheref andf2 are also Boolean functions. On the other
hand, we show that functions of the form f( x, x2) fl (x) (R) f2 (x2) can be computed
in a strongly private way.

We now present a lemma that will play a central rule in the proof of the character-
ization theorem.

LEMMA 1. Let e, 6 >= 0 satisfy e + 6 < 1/2. Let A, A2, B be nonempty sets and let
f: A A2 "- B be afunction that can be computed 6-privately with e-error. Under these
assumptions, for every b B, x, yl A, and x2, y2 A2 thefollowing condition holds:
Iff( x, x2) f( x, y2) f( y, x2) b, then f( y, y2) b.
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Before proving Lemma we introduce three technical lemmas. The first one holds
for any two-party communication protocol. It relates the probabilities of any commu-
nication string s to be sent on the four corners of any "input rectangle" (Xl, x2),
(x, Y2), (Y, x2), (Yl, Y2). (An equivalent lemma is implicitly used by Paturi and Si-
mon [PSI).

LEMMA 2. Let A l, A2 be nonempty sets andF a two-party communication protocol.
For every communication string s and all inputs x, yl A1, x2, Y2 A2

Vr sl (xl ,x2) Vr sl (Yl Y2) Vr (sl (xl y2) Vr sl (y ,x2) ).

Proof. Let s ml (C) m2 (C) (C) mk, where mi is the message sent in the ith round
and 0 denotes concatenation. Assume, without loss of generality, that the first message
of the protocol is sent by P and that k (the number of rounds) is even. Let Pr (SlXl)
denote the probability that P will send the messages m, m3, ms’" given that its input
is x, and that the messages received from P2 are m2, m4, m6"" That is,

Prl (sl x) Pr (mlx).Pr (m3lxl,ml,m2) Pr (ink-lx,ml,m2, m/- 2),

and similarly Pr2 (six2) is defined as

Pr2 (sl x2)

Pr (m21x2,ml) "Pr (m41xz,ml,m2,m3) Pr (mlcl xz,ml,m2, ,m/- 1).

(Recall that every message is a function of the local input, the messages received from
the other party, and the random input.) By these definitions, for every input (x, x2) and
every communication string s we have:

Pr (sl(x,x2))= Prl (sI x)’Pr2 (sl x2)

and therefore

Pr(sl(Xl,X2))’Pr(sl(y,y2))=Pr (sl x)’Pr2 (sl x2)’Prl (s] yl)’Pr2 (sl y2)

Pr (sl(Xl,y2)).Pr (sl(yl,x2)).

This completes the proof of the lemma.
The second technical lemma gives a lower bound on the probability of any com-

munication string s to be sent on the input (y, Y2), given the probability that s will be
sent on each of the inputs (x, x2), (x, Y2), and (y, x2).

LEMMA 3. Let 0 <= Pl, P2, P3, P4 --< such that p "p4 P2"P3:
Ifp <= P2, P3 then P4 >= P.

(2) Ifp >= P2, P3 then P4 >= P (P P2) (Pl P3).
(3) IfP2 <= Pl <= P3 then P4 >= P (Pl P2).
(4) Ifp3 <= p <-- P2 then P4 >= p (P P3 ).
Proof. We prove each of the four cases using simple arithmetic manipulations.

In the case that p =< P2, P3 ifpl 0 then clearly P4 >= Pl. Otherwise, the follow-
ing holds:

P2"P3 Pl’Pl
P4 =>---- --Pl.

Pl P
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(2) In the case that Pl >= P2, P3, ifpl 0 then P2 P3 0, and thus the inequality
holds. Otherwise we have

P2" P3
P4

Pl

(Pl (Pl P2 ))" (Pl (Pl P3

P (Pl P2 )" Pl (Pl P3 )" Pl -t- (Pl P2)" (Pl P3 ))
Pl

Pl (Pl P2) (P P3).

(3) In the case that P2 --< P --< P3 we have to show that P4 P2. Ifp3 0 then so is
P2 and the inequality trivially holds. Otherwise, assume by way of contradiction that
P4 < P2. Since Pl P3 then PI’P4 < P3" P2, contradicting p. P4 P2" P3-

(4) This case is similar to the proof of (3).
This completes the proof of the lemma.

The next lemma is a trivial property of the variation distance.
LEMMA 4. Let S be the set of all communication strings and let p and p2 be two

probability distributions defined over S. Denote by S1 S the set slpl (s) >= p2(s) }, then

(Pl(S)--P2(S))=- ., Ip(s)-pz(s)l.
SeSl s-S

Proof. The proof is obtained by simple arithmetic manipulations:

2. , (pl(s)-p2(s))=2 pl(s)-2" pz(s)
SE S Sl S

Pl(S)-t-(1-- Pl(S))--esP2(S)--(1--
_

p2(s)
seS Se., (Pl(S)--P2(S))-- , (Pl(S)--P2(S))
S Nl

Z Ip(s)-pz(s)l.
sS

(The last equality follows from the definition of S.) V]

Using these three lemmas we can now prove Lemma 1.
ProofofLemma 1. Let F be a protocol that computes f b-privately with e-error.

Let Sb be the set of all communication strings whose last message is b. Recall that on
the first three points, these strings correspond to executions computing the correct value
of the function (which equals b). Define

Sde2 { slSSb and Pr (s[(x,xz))<= Pr (s (Xl, y2)), Pr (sl(yl,x2)) },

S] ae=-r { slseSb and Pr (sl(xl,x2))>= Pr (sl(xl,yz)),Pr (sl(y,,x2)) },

S ae=-r slSeSb and Pr (sl(xl, yz))<Pr (sl(xl,xz))<Pr (sl(y,x2)) },

S ae--r { slseSb and Pr (sl(yl,x)) <Pr (sl(x,xz)) <Pr (sl(xl,Y2)) }.
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The protocol F has at most e-error for every input. Thus to prove thatf( Yl, Y2) b, it
suffices to show that on input (Yl, Y2) the probability of having a communication string
whose last message is b, (that is s Sb), is greater than e:, Pr(sl(yl,y2)) Pr(sl(yl,y2))+ , Pr(sl(y,y2))

sSb sS S

+ Z Pr(sl(y,,Y2))+ Z Pr(sl(y,,y2)).
s ss

Now for each set S we use the appropriate pa of Lemma 3 together with Lemma 2.
These imply that this sum is bounded below by

Pr (sl(x,x2))
sS

+ Z Pr(sl(x,x))- Z (Pr(sl(x,xz))-Pr(sl(x,,y2)))
ss ss

(Pr (sl(x,x2))- Pr (sl(y,x2)))
seS

+ E Pr(sl(x,x))- (Pr(sl(x,x))-Pr(sl(x,y)))
ss ss

+ Pr(sl(x,x2))- (Pr(sl(x,x2))-Pr(sl(y,x2))).
ss; ss;

This last expression equals

Pr (SI(X,Xz))--
sSb

(Pr (sl(x,x2))- Pr (sl(x, y2)))

(Pr s (x,x2) Pr sl (y ,x2) ).

The first summand is at least e since e is the maximum error permitted on the input

(Xl, x2). According to Lemma 4 and the fact that the protocol F is 6-private, each ofthe
other two summands is at most i. Thus we have

Pr(sl(y,y))>=
seSb

Since e + 6 < 1/2, we have e 6 -/5 > e. This completes the proof ofLemma 1.
Lemma suffices for showing that certain Boolean functions of two variables are

not weakly private. The first example, which was given in BGW (with respect to strong

privacy), is the OR function (A A2 0, } andf(Xl, x2) xl V x2). Clearly this

function does not satisfy Lemma 1. For an additional example we take A and A2 to

be the set of all integers and f the IDENTITY function (f(x, x2) x x2).
This function is not private since for any c we have f( c 1, c) f( c 1, c +
f(c,c+ 1)=Obutf(c,c) 1.

THEOREM 1. Let e, 6 >= 0 satisfy e + 6 < 1/2. Let A, A2 be nonempty sets and f
A A2 "- { 0, 1} an arbitrary Boolean function. Then fcan be computed 6-privately
with e-error if and only if there exist Boolean functions f :A -- { 0, 1}, f2 :A2 --{0, 1} such thatf(x,x2)=f(x)(R) fz(x2).

Proof. First we present a private protocol for computing any function f ofthe form
f( x, x2) f (xl) ) f2(x2):



42 BENNY CHOR AND EYAL KUSHILEVITZ

P1 computes fl (Xl) and sends its value (one bit) to P2.
2 P2 computes f2 (x2) and sends f( Xl, x2 fl (xl) (R) f2 (x2) one bit) to

It is clear that P1 does not learn any additional information since the only message it
received during the protocol contains the function value, and P2 does not learn any
additional information since it can compute by itself (from the function value and its
input) fl (Xl) f( xl, X2 () f2 (X2). The above protocol computes f with no errors and
with strong privacy. In addition, this protocol is deterministic and the number of bits
exchanged is exactly 2.

Now we assume that f can be computed &privately with e-error and we show how
to find fl and f2 as stated. Let a be an arbitrary element of A2 and define the follow-
ing sets:

def
O {x1EA1 If(xl,a)=0),

def
C {Xz_AzIVXlEB’f(Xl,X2)=O}.

We assume, without loss of generality, that there exists some xl such that f( xl, a) 0
(that is, B is not empty). We will show now that the function is constant over each of
the domains B C, B C, B, C, B C:

CLAIM 1. For all Xl Bfor all x2 C f xl, x2) O.
Proof. This proof follows directly from the definition of C.
CLAIM 2. For all Xl Bfor all x2 C f Xl, x2) 1.

Proof. Assume to the contrary that there exist Xl B and x2 C such that
f(xl, x2) 0. Now, by the definition of C, x2 C there exists Yl B such that
f(Yl, x2) 1. By the definition of B, Xl, Yl E B f(xl, a) f(yl, a) 0. Since we
have f(xl, a)=f(Yl, a)=f(xl, x2)- 0, then according to Lemma we must also
have f( Yl, x2) 0 contradiction.

CLAIM 3. For all xl Bfor all x2 C f xl, x2) 1.

Proof Assume to the contrary that there exist xl B and x2 C such that
f(xl, x2) 0. It follows from the definition of/ that x2 :/= a. Let Yl be an arbitrary ele-
ment of B (recall that B is not empty). Now, y B f(Yl, a) 0 and x2
f(Yl, x2) 0. Since we have f(Yl, a) f(Yl, x2) f(xl, x2) 0 then according to
Lemma we must also have f(xl, a) 0 contradicting the fact that xl 6 B.

CLAIM 4. For all xl Bfor all x2 C f xl, x2) O.
Proof Assume to the contrary that there exists Xl E / and x2 7 such that

f( Xl, x2) 1. Recall that xl B impliesf( Xl, a) and let yl be an arbitrary element
of B, i.e., f( Yl, a) 0. According to Claim 2 f( Yl, x2) 1. Since we have f( xl, x2)
f(Yl, x2) f(xl, a) then according to Lemma we must also have f(yl, a)

contradicting the fact that y 6 B.
We now define:

0 if xleB
fl(Xl)--

ifXlqB

0 if x2 e C
fz(x2)=

if x2tC

then by Claims 1-4 we have f(xl, X2) fl (Xl) ( f2(x2) for each of the four possible
combinations (xl, x2) B C, B C, B C, B C. This completes the proof of
Theorem 1.

One conclusion of Theorem is that, in the two-party case, if f can be privately
computed then it can be privately computed by a deterministic protocol. We emphasize
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that this does not hold for the multiparty case. A second conclusion is that in the two-
party case whatever can be privately computed under the weak notion can also be privately
computed under the strong notion. Thus (for any e, 6 > 0 such that e + 6 < 1/2 these
two notions are equivalent. As we will see in the next section, this conclusion holds in
the multiparty case as well.

4. The multiparty case. In this section we prove the main result of our paper: A
complete characterization of n-variable Boolean functions that are n/2]-private. We
start with a lemma that helps reduce the multiparty case to the two-party scenario. Using
this lemma, we proceed to a detailed proof of the characterization theorem. Finally, we
give some implications and corollaries. Throughout this section, we will say that a function

f is weakly t-private ifthere are e, 6 >= 0 satisfying e + 6 < 1/2, such that f can be computed
(6, t)-privately with e-error.

LEMMA 5. Let A1, A2, An be nonempty sets, e, 6 >-_ 0 satisfying e + 6 < 1/2, and
f "A1 A2 An -- { 0, 1} be (6, [n/2])-privately computable with e-error. Let
S
_

{ 1, 2, n } be any subset ofsize n/ 2]. Denote by D (respectively, E) the Cartesian
product of the Ai with e S (respectively, S). Then, viewing f as a two argument

function f D E -- { 0, 1}, f is 6-private with e-error.

Proof. Given an n-party protocol for computing f" A1 A2 X An - { 0,
(6, n/2-1)-privately with e-error, we convert it into a two party protocol for computing

f" D E -- { 0, }. Denote the two parties by Q1 and Q2. Q1 simulates the role of the
n/2] processors P; with e S using its source ofrandom bits as n / 2] independent sources
of random bits. (Q2 acts similarly with respect to S whose size is/n 2J .) The messages
exchanged between QI and Q2 in this two-party protocol correspond to messages ex-
changed between S and processors in the original multiparty protocol. Using the def-
initions, it is easy to see that this two-party protocol computes f" D E
privately with e-error.

We remark that to make use of the f n/2]-privacy, both S and S must be of size not
exceeding In/2]. Our main theorem states that if f A1 A2 X X An - { 0, } is
weakly n / 2] -private, then f can be expressed as the exclusive-or of n Boolean functions
fl, f2, f. The proof makes use of Theorem and Lemma 5.

THEOREM 2. Let A1, A2, ..., An be nonempty sets, and f" A1 A:
An - O, }. Supposefis weakly n/ 2] -private. Then there are n Boolean functionsf
A1 -- {0, 1},f’A2-- {0, 1},...,fi’An-- {0, 1} such that

f(xl ,x2, ,xn) =f (xl)fz(x2) f(xn).

Proof. The proof consists of two parts. In the first part we show that for every the
set Ai can be partitioned into two disjoint sets

Ai= BiUCi

such that for all bi - Bi, bi Bi, ci - Ci, xj Aj (j 4 i)

f( xl, ,xi-1,bi,xi+ 1, ,xn)f( xl, ,xi- l,Ci,xi+ 1,

and

(2) f( Xl, ,Xi- 1, bi,xi + 1, ,Xn) =f(xl, ,xi- 1, bi,xi + 1, ,Xn).

In the second part of the proof we show how to derive the desired characterization of f
from this property.
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To simplify the exposition, the first part is proven for and the subscript is
omitted from the two sets in the partition. We use the following notations:

R= 2,3,...,

+l,...,n-1

def
S={)R

clef
&={n}V.

Each of the sets S and $2 are of size [n/2], and thus Lemma 5 applies to both. We
establish the existence of the desired paition by examining the effect of"switching" the
variable Xl from S to $2. By Lemma 5 together with Theorem 1, there are functions

g. x,,Ai {0, }, h" xi,x,A {0, }
such that for eve xi Ai

(3) f(xl, ,x.) g(xl, ,Xn/) h(x./:+ l, ,Xn).

Similarly, there are functions

" NisAi 0, 1}, " Ni#Ai { O, }
such that

(4) f(x, ,X.)= g(Xn,X,’’" ,Xn/)h(xn/+, ,Xn-l,Xl).

We distinguish between two cases. If f does not depend on x, its first argument, then
we simply take B A and C . The interesting case is where f does depend on Xl.
That is, there are b, c A1 (b c), XieAi, XrA, d e A, such that

f(b,,?,)ef(c,,?,a).
Define the sets

def
B= {a6Al If(al,,,d)=f(b,-,13,d)},

def
C { a eA ]f(al, 3, , d) =f( c, , , d) }.

Since f is a Boolean function, A1 B U C. By the definition, for all b e B, c e C

(5) f(b,,,d)f( c,k,,d).
Assume, by way of contradiction, the existence of b B, c C, Yg XigAi,

i TAi, Xn A such that

f(b, Yg, Y,x,) =f( c, , Yr, Xn).

By (3), we have

g(b,)h( Yv, Xn) g(c, Yg) h(Y,Xn)

and thus

g( b, 2R) g( c, 2R).

Using (3) again, this implies

f(b, Xn, , d) =f( c, Xn, , d).
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Now, using (4), this implies

and thus

h(,b)=h(,c)

f(b,,-,d)= g(d, )(R) h(, b)

g(d, )(R) h(,c)
f( c,3,3,d)

contradicting 5 ).
Thus for every b B, D B, c C, 2R iRAi, 2r irAi, Xn An

f(b, 2, 2r, Xn)4=f( C, 2, 2r, Xn)

f(D, 2, 2r, xn)4=f( c, 2, 2r, Xn).

Again, since f is Boolean, these two inequalities imply

f(b, 2, r,x,)=f(D, 2, 2r, x,),

which completes the first part of the proof.
In the second part ofthe proof, we show that if for every the set Ai can be partitioned

such that (1) and (2) hold, then the function f has the desired form. We begin the
second part of the proof by fixing an element )i Bi for each 1, 2, n. Without
loss of generality, assume

f(bl,b2, ,bn)--0.
Define the functionsf" Ai 0, ) by

0 if xiBi
f(xi)=

ifxieCi.

Given any x A, Xn An, let J _c { 1, n } be the set of indices of the xi’s in
Ci, and M _c { 1, n } its complement. Denote by the size of J, and let k n 1.
We will index the elements in J and M separately, that is

(Xl, Xn Xjl Xj2 Xm1, Xmk, Xjl).

By and (2)

f( xl, ,Xn)"-- f( xj,,xj2, ,Xml ,Xmk ,Xjl

f xj, x2 )ml bm,, x,

f(b,,x,_, ,bm,, ,Dm,, ,X,)(})

f(b,,b, bm,, ,Dm,, ,x,)@ @

f(bjl,bj2,’’" ,bm,,""" ,bm/, ,bjl)()(l mod 2)

l(mod 2 ).

By the definition of the f.’s
f(xl)(R)f2(x2)(R)"" (fn(Xn) =/(mod 2)
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and thus

f(x ,x2, ,x,) =f (x,)@f2(x2)@ @fn(Xn).

for each ’--1A;. U]

We now turn to some implications of Theorem 2. First we note that if f A A2
A, -- { 0, } has the form

f(x,x., ,x,)=f(x)@fg_(x2) fn(Xn),

then there is a very simple protocol [Bh for computing f n-privately. The ith participant
clef

locally computes the bt Yi f(xi). Then, it picks n random independent bits yi,1,

Yi,2, Yi,n- , and Yi,n such that Y Yi, () Yi,2 () () Yi,n holds. It sends y,j to the
jth participant over their joint channel. After getting the n splits Y,i, Y2,i, Yn,i, the
ith participant adds them modulo 2 and sends the result zi

d_e_f Y ,i 6) Y2,i () ( Yn,i to
every other participant. The sum modulo 2 ofthese n zi’s equalsf( x, x2, xn). This
protocol is (strongly) t-private for any =< -< n. Thus we have

THEOREM 3. Let f A A2 An { O, }. Iff is weakly In -private,
then it is (strongly) n-private.

In particular, there is no Boolean function that is t-private but not + 1-private for
any in the range [ n/2] =< < n.

We now consider the case where f is a Boolean function ofBoolean variables. There
are only four Boolean functions of a Boolean variable (the two constants, the variable,
and its complement). The form ofprivate Boolean functions ofBoolean variables is thus
particularly simple.

THEOREM 4. A function f { 0, 1}
_

{ 0, l} is n-private ifand only if there is a
subset J { 1, n } such that

either

or

f( x,x, ,x,)= (R) x
jJ

f(x,x2, ,x.)= (R)x.
jJ

Finally, we remark that our characterization of Boolean functions that are [ n/2]-
private is valid even for functions defined over infinite domains. The (n )/2 J-private
protocol of BGW], on the other hand, relied heavily on the finiteness of the domains.
We conjecture that for infinite domains there exist functions that are not l(n )/2 J-
private. Indeed, the secret-sharing techniques used in that [(n )/2 J-private protocol
cannot be utilized in countable domains, as shown in [BS ], [CK].

Acknowledgments. We would like to thank Shai Ben-David and Oded Goldreich
for helpful discussions and comments on the topics of this paper.

Note added in proof. Chor, Gereb-Gravs, and Kushilevitz [Proc. 31st IEEE Confer-
ence on Foundations of Computer Science, 1990] have recently proved this conjecture
for various Boolean and non-Boolean functions defined over countable domains.
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A SIMPLE PROOF OF THE O(log3/4 n)
UPRIGHT MATCHING BOUND*

E. G. COFFMAN, JR.f AND P. W. SHOR?

Abstract. The stochastic upright matching problem has had many important applications, most notably
in statistics and the average-case analysis of algorithms. A problem instance is a set of n points chosen uniformly
at random in the unit square. The points are labeled with signs; the signs are chosen independently and each
is equally likely to be a plus or minus. An up-right matching ofS is a matching of minus points to plus points
such that if (x, y) is a minus point matched to the plus point (x’, y’), then x _-< x’ and y _-< y’. The problem is
to estimate the expected number of points left unmatched in a maximum upright matching of S. It is well
known that if Un denotes the number of unmatched points, then E[ Un] O(n log3/4 n). Existing proofs of
the upper bound O(n log3/4 n) are quite long and difficult to follow. This paper presents a much simpler and
more compact proof. A distinctive feature of the new proof is the use of Fourier expansions.

Key words, stochastic planar matching, Fourier series, analysis of algorithms, empirical discrepancy

AMS(MOS) subject classifications. 60D05, 68Q25

1. Introduction. Consider a set S of n points chosen uniformly at random in the
unit square. Each point carries a sign; the signs of the points are chosen independently
and each is equally likely to be a plus or minus. An upright matching of S is a matching
of minus points to plus points such that if (x, y) is a minus point matched to the plus
point (x’, y’), then x <= x’ and y _-< y’. Figure shows an example.

An efficient algorithm for finding maximum uptight matchings can be found in
3 ]. Our interest focuses on estimates ofthe number Un ofpoints left unmatched in such
matchings. Shor [6] gave a relatively simple proof of the lower bound

E[ Un] (n log3/4 n).

Leighton and Shor 4] then proved the corresponding upper bound

E[ Un] O(Wn log 3/4 H).

Subsequently and independently, Rhee and Talagrand 5 also proved using different
methods. The proofs of in 4 ], 5 are ingenious but quite complicated; a significant
effort is required to follow the many details of the arguments. Our purpose here is to
give a much simpler, more compact proof of this important result.

We refer the reader to 4 for a digest of the background and applications of these
and closely related results; the statistical application is amplified in [5].

The proof of in [4] falls out as a special case of a corresponding result for the
more general and more difficult problem of minimax grid matching. The combinatorial
properties needed in [4] require an especially long analysis compared to the one given
here in 3. In 5 uptight matching is related to an essentially equivalent problem dealing
with empirical measures in statistics. The probabilistic arguments in the proof of are
drawn from the techniques of majorizing measures developed by Fernique and others
(see [5] for references). But again, the combinatorial results needed in support of the
approach are difficult.

The proof of given in the next two sections adheres to well known and elementary
methods. A key to the greater simplicity of this proof is the use of Fourier expansions.

Received by the editors April 7, 1989; accepted for publication (in revised form) November 21, 1989.
? AT&T Bell Laboratories, Murray Hill, New Jersey 07974.

48



UPRIGHT MATCHING BOUNDS 49

/

n=14
Un=4

Unit Square

FIG. 1. A maximum upright matching.

In rough outline, there are points in common among the methods used here and in [4],
[5]. A brief discussion of these is best deferred to 4, after the new proof is given.

2. Preliminaries. As in [4], [5] it is convenient to reformulate our problem in
terms of discrepancies. Consider any subset L of the unit square and define the plus
discrepancy of L, A+(L), as the number of plus points in L less the number of minus
points in L. The term discrepancy by itself refers to A(L) A + (L)I. L is called a lower
layer if it is closed and if (x, y) L implies (x’, y’) L whenever x’ _-< x and y’ _-< y. It
follows from Hall’s matching theorem that U, is equal in distribution to
sup A+(L), where o is the set of all lower layers. We will prove

(2) E[ sup A(L)] O(fn log 3/4 n);

the desired result follows trivially.
For each lower layer L there exist lower layers L’ such that A(L) A(L’) with

probability and such that the boundaries of L’ are the unit intervals on the x and y
axis and a third, nonincreasing boundary extending from (0, l) to (l, 0). This third
boundary is called a lower layerfunction. The following lemma furnishes a basis for the
probability estimates needed to prove ). The result can be found, without proof, in
[4 ]. A simple proof is given below. The notation Af refers to the discrepancy of the
lower layer defined by f.

LEMMA 1. Letfl andf2 be two lower layerfunctions with f [fl(x) --f2(x)[ dx
a. Then there exists a c > 0 such that

Pr { Afl Af21 > X } O(e-CX2/(")), x <= an
O(e-CX), x> cn.

Proof. Enumerate the points in S and let R denote the region bounded entirely by

fl and f2 and having area a. Figure 2 illustrates the definition. Define Pk 0 if the kth
point of S is not in R; otherwise, pk + or according to whether the kth point is a
plus or minus. Then A(R) , p is a sum ofindependently and identically distributed
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/

+ /

3

cz area (R) "<,,,/1

FIG. 2. Illustration for Lemma 1.

(i.i.d.) random variables on [- 1, + with mean 0 and variance na. It is easily seen that,
by symmetry, A(R) is equal in distribution to [A+fl A+f21. Since Afl Af2[ =<
A +f A+fz I, the result follows easily from Bernstein’s bound [1] applied to A(R):

X2/2 }Pr { Aft--Af2 >x} =<Pr {A(R)>x} _--<exp
na+x/3

It is readily verified that the set of partitions of S created by lower layer functions
is also created by the subset consisting only of decreasing step functions. Now rotate the
unit square 45 counterclockwise, center it at the point (1/2, 0), and scale it down by a
factor of f. The problem instance changes as illustrated in Fig. 3, where a lower layer
step function becomes a piecewise linear function f(x), 0 _-< x _-< 1, with the slopes of
the pieces alternating between + and -1.

Hereafter, our terminology refers to this transformed version ofthe problem. Lower
layer functions are defined on 0, ], they are completely contained in the rotated square,
and they vanish at x 0 and 1. Note that Lemma continues to apply in this new set-
up. Let denote the subset of piecewise linear lower layer functions with slopes alter-
nating between and + 1.

Another useful lemma is given next. It uses a convention that applies throughout
the remainder of the paper: When we write "g (n) O(gz(n)) with high probability"
for given functions g (n), gz(n), n 1, 2, we mean that there exist constants/3 >
0 and c >= such that for all n sufficiently large, Pr {g(n) >/3gz(n) =< 1/n c. Occasionally,
we write whp as an abbreviation for "with high probability." Also, the symbol c will be
used genetically to denote constants; unless noted otherwise, constraints on c are deter-
mined by the immediate context only.

LEMMA 2 Let f and let f2 be any other function over [0, 1] such that
for some c > "0, If (x) f_ (x) <= c /log nn* uniformly in x, 0 <= x <= 1. Then

Af Af2l O(/n log n with high probability.

Proof. Place a grid of squares of sizes I/log n / n /log n/ n over the unit square,
as shown in Fig. 4. The number of points within a grid square entirely inside the rotated

:1: Unless noted otherwise, logarithms are base 2.
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FIG. 3. The transformed problem.

square is binomially distributed with mean 2 log n. We find from standard estimates for
this distribution that all squares in the grid have O(log n) points with high probability.

Now in any column of the grid, fl intersects at most two squares (since [f’ (x)[
on the pieces off), so [f(x) -fz(x)[ < c /log n/n shows that the difference in the

discrepancies off andf2 within any column is concentrated in at most a constant number
of squares. Then over [0, the difference in the discrepancies is concentrated in at most
O(Vn/log n squares. The lemma follows at once from the fact that all squares have
O(log n) points with high probability. []

/\
/ \

\
\
\/

.’ log n , log n
--’K-- x n-
/

FIG. 4. Approximatingf byf2 o *.
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Consider the grid introduced in the proof of Lemma 2. It is clear that for any
function f we can construct another function f2 such that the vertices off2
coincide with vertices in the grid and such that If(x) -f2(x)l =< /log n/n uniformly
in x, 0 =< x <- 1. Let * be the subset of such functions. Figure 4 illustrates the con-
struction. Clearly, by Lemma 2, will be proved if we can show that

(3) E[ sup Af] O( fn log 3/4/7).

Elementary Fourier analysis shows that a lower layer function f 6 o may be rep-
resented by the sine series

(4) f(x) a/sin rix, O<=x<= 1.
i>=l

These expansions play a key role in simplifying the proof of (1). Note that, since
[f’(x)l on the pieces off, we have

7I"2 _, i2a[ft(x)]2 dx Ti_I
and

(5) iZa2i 2/7r2.
i_l

Our final preliminary result describes the convergence in (4) for f *, and is an
immediate consequence of a result in [2, p. 21 ]. Letf(x), n >_- 1, denote the nth partial
sum in (4).

LEMMA 3. There exists a universal constant c > 0 such that for allf * andfor
all x, 0 <- x <= 1,

If(x)-L(x) =<
/n log n

Remark. Lemma 3 in fact holds for any f 6 having at most /n/log n vertices.

3. The main result.
THEOREM. For the expected number of unmatched points in a maximum upright

matching, we have

E[ Un] O( fn log 3/4 n).

Proof. Trivially, Un --< n, so for any c > 0

E[Un]<=cVn log 3/4 n+n Pr { Un>cVn log 3/4 n}.
Then, since Un is stochastically smaller than supLe A(L), it is enough to prove that
sup/ao A(L) O(Vn log3/4 n)with high probability. This in turn will be proved if we
can show that supf, Af O( Vn log 3/4 r/) with high probability (see (3)). This last
result is proved below.

Let f(), f(2), fogn) be successively better approximations of f o* de-
fined by

2k+

(6) f(k)(x)= ai(k) sin rix, _-<k_-<llog nJ,
i=1
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where ai(k) is ai truncated to the [log (/log n 23k/2)J most significant bits of its binary
representation. (Hereafter, we shall omit the floor notation and treat the affected quantities
as integers; extension of the analysis to noninteger values is trivial and influences only
hidden constants.) By (6), differences in accuracy are bounded by

(7) lai(k)-ai(k- 1)l <
..hog n 2 3(k )/2

Clearly, for fixed k, the possible functions f(k) make up a finite set. We will be counting
certain subsets of these functions in terms of properties defined by

k 2j+l

(8) t(f()) rj(f()2J- with rj(f())=4 aZi(k),r>=l
j=0 i=2J+

From (5), we have

z0(f) a(k) + a22(k)

log log 2

(9) , r(f(k))=a(k) + , , [2Jai(k)] 2<= i2a2=2/7r2i
j=0 j=Oi=2J+

and hence

(10)
log log k log log

t(f(k)) , r(f(k))2-k<= , rj(f (lgn)) 2J-k<=4/Tr 2.
k=l k=lj=0 j=0 k=j

The following lemma comprises the combinatorial part of the proof.
LEMMA 4. There exists a universal constant c and a mapping from o* into

og,, with values denoted by (s(f), s2(f), Slog,(f)), such thatfor eachfe *,
we have , l_og n

k=l s,(f) < c,

11 If(l/(x)l dx <- 1/s(f)/2,

01 If()(x)--f(-l)(x)l 2__--< k__<log n,dx<= /s(f) /2,
and ifn( a) denotes the number offunctions g(), g *, such that s(g) <= a, then

(12) r/(a)=<(alogn)Zk/2 lgn, l=<k=<logn.

Proof. We will show that the mapping sk(f) "),t(f()) + 3’/log n, for an appro-
priately chosen constant "), has properties (11 and (12). To prove the first property,
consider a function f 6 * and write from (6)

2 2

(13) f(g)(x)-f(-)(x)= , ai(k)sinrix+ , [ai(k)-ai(k-1)]sinTrix,
i=2k+l i=1

2-<k=<log n.

Let gk(X) and h(x) denote the first and second sums in (13), respectively. We have
from (8),

g(x) dx=-i + la(k)=-4-kr(f()),
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so by Schwarz’s inequality, with rk

(14) gk(x) dx<--2-kVr.

Next, by (7),

1 2ih(x) dx<=-.= [ai(k)-ai(k- 1)]2=<2k+2/(1ogn23k),

SO,

(15) h(x) dx<=2-k/4/logn.

Now add 4) and 5 and note that r + /4/ log n =< }/2 rk + 4 /log n) by Cauchy’s
inequality. Then by (8)-(10) and 13)-(15), any 3’ >- 8 gives sk(f) 3"(t(fk)) + /
log n) >- 2(rk + 4/log n) and 7;g] sk(f) <- c, with c independent off and n.

For the second part of the lemma, we note first that, for all k, k(r) -< 2 Cn/log, /n/log ,follows from the definition of (there are at most 2 functions f 6 since
the vertices of these functions are restricted to the vertices ofa /n/log n /n/log n grid
on the unit square). To prove r/k(a) _-< a log n)2, we first establish a bound on #k(z),
defined as the number of functions gk), g 6 ., such that t(gk)) <= z. This bound will
hold for z >_- 1/log n.

Consider a function f * and rewrite fk)in (6) as

k 2j+l

(16) fk)(x)=al(k)sinrx+a2(k)sin27rx+ , , ai(k)sinTrix.
j=li=2J+l

Now consider the number ofpossibilities in thejth inner sum, i.e., the number ofvectors
of coefficients a,.(k), 2 j + -< =< 2 / i, -< j =< k. It is more convenient to work with
the numbers bi(k) ai(k)2 3k/2}/1og n, since these are integers by definition ofthe ai(k)’s.
By 8 ), the bi(k)’s satisfy

2J+l

b,2.(k) =2 3klOg n
i=2J+l

(17) z>_-l,

2J+l

i=2J+l
aZi k) <= 2 3k- 2Jr(fk)) log n,

=< k=<log n,

bZ(k)+ b(k) 23k log n(azl(k)+ aZ(k))<=23k-o(fk)) log n.

Now divide both sides by 24k- 3j and sum over j >= 0. Assuming that t(fk)) <= z, this
leads to

(18)
k 2 j+l k

2-4k[b21(k)+b22(/)] 2+ 2 3j-4k b,2.(k)_-<log n , rj(f(k))2j-k
j=l i=2J+l j=0

_-<r logn.

Then the number of functions ftk) with t(f tk)) <= - is clearly bounded by the number
of vectors (b (k), b2 +, (k)) satisfying 18 ). This is the number of lattice points in
a 2 k+l dimensional ellipsoid with 2 axes of lengths 2/z log n24k-3j, for each j 1,
2, k, plus two additional axes oflength 2]24k log n. This in turn is approximately
the volume of the ellipsoid. Now a d dimensional ellipsoid with axis-lengths ll, ld
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and d even has volume

( -I li) d,2 I(dl2),<( -i li) d,2(19) V= i= 7r
/ i= (2reid)

where the inequality is obtained from Stirling’s formula. Substituting for the li’s and d
2 k+l we find that

(20)
(" log n)2(27re)2 :

2 (c+ )2 I-I 21/2(4k-3j)2J.
j=o

It is easy to verify that an increase in the constant 2re will make the volume approximation
in (20) an upper bound. Routine algebra then shows that there is a constant , such that
#(r) =< (3’r log n) 2k. Finally, we can choose &(f) 3,t(f)) + /log n =< a for all f
o* and obtain (a) =< tk(a/’) <= (a logn)2. By(10), zog__] s(f) < 43,/7r 2 + % and
we are done.

As a trivial extension of Lemma 4, it is convenient to assume for each f that s(f)
is a positive multiple of 1/log n, =< k =< log n.

We turn now to the probabilistic part of the proof. Consider any function f(ogn)
with f *. Comparing f(log n) and the partial sumsf we have by the definition of the
ai(k)’s that [ai- a/(log n)l O( 1/(/log nn3/2)) and hence

(21) If(x)-f’g")(x)l
i=1

lai-ai(logn)l-0
]/n logn

By Lemma 3 we have If(x) f(x) O( 1/./n log n ), 0 -< x =< 1. This together with
(21) yields If(x) f(e(x) O( / /n log n), 0 _-< x -< 1. We conclude from Lemma
2 applied to f(logn) and f that if

(22) sup Af(lgn)=o(Vnlog3/4n)whp,
fe ."

then suPine. Af O(n log3/4 n)whp as well. We prove (22) below.
Consider any f e o* and write

log n

(23) Af(log n) Af()_ Af(k- 1)),
k=l

with Af() 0. Below, we introduce numbers q q(&(f)), < k _-< log n, such that
Z og= n s(f) <= c implies og= ] qk O( Vn log 3/4 n) for all f e *. If f is such that

Af(lgn) > ,% q, then there exist k and r, -<_ k -<_ log n, 1/log n -<_ a -<_ c (with c
as given in Lemma 4), and a pair of functions (f(), f(-1)) such that s(f) r

and Af(k)- Af(-)> q(a). Over all f e*, the number of pairs of functions
(f(), f(- )) for given k, , and &(f) r is at most r/(a), so by Boole’s inequality

(24) Pr max zXf (lg> , q(s(f))
f’* k=

--<_c log2 n max max (a) Pr {Af’)--Af’-)>qk(a)},
l_k_logn {f.*lsk(f)= r}

l/log n_ a_

where the c log2 n factor comes from the log n values of k and the at most c log n values
of a (recall that the &(f) are chosen as multiples of 1/log n). With () bounded by
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(12), and with qk(r) as defined below, we will show that for some c >

(25) (21/n/logn A (ff log n)2) Pr { Af(k)- Af(k- l)> qk(a) } <= 1/n
for any choice of k, r and f e " * with sk(f) a. Since c > implies that log2 n/n
O( /nc’) for some c’ >- 1, the proof of (22) will be complete once we have verified that,
in the left-hand side of (24) ; log n

k= qk(sk(f)) o(fn log 3/4 n) for all f e o*.
Now consider the pair of functions (f(k), f(k- 1)) for an f such that sk(f) a. To

apply Lemma to (25), let f(k) and f(k-1) bef andf2, let a Va/2 k from 11 ), and
assume that k is such that uk uk() --< an, where for some c >

(26) u],=-n V[ [log (a log n)] + c2- log n],

with/3 In 2 1/log e. Substitute (26) into the first of the bounds in Lemma and
then substitute the result into (25). A little algebra shows that

(27) (2 Vn]logn/ (ff log n) 2k) Pr { Af(k)- f(k-1)> Uk} ----<(ff log n)2k2 -u’z/(nG) 1
F/c

as desired. To take care of the case blk " an we put qk qk() blk -t- I), where for some
c> 1,

(28) v =/3[ /n/log n + c log n ].

For, if qk > an, then Lemma and substitution into (25) give

(21/n/lgn / (a log n)2) Pr { Af(k)-- Af(k- )>qk } -< 2!/n/lgn2 -v/B--
nc

again as desired.
It remains to show that ;}og] (Uk(Sk(f)) + V) O(fn log 3/4 n) for all f o*.

For the contribution of the uk =-Uk(Sk(f)), use Cauchy’s inequality, let sk =-Sk(f),
and write

(29) uk o( Vs],/4 /log (sk log n) + Vns/42 -k/2 I/log n ).

Since sk is bounded by a constant, the contribution to Z uk of the second term in (29)
is easily seen to be O(/n log n ). By Lemma 4 the sum of the sk, _-< k =< log n, is at
most a constant c, so the contribution of the first term is O(Wn), where

log

(30) w. max Z z/4 log(zk log n)
{Zk} k

log ]

z<=cl"logn k=

A calculation shows that the function w(z) z 1/4 log (z log n) is increasing and concave
(w"(z) -< 0) for all z >= 1/log n. Then by Jensen’s inequality the maximum in (29) is
achieved by putting all zk’s equal to c/log n. Then

logn cl/4 log cWn--V? i;-1"7-),/ =o(Vlog3/4rt),
=1

and hence N,og, Uk=O(Vlog3/nn)" It can be seen by inspection that v logn
O( /n log n ), so (22) and hence the theorem is proved.

4. Final remarks. The probabilistic parts of the proofs in 3 and in [4], and the
use of Fernique’s theorem in 5 all seem to have elements in common. In particular, it
appears that the desired result could be obtained by applying Fernique’s theorem to
inequalities similar to those in Lemma 4. The difficult part in all cases lies in proving



UPRIGHT MATCHING BOUNDS 57

the combinatorial properties needed for these techniques. All three proofs involve the
construction of successive approximations to a lower layer function. The use of Fourier
approximations enables us to take advantage of standard properties of Fourier series to
simplify the proof. For example, our proof of (5) is much simpler than the proof of its
analogue in 4 ].

It is clear from 2 and 3 that for any fixed constant c > we can write Un
O( log 3/4 n) with probability / n c. In fact, as shown in 4 ], 5 ], an even stronger
statement is possible, namely_A_hat there exists a c > 0 such that Un O(Vn log 3/4 n)
with probability O(n-cVlg). Our methods do not preclude such a result. For this
tighter bound we can easily modify the conclusion of Lemma 2 to Afl Af21
O( Vn log 3/4 n) with probability O(n -CvTff") for some c > 0. With somewhat more
effort, a tighter analysis of suitably larger functions qk will then yield the desired result.
The details are left to the interested reader.
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THE CYCLE CONSTRUCTION*
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Abstract. A direct generating function construction is given for cycles of combinatorial structures.

Key words, combinatorial enumerations, generating functions, combinatorial theory of words
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Let be a class of combinatorial structures, with A (z) its corresponding ordinary
generating function" A(z) z I1 We use corresponding letters for classes and
generating functions. Consider the class whose elements are cycles of elements of
The following result is classical 6 ], ]"

(0) C(z) 4)_k) log
k_l --A(zk)

where 4(k) is the Euler totient function. This result is proved by Read 6 using Prlya’s
theory [5] and a classical computation of the Zyklenzeichner of the cyclic group. De
Bruijn and Klarner have another derivation, which amounts to the Lyndon factori-
zation of free monoids [4, p. 64]. Our purpose in this note is to show that equality (0)
follows directly from basic principles of combinatorial analysis [3 ], using elementary
concepts of combinatorics on words from Lothaire [4].

PRINCIPLE 1. Every nonempty word over 1 has a unique root that is a primi-
tive word.

For instance with a, /, word aacaca decomposes into
aBaBBlaBa31[3a{3{3 and its root is the primitive (also called aperiodic) word
Let O /+ be the set of nonempty words formed with elements of /, and O the
set of primitive words. From Principle l, we have

(la) S(z,u)=-
uA(z) pS(zk, uk).

1- uA(z) k_

From Moebius inversion applied to (la), we get an explicit form for PS(z, u)"

ugA(z)
(lb) PS(z,u)= ., #(k)S(zk, uk) , #(k)

_1 _l 1--uA(zk)

PRINCIPLE 2. Every primitive k-cycle has k distinct primitive word representations.
A cycle is said to be primitive if and only if any associated word is primitive. We

use the notation [... to denote a cycle. Then, for instance, the 5-cycle [ababb]
[babba] [babab] is primitive, while the 6-cycle [abbabb] is not. We let
denote the class of primitive cycles. Principle 2 permits us to express the bivariate gen-

Received by the editors July l, 1988; accepted for publication (in revised form) October 17, 1989.
? Institut National de Recherche en Informatique et en Automatique, Domaine de Voluceau, Rocquencourt,

78153-Le Chesnay, France.
LRI Universit6 Paris-Sud 91405-Orsay, France.
We introduce bivariate generating functions, and make a consistent use of variable u to mark the number

of letters (called length) in a sequence (word) or a cycle: The coefficient of [utz"] in a generating function
F(z, u) of represents the number of structures in of total size n having length I.
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erating function PC(z, u) via the transformation uk - uk/k applied to PS( z, u)"

(2a) PC(z,u)= PS(z t)
dt

Integrating with respect to t, we derive

((2b) PC(z, u) #--) log Ak_l --U (Z

PRINCIPLE 3. Every cycle has a root that is a primitive cycle.
A cycle like a{3c{3aal3{3a{3al3/3] has a unique root defined up to cyclic order that

is here [a/c/3/] [/3a/3/3c] .... For generating functions, this entails the relation

(3a) C(z,u)= PC(z,u) and C(z)- PC(z, 1).
k_l k_l

Using the relation ,pl: #(P)/P cp(k)/k in summation (3a), we obtain

(3b) C( z, u , cb_k log
k

_ ukA (zk)

Specializing (3b) with u establishes Equation (0).
Thus the generating function for/-cycles, which is obtained by extracting the coef-

ficient of[u l] in (3b), is found to be

1 , 4(k)A (z)lk.

Other results from [1] can also be derived from (3a). The multiset construction "//(f) ( is the class of all finite multisets of elements of f) is known [5] to trans-
late into

F(z) exp cG(z)-
k

Using identities Zaln (d) 6n, and Zaln (d) n, the generating functions for multisets
of primitive cycles and multisets of cycles (with u again marking length) are found
to be

and
uA (z) uA(z)

By considering singularities of corresponding generating functions [5], it is easy to
derive asymptotic results. Assume for instance that the radius of convergence o ofA (z)
satisfies o < and that A (o) +. Then, we have the following:

o The number of /-cycles of size n and length is asymptotically 1/l times the
number of /-sequences having size n and length I.

o The number of /-cycles of size n is asymptotically /n times the number of
sequences of size n.
The length of a random /-cycle of size n is asymptotically Gaussian with mean
and variance that are O(n). (See [2] for similar results).

These results can be extended to the case when 0 and A (z) has only a pole at z
on its circle of convergence.

Note added in proof. Related results appear in 7 ].
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ANALYSIS OF A COMPOUND BIN PACKING ALGORITHM*
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Abstract. Consider the classic bin packing problem, in which we seek to pack a list of items into the
minimum number of unit-capacity bins. The worst-case performance of a compound bin packing algorithm
that selects the better packing produced by two previously analyzed heuristics, namely, FFD (first fit decreasing)
and B2F (best two fit) is investigated. FFD and B2F can asymptotically require as many as and times the
optimal number of bins, respectively. A new technique, weighting function averaging, is introduced to prove
that our compound algorithm is superior to the individual heuristics on which it is based, never using more
than times the optimal number of bins.

Key words, bin packing, compound algorithms, heuristics, weighting functions, worst-case analysis
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1. Introduction. In the usual definition ofthe bin packing problem, we seek to pack
the items of a list L ll, 12, lN }, each item with size in the range (0,1 ], into the
minimum number ofunit-capacity bins. It is easily verified that this problem is NP-hard.
Therefore, we focus our efforts on practical, efficient approximation algorithms in hopes
ofguaranteeing near-optimal results. (Note that there are algorithms guaranteed to pro-
duce results as close to the optimum as desired ], 7 ]. Unfortunately, these algorithms
are not practical to implement because the time required to ensure results at most

+ e) times the optimum grows extremely rapidly as e approaches zero.)
We use worst-case analysis as a measure of the worth of a bin packing heuristic.

The heuristic may not discover the best packing, but we endeavor to show that it always
provides results close to the optimum. For some algorithm, ALG, let ALG (L) represent
the number ofnonempty bins required by ALG to pack L. For instance, OPT (L) denotes
the number of bins required in an optimal packing of L. We restrict our attention to
two off-line algorithms: FFD (first fit decreasing) and B2F (best two fit). Given any list
L, it is known from [6] that FFD (L) does not exceed (t) OPT (L) + 4, and from the
Appendix to this paper that B2F (L) does not exceed () OPT (L) + 4. Moreover, ex-
amples exist that demonstrate that these bounds are asymptotically tight.

It seems reasonable to suggest that these two heuristics produce particularly inferior
packings for rather small, distinct regions of the input space. Based on this conjecture,
we analyze a compound algorithm, CFB, in which both FFD and B2F are applied and
the better packing selected. This notion ofcombining two or more heuristics is an attractive
one, but the analysis of such an algorithm can be especially diiflcult; only a few compound
algorithms have been successfully analyzed in the literature (see, for example, [2 ], [8],
9 ]). We note that a tight worst-case bound of 71 !60 has recently been reported for a
modification ofthe FFD algorithm 5 ], thereby yielding the lowest bound yet published
for an efficient bin packing heuristic. This bound is superior to the upper bound of that
we prove here, but is inferior to the lower bound of 227/195 provided by the worst

Received by the editors June 19, 1989; accepted for publication (in revised form) May 8, 1990. A
preliminary version of a portion of this paper was presented at the twentieth Allerton Conference on Com-
munication, Control, and Computing held in Monticello, Illinois in October, 1982.

" Department of Computer Science, Texas A&M University, College Station, Texas 77843.
Department of Computer Science, University of Tennessee, Knoxville, Tennessee 37996-1301 and De-

partment ofComputer Science, Washington State University, Pullman, Washington 99164-1210. This research
was supported in part by National Science Foundation grants MIP-8603879 and MIP-8919312, and by Office
of Naval Research contract N00014-88-K-0343.

An off-line algorithm is free to preview and rearrange items before it begins to pack them.
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examples we know offor CFB. Moreover, the novel analysis we devise tbr our compound
algorithm merits attention and may, we hope, be applicable in other settings.

We shall employ the technique of"weighting" L so that the FFD and B2F packings
can be compared to an optimal packing. Although we would like to determine the min-
imum of { FFD (L), B2F (L) }, the analysis involved is extremely complicated. Instead,
we investigate the average of { FFD (L), B2F (L) }, in an effort to obtain a weak upper
bound on the minimum. In particular we show that, after eliminating certain cases where
we can guarantee that one or the other algorithm performs within our bound of , our
weighting of L ensures that the average and hence the minimum number of bins used
by the two algorithms is within the bound.

In the next section, we present some preliminary analysis and demonstrate that
CFB (L) can be as great as (227 / 195 OPT (L). We also introduce a typing scheme for
the items of L based on size. In 3, we establish the specific conditions required for the
FFD packing to use more than the optimal number of bins. Section 4 contains an
analogous determination for B2F. We present our main result in 5, proving that CFB (L)
does not exceed ()OPT (L) + 8. The final section contains remarks about proving a
tighter performance bound for CFB. In the Appendix, we discuss in further detail the
B2F algorithm and derive its asymptotic worst-case bound.

2. Preliminary discussion. We begin by describing the FFD and B2F heuristics
more precisely. The FFD algorithm can be implemented by first sorting all items so that
their sizes are arranged in nonincreasing order. Each bin is packed by repeatedly placing
in it the largest unpacked item that fits. When no more items are available that fit, the
next bin is packed. The B2F algorithm modifies this in the following way. First a bin is
packed as by the FFD rule. If the bin contains more than a single item, then the list is
checked to see if the smallest item in the bin could be replaced by two items that would
pack the bin more nearly full. If so, those two whose sum is largest are used in place of
the smallest item in the bin. A number of other schemes could be used to decide which
two replace the smallest item, but almost any choice will satisfy our analysis, subject to
the following modification made to simplify the proof: items of sizes less than or equal
to will be held back until all larger items are packed. An FFD-like procedure is used to
complete the packing when only items of size no greater than are left. The purpose of
this modification is to reduce the number of combinations to consider in proving an
asymptotic 56- bound, although it seems likely that this modification actually detracts
somewhat from the performance of the compound algorithm.

Figure depicts the worst example (independent, ofcourse, ofan additive constant)
that we were able to contrive for the CFB algorithm. For simplicity, the bin size has been
expanded to 559. All of the examples we devised that were even close to being this poor
were dependent on the small items being held back, so that the FFD and B2F packings
are the same.

We denote the size of an item lirL by s(li). Thus, after sorting, s(l)>=
s(12) -> >= S(IN). We use last to denote the index of the last item packed by FFD.
Note that /last may not be the smallest item in L, since smaller items may have been
packed earlier where last did not fit.

To prove that is an asymptotic upper bound on the worst-case behavior of CFB,
we now proceed by contradiction and henceforth assume that L denotes a counterexample.
That is, we assume that both FFD (L) and B2F (L) exceed () OPT (L) + 8. Without
loss of generality, we also assume that L is minimal. By this we mean that no counter-
example exists with which OPT can use fewer bins, and that no counterexample is possible
with fewer items for this minimal number of bins. (Of course, minimality for CFB does
not imply minimality for either FFD or B2F alone.)
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60k bins 60k bins 72k bins 35k bins

(a) CFB(L) 227k
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60k bins 120k bins 15k bins

(b) OPT(L) 195k

FIG. 1. Examplefor which CFB (L) (227/195) OPT (L), using bin size 559.

An immediate consequence of this is that L contains no item whose size is less than
or equal to . If it did, then minimality requires that one or more such items must be
packed in the last bin by either the FFD or the B2F algorithm, in which case all preceding
bins would be packed to a level of at least -. A simple "conservation of size" argument
ensures that, for such a list, no packing could use fewer than ()(CFB (L) bins.

With this in mind, we let S(/last) + A, for some A > 0. Since no item has size
less than or equal to , we know that no bin in any packing of L has more than
five items.

We use the notation B* for an arbitrary bin of the optimal packing, and B*I to
denote the number of items B* contains. For the bins of the FFD or B2F packing, we
use Bl, B2, as the sequence of bins in the order in which they are packed.

LEMMA 2.1. L contains no item li with s(li) >-- .
Proof. To obtain the proof, assume otherwise. In both the FFD and B2F packings,

the largest item ll is packed in B1 with at most one other item, the largest that would fit.
The optimal bin containing 11 can contain at most one additional item and in fact can
be packed no better than B1. If the item or items of B1 are removed from L, then all
three of FFD (L), B2F (L), and OPT (L) can be reduced by one, contradicting the
presumed minimality ofL with respect to CFB. []

There can be no bin containing only one item in the FFD packing (except, possibly,
for the last bin). If there were, s(/last) must exceed 1/2, since otherwise/last would have fit,
and it is known that FFD (L) is bounded by () OPT (L) + 2 whenever S(/last) exceeds
1/4. (See [6, Thm. 4.10].) From this it also follows that A must be less than or equal
to 2o

Each item ofL is assigned a type as shown in Table 1. Although this typing scheme
is motivated by the structure of a typical packing produced by the FFD rule (more will
be said on this in the next section), we classify items exclusively by their size so that we
can compare both FFD (L) and B2F (L) to OPT (L). Note that A cannot exceed 0 if
Y4 or X5 items exist.

3. A close look at FFD. We say that an item is "regular" if there is no larger item
available when it is packed. A "fallback" item is one that is packed when one or more



64 D. K. FRIESEN AND M. A. LANGSTON

TABLE
Item types based on size.

Type Min size

>1/2
> A/2

>-
>- A/3

>I
> A/4
>g

>

Max size

<
_-< A/2

=<
_-<- A/3

--4

_-< zx/4
<l
--5

larger items are available. Thus the notation we have used in Table roughly agrees with
the way items are packed by FFD. That is, regular items of type Xi are generally packed
by FFD in a bin consisting of the largest items available when the bin is packed. We
call such a bin an Xi bin. Regular items of type Yi are generally packed with other
Yi items and a (smaller) fallback item. We call such a bin a Y/. bin. (Note that no Yi bin,

>_- 2, can have more than one fallback item, as the following argument shows. If two
fallback items are used, then they combine to fill more than 1/2 of the bin. In this event,
however, the two or more regular items fill less than of the bin, and the smaller regular
item has a size less than 1/2, implying that another regular item would have fit in the bin
as well.)

This motivates the range of sizes we have selected for each item type. For example,
the sum of the sizes of the two items in an X2 bin must exceed ( + A), or else/last
would have been used as a fallback item in that bin. Hence, with the exception of items
from the first or last X2 bin, every regular X2 item must have a size in the range
(2 A/2, 1/2 ]. Similar size restrictions are used to define the other item types as summarized
in Table 1. We use these same size ranges to assign a type to each fallback item.

There may also be some bins, which we define as "exceptional" for the FFD packing,
that are not packed by FFD with items of the expected sizes. These can only be the first
or last bins of a particular type, subject to the following constraints. Ifthe last bin oftype
Yi is exceptional (that is, it does not contain items of type Yi), then the next bin is an
Xi +l bin that is not exceptional if there are at least two Xi +1 bins. Similarly, if the last
bin of type Xi is exceptional, then the first bin of type Yi is not exceptional unless it is
also the last Yi bin.

Consequently, there are at most eight exceptional bins in the FFD packing, including
the last bin packed (which contains/last). We define an exceptional item to be one packed
in an exceptional bin or one smaller than/last.

We now seek to determine the precise conditions necessary for FFD (L) to exceed
()OPT (L) + 8. In this effort, we employ a weighting function WF" L -- R+.
We extend w to subsets of L in the obvious fashion. For example, WF(Bj) denotes
Ztinj WF(li). Our intent is to assign each item as small a weight as possible and yet
ensure that the weight of any nonexceptional FFD packed bin is at least 1. Table 2
describes our definition of WF for nonexceptional items.

Recall that fallback items, like regular items, are assigned a type based on their size.
We deviate slightly from this definition of WF for items packed in Y1 bins. Consider any
two Yl items a and b, where a precedes b. Since s(a) >= s(b), we increase w(a), if
necessary, to ensure that w(a) >_- w(b) and reduce the weight ofany item (s) packed with
a accordingly. For future reference, we state this formally as follows:
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TABLE 2
Weightingfunction we based on FFD packing.

Type of nonexceptional
items in an FFD-packed bin

Y, any two items

Y, X2
Y,Yz

Y, Y4 or smaller item

x,x
Y2, Y2, X3
Y2, Y2, Y3 or smaller item

X3, X3, X3
Y3, Y3, Y3, any item

x4, x4, x4, x4
any five items

Weights assigned

5, 57

3,5, if q Y2 bin(s), else, 1/2 if s(Y) =< 2A, else
11
15, 15

3,3

11
i3,

5,5

1
2,2

11 11
6, 6,

5, 5,

,I,
15, 15, 15,

5, 57 57 5,

Y weighting rule: If a and b are Y1 items, and a is packed in a bin before the bin
containing b, then WF( a >= WF( b

An exceptional item receives a weight of zero, completing our definition of WF. For
the convenience of the reader, Table 3 provides a listing of the possible weights for each
nonexceptional item type.

LEMMA 3.1. The FFD weight of an optimal bin cannot exceed unless the bin
contains a Y item or a Y2 item whose FFD weight exceeds 1/2.

Proof. Suppose that B* is a bin ofthe optimal packing that has weight greater than
and B* contains neither ofthe items mentioned in the statement ofthe lemma. Clearly
B* must contain at least 3 items.

Case 1. Suppose [B*[ 3. Then at least one item must have weight greater than
1/2 and, from the assumptions of the lemma, it can only have type X2. There cannot be
two such items, or else no item larger than/last could fit with them. Thus WF(B* <= 1/2 +
+/- --o3+1/2

TABLE 3
Possible FFD weights for each

nonexceptional item type.

Type

Yl

Y

Y3

Xsor Y

Weight

11
5, 4, 157 3,

15

45
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Case 2. Suppose B*I 4. If B* does not contain an X2 item, then the smallest
item packed must have weight exceeding 1/2, else WF(B*) <= 3(1/2) + 1/2 . No item larger
than /lt can be packed with three items of type X3, and there cannot be four items
greater than 1/4 in size. Thus there must be one item of weight at most 1/4 and one other
item of type Y3 or smaller, and WF(B*)is at most 1/2 + 1/2 + + 1/4 < . Consequently, B*
must contain an X2 item. The second largest item of B* must be of type Y3 or X4,
implying that the remaining two items either are each oftype Y4 or less or (2) contain
an item smaller than/1,t. In either case, WF(B*) < .

Case 3. Suppose B*I 5. B* must contain an X3 or Y item since it can contain
neither a Y2 item nor four X4 items and any item as large as/lt. Therefore, the second
largest item of B* must be of type X4, implying that the remaining three items either

are each of type Y4 or less or (2) contain an item smaller than/lt. In either case,
*) <
LEMMA 3.2. The FFD packing ofL contains no Y bin.
Proof. Suppose there is a Y2 bin. Consider the sorted sublist L’ obtained from L by

deleting every item that is smaller than + A, every item that is larger than 2A, and
every item that is placed in a bin with an item larger than 2A in the FFD packing of
L. Clearly, the FFD packing of L’ must also have a Y2 bin. Moreover, since FFD (L) >
() OPT (L) + 8, it follows that FFD (L’) > () OPT (L’) + 8. (Deleting items smaller
than + A does not affect the number of bins used by FFD and cannot increase the
number required by OPT. After that, as long as the first item of the list is larger than

2A, it and any other item FFD packs in B can be deleted, reducing the number of
bins used by FFD by one and the number needed by OPT by at least one.) Thus, from
these observations and the last lemma, it suffices to restrict our attention to L’ and an
optimal bin B* that contains z, a Y item or a Y2 item whose FFD weight exceeds 1/2,
and show that, due to the presence of a Y bin, WF(B* <= . We assume WF(B* > and
consider the possible cases.

Case 1. Suppose z is a Y1 item.
Suppose WF(Z) > . Then the smaller Y2 item in the Y2 bin did not fit with z in the

FFD packing. Hence s(z) > ( A/2) + A/2. If ]B*] 2, then the second
item can have weight at most 1/2 and since the weight of z is at most , WF(B* < 56-. Since
]B*] must be less than 4, we must have ]B*] 3. If the second largest item were
at least 1/4 in size, no third item would fit. If both items are of type Y4 or Xs, then
WF(B*) <= + 2(1/2) . Thus there must be an X4 item in B* and, moreover, it
must have weight 1/4. If FFD packs this X4 item in a bin with subscript less than that
of the bin containing z, then the Y1 weighting rule implies that its weight is at most

WF(Z) and we would get WF(B* <= . But this X4 item would fit with z, so the item
packed with z by the FFD algorithm is at least as large as an X4 item. Thus WF(Z) <=
43- and wr(B*) <= . (Note that the Y1 weighting rule cannot cause z to have a weight
exceeding 43- unless every X4 item has a weight less than 1/4.)

Now suppose that WF(Z) . Then certainly B* 3. No item of size greater than
1/2 can then be used. If either of the other items had weight less than 1/2, then WF(B*) <=
+ 1/2 + . However, the only items of weight 1/2 have size greater than 1/4, and no two

items of size greater than 1/4 could fit with a Y1 item. We conclude that z cannot be a
Yl item.

Case 2. Suppose z is a Y2 item.
Clearly ]B*] 3 or 4. Suppose ]B*] 3. The only possible problem occurs ifB*

contains an X2 item, a, and an X3 item, b. In this event, A > 3-t6, or else s(B* > 1. But
then s(z) + s(b) > 1/2 + - A/3 > - 2A, the maximum size for a Y1 item. Thus a
would fit with any Y item. Since it must be the case that WF(a) 1/2, all fallback items
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in Y bins must be of type X2. Therefore z is packed by FFD into some Y2 bin, Bi.
Certainly b would fit as the fallback item in Bi, and we conclude that either WF(b)
or WF(Z) 11/30. In either case, WF(B*) <= .

Suppose B*I 4. The second largest item ofB* can only be of type X3, the third
only of type X4. Thus w(B* < unless the smallest item is an X4 item as well. But this
is impossible, since s(Y2) + s(X3) + 2s(X4) -< implies A > and s(Y2) + s(X3) + 2s
(any item) =< implies A < . We conclude that z cannot be a Y2 item.

By definition, WF(L’)>=FFD(L’)-8. Lemma 3.1 and the analysis just
completed demonstrate that WF(L’)<= ()OPT (L’). Hence we derive FFD(L’)=<
(56-) OPT (L’) + 8, contradicting the presumed existence of a Y2 bin. IS].

We state here some important consequences that follow from our analysis of the
FFD packing.

COROLLARY 3.1. Ifx is a Y2 item, then WF(X) <= 1/2. IfB* is any optimal bin not
containing a Y item, then WF(B * <= .

LEMMA 3.3. IfB* & any bin ofthe optimal packing containing an item ofsize less
than + A, then WF(B * <= 1.

Proof. Suppose B* contains such an item, a. Then certainly ]B*I must be at least
3, since a is exceptional and therefore WF(a) O.

Case 1. Suppose ]B*[ 3. Then there must be a Y item, b. The remaining item,
c, would fit when b was packed. If it is unavailable, then its weight is at most WF(b)
by the Y weighting rule. If it is available, then the item used in place of c must be at
least as large. Since s(c) < 1/2, there is no way for c to receive more weight than the item
packed with b by FFD (see Tables 1, 2, and 3).

Case 2. Suppose ]B*] 4. There must be an item of weight exceeding 1/2 that, by
Lemma 3.2, cannot be of type Y2. Thus it must be an X2 item. If each of the remaining
items have weight at most 1/4, then the lemma holds for B*, so there must be a Y3 or X3
item. If both items have size at least + A, then s(B*) > A/2 + 1/4 + + +
A > 1. On the other hand, ifthere is a second item whose size is less than + A, then cer-
tainly WF(B * <= 1.

Case 3. Suppose B*] 5. There must be an item of weight exceeding 1/4, or else
WF(B* --< 4 (1/4). It cannot be larger than 1/2 in size, so it must be of type X3 or Y3. There
cannot be two items exceeding 1/4 in size, or else s(B*) > 1. The remaining three items
must all have size at least + A. If two are less than 1/2 in size, however, WF(B*) <= 1/2 +
1/4 + 2(1/2) < 1. If two are to receive weight 1/4, however, s(B*) > 1/4 + A/2 + +
+ A> 1.

Thus, in any case, we conclude that WF(B*) is at most if B* contains an item
smaller than/last- []

4. A close look at B2F. We now seek to determine the precise conditions necessary
for B2F (L) to exceed () OPT (L) + 8. In defining the weighting function we for the
B2F packing, we shall retain the type classification described in 2. That is, items are
still classified strictly according to size as listed in Table 1. Most of our definition for we
is straightforward and is given in Table 4.

The definition of we for items in Y bins is more complicated and is described in
the following paragraphs.

We wish to maintain the fact that the sum of the weights ofthe items in any nonex-
ceptional bin is 1. Thus in any Y bin with only one item, that item has weight 1. (Unlike
the FFD packing, such a one-item bin may exist in the B2F packing.) We would also
like to keep smaller Y items from having greater weight than larger ones, and we would
like the fallback items to have their weight assigned according to their type. The difficulty
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TABLE 4
Weightingfunction wBfor bins not containing an item

ofsize exceeding in B2F packing.

Type of nonexceptional items in a B2F-packed bin

X2 or Y2, X2 or Y2
X2 or Y2, X2 or Y2, any item

X2 or Y2, X3 or Y3, X3 or Y3
X2 or Y2, X3 or Y3, X4 or smaller item

X2 or Y2, X4 or Y4, X4 or Y4
X or Y3, X3 or Y3, X3 or Y3
X3 orY3, X3 or Y3, X3 or Y3, X4 or smaller item

X3 or Y3, X3 or Y3, X4 or smaller item, X4 or
smaller item

X4 or Y4, X4 or Y4, X4 or Y4, X4 or Y4
any five items

Weights assigned

272

57 57

57 107 10

27 107,,
157 157 157

107 10, 5,,,,,,,,
comes with small items (those with size less than or equal to 1/2), in which case w depends
on the last such item packed in a Y bin.

Specifically, let h be the index of the last bin in the B2F packing containing a Y
item, no X2 or Y2 item, and at most one fallback item. All subsequent Y1 bins contain
either two fallback items or one fallback item of type Y2 or X2. In either case, the Y1
item is given weight -3 If there is one fallback item, it is given weight ; if there are two,
each is given weight 1/2.

If Bhl 1, then a Bh’S Y item and all earlier Y items are assigned weight 1, and
all earlier fallback items are assigned weight zero.

If Bh { y, x }, where y is of type Y and s(x) =< 1/2, then we determine the weight
of x by examining all items of size less than or equal to s(x) that are packed after the
last Y item. That is, we set w(x) max { w(t)ls(t) <= s(x), not packed in a Y bin }.
Of all items that are available when x is packed that would fit (no larger item would fit),
and that are not packed in Y bins, we choose the one that has maximum weight (using
Table 4). If there are no such items, then we set w(x) zero.

Once Bh and w(x) have been determined, the rest ofw is defined as follows. The
YI item y in Bh is given weight w(y) w(x). Since s(x) < 1/2 and the maximum
size ofany Y item is , x must have fit in any preceding bin. Thus each such bin contains
either two fallback items, or one fallback item at least as large as x. All Y items preceding
Bh are assigned weight w(y). If there are two fallback items, each is assigned weight
w(x)/2; if there is only one, it is assigned weight wn(x).

If Bh does not exist, then h 0 and all Y1 items are assigned weight -3 with their
associated fallback items given weight , or 1/2 each if there are two of them.

The example depicted in Fig. 2 illustrates the role of Bh in determining w. Types
of items packed in each bin are given on the inside, w is listed on the outside. In this
example, h 4, and one of the X4 items in Bi is no larger than the X4 item in B4.

DEFINITION. The following bins are exceptional for the B2F packing" the last bin
to contain an item of each of the types X2, Y2, X3, Y3, X4, Y4, the last bin containing
exactly three X3 or Y3 items, and the last bin of the packing.

In general, therefore, the last bin containing an item ofa particular type is exceptional,
although Y and X5 items are excluded from this. Note that if an X2 item is packed with
two Y4 items, there can be no X2 items left (since any X2 item is larger than any two Y4
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FIG. 2. The role ofBh in determining wB. Here, h 4.

items) and the bin is exceptional. If an X2 item is packed with an X4 item and a Y4 item,
there can be no X4 items left and the bin is exceptional. Similarly, if an X2 or Y2 item is
packed with an X4 or Y4 item and an X5 item, the bin is exceptional since there can be
no more X4 or Y4 items available. A bin whose largest item is oftype X3 (Y3) is configured
as described in Table 4 unless there are no more X3 (Y3) items available. Also, a bin
whose largest item is of type X4 (Y4) is configured as described in Table 4 unless there
are no more X4 (Y4) items left. Finally, the last bin containing three X3 or Y3 items and
nothing else is classified as exceptional. Although this bin might not otherwise qualify
as exceptional, it could cause problems in our proof if its items were each to receive
weight 1/2.

We conclude that there are at most eight exceptional bins in the B2F packing. We
define an exceptional item simply as one packed in an exceptional bin. Such an item
receives a weight of zero, completing our definition of we. For the convenience of the
reader, Table 5 provides a listing of the possible weights for each nonexceptional
item type.

Before proceeding with the principle results of this section, we first prove some
preliminary lemmas that reveal details of the B2F packing. The first of these concerns is
the occurrence ofitems ofweight 1/2, the second the impossibility ofa certain configuration
containing Y3 and Y4 items.

LEMMA 4.1. Ifthere is an item, x, ofB2F weight 1/2, then there must be a bin in the
B2F packing containing exactly three items, each ofwhich has size no larger than s(x).

Proof. The only possible types for x are X3 and Y3, and the only possible bins for
x to be packed in are a three-item bin or one with an item of type Y1, packed in a bin

Bi, where =< h. Suppose x is packed with a Y1 item. From the definition of we, it is

clear that the fallback item in Bh also has weight 1/2 and is no larger than x. Without loss
of generality, we can assume that x is the fallback item in Bh. Ifx has weight 1/2, however,
then there must be another item packed after the Y1 bins that is no larger than x and

TABLE 5
Possible B2F weights for nonexceptional
items in a bin Bi, where exceeds h.

Type Weight

2,5

2,5

3, 10, 15,

3, 10, 15,
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has weight 1/2. From Table 4 we know that this item must be packed in a bin containing
exactly three items each of weight 1/2. Moreover, we know from Table that any one of
these three items would have been used in place of x if it were larger. Thus we may
assume that the lemma holds unless x is an X3 or Y3 item packed in a three-item bin.
However, the last such bin will contain the three smallest such items (and hence is
exceptional). Thus the last three-item bin satisfies the conditions of the lemma.

LIMMA 4.2. Ifthere is a Y4 item ofB2F weight , then there is no Y3 item ofB2F
weight 1/2.

Proof. Suppose there are such Y3 and Y4 items. In order to have a Y3 item ofweight
1/2, there must be a B2F bin, B, containing three Y3 items and nothing else. (A bin with
three items, some of type X3 and some of type Y3, would be exceptional since it would
contain the last X3 item, and hence its items would have weight zero.) Of course, a Y3
item can have weight 1/2 if it is packed in a Y1 bin, but even in this case there must be
another bin containing three Y3 items of weight 1/2. If there were two Y4 items available
when B was packed, then they would have replaced the last Y3 item since any two Y3
items and any two Y4 items will always fit in a single bin. Thus the Y4 items must have
been packed as fallback items in a bin before B was packed. The only way such a fallback
item can have weight 1/4 is if it is packed in a bin containing a Y2 item and two Y4 items.
(Note that a bin containing an X2 item and two Y4 items, or one X4 item and one Y4
item, is exceptional.) But if such a bin were to occur before B, then two of the available
Y3 items would have been packed instead with the Y2 item. Thus we cannot have both
items, as specified in the statement of the lemma. []

LEMMA 4.3. If B* is a bin of the optimal packing containing a YI item, then
w (B* <-_

Proof. Assume otherwise for some bin B* containing a Y1 item, a. Since a cannot
fit with three or more items in any bin, we must have B*I --< 3. We begin by observing
that if a has weight exceeding , then we can, without loss of generality, assume that a
is the Y item B2F packed in Bh. Otherwise, it would come from a bin preceding Bh in
the B2F packing, and would consequently be at least as large as the Y item in Bh. Thus
the Y item in Bh would fit in B* in place of a, and we may as well assume that it is a.

Case 1. Suppose B*I 2. Then certainly some item in B* must have weight
exceeding , and we can assume that a is packed in Bh. Let b be the other item in B*.
Since b would fit in Bh, either b was packed earlier and thus was not available, or the
item packed with a in Bh is at least as large as b. If b is packed by B2F in a Y bin after
Bh, then we(b) 1/2 since b cannot be of type X2 or Y2 (if it were, the item packed in Bh
could not be of size 1/2 or less). Thus we(B* =< in this case. If b is packed before a, or
if b is packed after the Y1 bins, we(b) =< we(a) and so we(B* is at most in this
case. We conclude that if B*] 2, we(B* cannot exceed 56-.

Case 2. Suppose [B*[ 3. Let B* { a, b, c} with s(b) > s(c). Then s(b) <
and s(c) < 1/4, or else s(B* > 1. Therefore, their weights are at most 1/2 and 1/4, respectively.
Consequently, we know that we(a) must exceed if the lemma is to fail. Thus we can
assume that a is the Y item in Bh. We now employ the same argument that we used in
Case to prove that the sum of the weights of a and either b or c can be at most 1. If
both were available, then Bh would use two fallback items, so either b or c must be packed
before a. Then certainly the sum ofthe weight of a and the weight ofthat item is at most
1. If one is still available, and it is not packed in a Y bin after a, then it is no larger than
the item packed with a by B2F. Consequently, its weight is no greater, and the sum of
its weight and that of a is at most 1. If the available item is packed in a Y bin after Bh,
then its weight cannot be since its size is at most 1/2. But if its weight is 1/2, the weight of
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B* is at most . From this we conclude that both b and c must have weight exceed-
ing 1/2.

Let d be the fallback item in Bh. Thus s(b) + s(c) > s(d), because s(d) =< 1/2 and
s(b) >= s(c) > . It could not be the case that both b and c were available when d
was packed, or else they would have replaced d. Suppose s(d) > s(b). Since s(d) +
s(any Y item) =< 1, and since d is larger than either b or c, whichever of these is packed
before d must be one oftwo fallback items in its bin and hence will have weight less than
1/2. Suppose s(b) >= s(d) > s(c). Then c would have fit with a and d in Bh had it been
available. Since it was not used, we conclude that c must be packed before d in a bin
with two fallback items, and hence has weight less than 1/2. The only remaining possibility
is that s(c) >- s(d). Now, however, any item no larger than d would fit in Bh with a and
d. Since none was placed there, none can have been left to be packed after the Y bins,
and therefore we(d) is zero. In this event, since b and c are packed before d, we(b) and
we(c) are zero as well, contradicting the assumption that we(B*) > . V]

LEMMA 4.4. The B2F weight ofan optimal bin cannot exceed unless the bin contains
either a Y2 item ofB2F weight greater than 1/2 or an item ofsize less than + A.

Proof. To obtain the proof, suppose otherwise for some B*. We know from Lemma
4.3 that B* cannot contain a Y1 item. It is easy to see then that B*I >-- 3.

Case 1. Suppose [B*[ 3. Then the only item ofweight exceeding 1/2 can be an X2
item. Since any two such items and an item of size greater than + A would be
too big to fit, there can be at most one item of weight exceeding 1/2 and we(B*) <= 1/2 +
2(1/3) <.

Case 2. Suppose B*I 4. Suppose first that the largest item in B* is an X2 item.
There cannot be another item of size greater than , because then the sum of these sizes
would exceed -/x/2 + 1/4 + 2( + A) > 1. Items of size at most 1/4 (X4, Y4,Xs)can have
weight at most 1/4. If any of these items were to have weight less than or equal to 1/2, then
we(B*) would be at most 1/2 + 2() + 1/2 . Thus all three items besides the X_ item
must be X4 or Y4 items of weight 1/4. But such items have size exceeding 1/2 and then
s(B*) > A + 3() which is at least if/x =< 0. If A > 0, however, s(B*) >

A/2 + 3( + A) > Thus in all cases where IB*[ 4 andB* contains an12

X2 item, we(B * -_< .
Suppose now that the largest item is a Yz item, which has weight less than or equal

to 1/2 by assumption. If there were two additional items of size greater than 1/4, we would
have s(B*) > 1/2 + 2() + + A > 1. Thus there must be two items of size less than or
equal to 1/4, and hence ofweight at most 1/4. Since there can be no item ofweight exceeding
1/2, we must have we(B*) <= 2(1/2 + 1/4) < .

Since B*] 4, there must be at least one item ofweight exceeding 0, which must
be oftype X3 or Y3 and ofweight 1/2. If any item has weight less than or equal to 1/2, we(B *

would be at most 3(-) + 1/2 . If there are two items of weight 1/4, we would still have
we(B* < . There cannot be four items of size greater than 1/4, so there must be an X4
or Y4 item of weight 1/4 and three X3 or Y3 items. At least two of the X3 or Y3 items must
have weight 1/2, and so there must be a bin in the B2F packing containing three X3 or Y3
items of weight 1/2. In particular, the last three-item bin is exceptional and must contain
three items no larger than those in B*. (Even if the items in B* are fallback items, there
must be such a three-item bin, and the last bin is exceptional.) If the item, x, of weight
z were still available when this three-item bin was packed, then x and any other item of
weight 1/4 would replace the bin’s last item. Thus x must be packed as a fallback item in
an earlier bin. The only way to have weight 1/4 would be in a bin with an X2 (or Y2) item
and another item of weight 1/4. In this event, however, x and any of the items in the last
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three-item bin would fit with the X2 item since they fit with two other X3 or Y3 items.
(Note that x cannot be packed as a single fallback item in a Y1 bin, since any X3 or Y3
item would fit and be used instead of x.)

Case 3. Suppose B*I 5. Ifany item has size exceeding 1/2, s(B* would be greater
than 1/2 + 4( + A) > 1. Similarly, not all items can have size exceeding 1/2. If all items are
no larger than 1/4 in size, then the weight ofB* would be at most since none ofthe items
could have weight more than 1/4 and at least one would have weight at most 1/2. Thus there
must be at least one X3 or Y3 item, and at least one X5 item.

Suppose there is an X3 item. If there are two additional items of size greater than
1/2, s(B*) > A/3 + 2(1/2) + 2( + a) > 1. Thus there is at most one item of weight
exceeding 1/4 and one additional item of size exceeding 1/2. Hence, w(B*) <= 1/2 + 1/4 +
3(1/2) < .

Suppose finally that the largest item in B* is of type Y3. B* can contain at most
one such item, or else s(B*) > 2(1/4) + 3( + A) > 1. Also, B* cannot contain a Y3 item
and two X4 items, or else s(B*) > + 2(4 A/4) + 2( + A) > 1. However, if B*
contains three items each of weight less than or equal to 1/2, ws(B*) -< 1/2 + 1/4 +
3 (1/2) < -. There must be at least two items of size (and hence weight) no greater than 1/2,
or else s(B* > + 3(1/2) + + A > 1. The only remaining possibility is for B* to contain
a Y3 item, a Y4 item, an X4 or Y4 item, and two X5 items. By Lemma 4.2, either the Y3
item has weight less than 1/2 or the Y4 item has weight less than 1/4. Either ofthese possibilities
contradicts the assumption that w(B*) > 56-.

LEMMA 4.5. There cannot be a YI item a with w(a) > ifthere exist items b and
c with ws(b) 1/2, s(c) > max (4 zX/4, + z), and s(a) + s(b) + s(c) <= 1.

Proof. We shall show that under these conditions no bin of the optimal packing
can have a B2F weight exceeding . Suppose L contains such items and that, for some
optimal bin B*, w(B*) > . As we have seen before, there is no loss of generality in
assuming that a is the Y1 item in Bh. We know from Lemma 4.4 that B* must contain
a Y2 item of weight greater than 1/2 or an item of size less than + A. If there is a Y2 item
of weight exceeding 1/2, however, then there must have been such an item available when
Bh was packed. Since any such item is smaller than the sum of the sizes of b and c, it
would fit with a in Bh, contradicting the definition of B. Thus the only possiblility is
for B* to contain an item, d, of size less than + A. When a was packed, if d and any
other item of size at most that of b were available, they would be used in place of the
fallback item in Bh. Since ws(b) 1/2, either b itself must have been available or b must
be packed in an earlier Y bin and some item no larger than b must have been available.
In either case, there must have been an item no larger than b available when B was
packed. Thus d must not have been available. But if d is packed in a Yl bin before Bh,
it cannot be the only fallback item, since there must be an item of weight ], no larger
than b, available that would fit with any Y1 item. Thus d must have weight no greater
than . At this point, we must consider the possible configurations for B*. Certainly B*
must contain at least three items.

Case 1. Suppose B*[ 3. By Lemma 4.3, B* cannot contain an item of weight
greater than 1/2. Thus w(B*) =< 1/2 + 1/2 +

Case 2. Suppose [B*[ 4. B* must contain an item of weight greater than 1/2,
which can only be an Xz item by Lemma 4.3 and by the above arguments focusing on
the weight of Ya items. Moreover, if there is not a second item of weight greater than 1/4,
then we would have ws(B*) _-< 1/2 +
in size, then there must be a second item whose size is less than + zX, or else s(B*) >

A/2 + 1/4 + + + A > Since this second small item will also have weight no12

greater than , we again have that w(B*) -< 1/2 +
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Case 3. Suppose B*I 5. B* must contain an item of weight greater than 1/4.
There cannot be two such items, or else s(B*) > 1. If any of the remaining items has
weight less than or equal to , then we(B*) <- 1/2 + 2(1/4) + 1/2 + . But this
means that there must be one item whose size exceeds 1/4 and three additional items
each of whose sizes exceeds 1/2. Thus s(B*) > 1/4 + 3(1/2) + > 1. Hence, in all cases,
WB(B*) <= .

To complete the proof of Lemma 4.5, we observe that WB(L) >= B2F (L) 8 since
each nonexceptional bin has a weight of 1, while we(L) =< () OPT (L) since each optimal
bin has a weight bounded above by . Combining these yields B2F (L) =< () OPT (L) +
8, contradicting the assumption that L was a counterexample for CFB.

5. Proof of the main result. We shall now employ our weighting function averaging
technique to obtain the final result. From Corollary 3.1 and Lemma 4.4 we know the
optimal bin configurations that may have "too much" weight from the respective FFD
or B2F weighting function, and that since FFD fails to achieve the required bound, any
Y2 item receives an FFD weight of 1/2. Also, from Lemma 4.5, we know that since B2F
fails, any Yl item either cannot be packed extremely well or receives a B2F weight of.
The heart of the proof of the main result is now contained in the following lemma.

LEMMA 5.1. IfB* is any bin of the optimal packing ofL, wa (B*) WF(B* +
w(B*))/2 _-< .

Proof. To obtain the proof, suppose otherwise for some optimal bin B*. Clearly,
at least one of the two weighting functions must give B* a weight exceeding .

Case 1. Suppose WF(B*) > . Then we know that B* must contain a Yl item, a,
and that B*I --< 3. If B*I 2, then the second item, b, would fit with a when a was
packed. If it is unavailable, then the Y1 packing rule for FFD implies that b cannot have
weight exceeding WF(a). If b is available, then the item packed with a is at least as
large as b. If b has weight less than or equal to -, then Wr(a) + Wr(b) <= , since a cannot
have weight exceeding unless nothing fits with it. Since we already know that there are
no Y: bins in the FFD packing by Lemma 3.2, b must be an X2 item. In this case,
however, a must also be packed by FFD with an X2 item. Thus WF(a)= and
we(B*) < .

Therefore, we may assume that B* { a, b, c }, where s(a) > s(b) >- s(c). It is
easy to see that s(c) < 1/4 and s(b) < 1/2, or else s(B*) would exceed 1. Hence WF(C) <----
and wr(b) <= 1/2, implying that WV(a) must be greater than . Let Bi denote the FFD bin
containing a. Since b would fit in Bi with a (or any other Yl item), wr(b) <-- Wr(a),
and WF(B*) <--_ . Note further that c must be an X4 item, or else its weight would be 1/2
and B* would have weight less than or equal to .

This is, for those readers already acquainted with FFD, exactly the kind of situation
where one expects FFD to perform poorly. We now show that, in this case, the averaging
process with B2F permits our compound algorithm to succeed.

Suppose we(a) =. Unless we(b) =1/2 and we(c) 1/4, we have wA(B*) <=
( + 23/20)/2 . Now we(b) 1/2 implies the existence of a bin containing three items
of type X3 or Y3, each of weight 1/2. There must also be a bin containing three such items
each no larger than b, although their weight may be zero if they are exceptional. If c
were available when this three-item bin was packed, it and any smaller item would
replace the last Y3 or X3 item. But if c is the smallest item left, it is either/last and hence
is exceptional, or it is a fallback item and has weight at most 1/2. Therefore, c must not be
available. If c were packed in a Y1 bin, the items of the three-item bin would have been
used unless c is packed with a second fallback item. However, it then has weight at most. The only remaining possibility would be for c to be packed with another X4 or Y4 item
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and an X2 or Y2 item. In this event, however, c and any item from the three-item bin
would have fit with any X2 or Y2 item and been used instead. Thus we know that it is
impossible for a to have weight in the B2F weighting.

Suppose we(a) > . It must be that a is in a Y1 bin packed no later than Bh, and
as argued before there is no loss of generality in assuming that a is packed in Bh. Let d
be the fallback item packed with a in Bh. Thus s(b) + s(c) > s(d), and both b and c
could not have been available when d was packed, else they would have replaced d. If
s(d) > s(b), then we(d) >= max (we(b), we(c) ) and whichever of b or c is not available
has weight less than or equal to (1/2)we(d). This causes we(B*) to be at most +
(1/2)we(b) no matter where b was packed by B2F. Unless b has weight 1/2, this quan-
tity is at, most 23/20 and WA(B*) would be at most . But this is precisely the situation
ruled out by Lemma 4.5. If s(b) >= s(d) > s(c), then we reach the same conclusion,
since it must still be that we(d) >- we(b) and since c is not available implying we(c) <=
(1/2)we(d). Finally, if s(c) >= s(d), then any item no larger than d would fit in Bh
along with a and d. Since none was used, we(b), we(c) and we(d) are all zero.

Case 2. Suppose we(B*)> and B* contains a Y2 item of B2F weight ex-
ceeding 1/2.

Certainly B*I =< 4, since no bin can contain an item of size greater than 1/2 and
four additional items.

Suppose B*[ 4. Then there can be no other X2 or Y2 items and at most one
other item of size exceeding 1/4, or else s(B*) > 1. If all other items are at most 1/4 in
size, then we(B*) <= 1/2 + 3(1/4) . Since WF(B*) <-- 1/2 + 3(1/4), we would have WA(B*) <-. Therefore there must be an X3 or Y3 item.

Suppose B* contains an X3 item. Then there must also be either an item of size at
most 1/2 or an item of size less than - + A. To see this, observe that if all items have size
exceeding 1/2, s(B*) > 1/2 + 8 A/3 + >= if A =< . If all items have size greater than
or equal to + A, s(B*) > 1/2+1- A/3 + 2(+ A)>= if A> 0. However, ifthere is
an item of size less than + A, then WF(B* =< 2 (1/2) + 1/4 + 0 11 / 12 while we(B* =<
1/2 + 1/2 + 2(1/4) -. If, on the other hand, B* contains an X5 item, then we(B*) =< 1/2 +
1/2 + 1/4 + 1/2 77/60 while WF(B*) =< 2(1/2) +

Suppose B* contains a Y3 item, x. Since WF(X) <= , WF(B*) <= 1/2 + 1 + 2(1/4)
11 / 10. Thus we(B*) must be more than 13 / 10, or else WA(B*) cannot exceed . This
implies that we(x) must be 1/2. In this event, there must be a three-item bin with t,hree Y3
items each of weight 1/2. If there is a Y2 item of weight 1/2, it must come from an earlier bin
containing exactly two Y2 items. The second of these items would have been replaced,
however, by any two of the Y3 items, since any Y2 item will fit with any two Y3 items.
Thus there can be no Y2 items of weight 1/2 in the B2F packing, and the weight of the Y2
item must be . Therefore, we(B*) <= + 1/2 + 2(1/4) < 13/10.

Suppose now that B*I 3. If there is no X2 item or if there is an item of size less
than + A, then WF(.B*) =< and wA(B*) < . Thus we may assume that B* contains
an X2 item and that its remaining item is at least + A in size. Even if the small item,
y, is of type X3, then WF(B*) is at most 1/2 + 2(1/2) . If the Y2 item, x, has B2F weight
less than 1/2, we(B*) <= 1/2 + + 1/2 and WA(B*) <---- . The only way that x can have weight
1/2 is to be in a two-item bin, Bj., with another Y2 item. This means that y must not have
been available when B was packed, since it would have fit with x and any Y2 item (it
fits in B* with x and an X2 item). Thus y cannot have weight unless there is a three-
item bin consisting of items no larger than y. These items, however, must have been
available when x was packed, and thus y still cannot have weight 1/2. Therefore, the max-
imum B2F weight for y is 0.

If y is a Y3 item, then WF(y) and WF(B* --< 1/2 + 1/2 + 11 / 10. Thus we(B*
is at most 1/2 + 1/2 + 13/10 and wA(B*) <=
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Therefore, y must be an X3 item. It must also be that A exceeds 0, or else s(B* >
12 A/2 + 1/2 + 8 A/3 >= 1. Let Bi be the bin containing the Y2 item, x, in the FFD
packing. We know from Lemma 3.2 that Bi is a YI bin. Let z be the X2 item in B*. If z
were packed in a Y1 bin in the FFD packing, its weight would be and WA(B*) would
be -<. Thus z must have been available when Bi was packed. Since it was not used in
place of x, the size of the Y1 item in Bi exceeds s(z). But z fits with x and y, so
s(z) <1-1/2-(8-A/3)= + A/3. Then l-s(z)= 11/18-/x/3, which is greater
than 2A if A > 0. The weighting function for FFD gives weight at most to a Y2
item packed with such a large Y1 item, and again we have WA(B*) <= .

Case 3. Suppose we(B*) > and B* contains an item a, where s(a) < + A.
We know that B* contains neither a Y item nor a Y2 item of weight exceeding 1/2

by Lemma 4.3 and Case 2 above, respectively. We also know that we(a) is at most 1/4
since s(a) < 1/4. By Lemma 3.3, we know further that WF(B*) =< 1, SO that if wA(B*) is
to exceed , we must have we(B* > . Thus B*I > 3, since any two items with a can
each have weight at most 1/2.

Suppose B*I 4. Then there must be an X2 item, or else we(B*) =< 3(1/2) + 1/4.
There can be at most one additional item exceeding 1/4 in size, or else s(B*) >
A/2 + 2(1/4) + > 1. But then w(B*) <= 1/2 + 1/2 + 2(1/4) < .

Suppose B* 5. There cannot be an X2 item, or else s(B*) > 2 A / 2 +
4()> 1. Nor can there be two items of size greater than 1/4, or else s(B*)>
2(1/4) + 3 () 1. Finally, if only one item has size exceeding 1/4, we(B*) =< 1/2 +
4(1/4) < . l

THEOREM 5.1. Min {FFD (L), BZF (L) } =< () OPT (L) + 8.
Proof. To obtain this inequality, we observe that our presumed counter-

example obeys min { FFD (L), B2F (L) 8 < (FFD (L) 8 + B2F (L) 8) / 2 <

(WF(L) + we(L)) wA(L) by our definitions for WF, We, and WA, while wa(L) <=
() OPT (L) by Lemma 5.1.

6. Remarks. We have limited our analysis to proving that, for any list, either the
FFD or the B2F algorithm will asymptotically use within the optimal number of bins.
However, we have been unable to find examples that are even close to this bound. In
fact, the only examples we have been able to contrive that exceed the optimum depend
heavily on the modification that we introduced to B2F to simplify our proof. For these
instances, this modification forces the B2F packing to be the same as the FFD packing.
If"small" items are not held back, the exact bound might be significantly better (although
a proof of this may well be extremely difficult).

Our weighting function averaging technique actually proves that, even if both al-
gorithms produce particularly egregious packings for some list, the average ofthe number
ofbins used by FFD and the number used by B2F is asymptotically at most the optimal
number of bins for that list. Presumably, the minimum may always be considerably less
than this upper bound on the average. Furthermore, we remark that the additive constant
we have used (eight) is much higher than necessary. Instead ofassigning a weight of zero
to every exceptional item, we could assign a weight that agrees with an item’s type, and
easily reduce this constant. Nevertheless, because we believe that the coefficient is itself
inflated, the additive constant appears to be of little significance.

Appendix. Bin packing results for B2F alone. We seek to determine the worst-case
behavior of the B2F algorithm. Before doing so, however, we briefly discuss some other
aspects of this approach to bin packing.

We could extend the idea of "best 2 fit" to "best j fit," for arbitrary j > 2. It seems
likely that the expected performance of these more complex algorithms might be better,
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although the worst-case performance can be shown to be worse, approaching a number
greater than 1.3 as j grows without bound. Simple tests using a uniform distribution for
item sizes seem to back up the improved expected case, although the run time increases
rapidly.

B2F can also be used in the multifit approach to multiprocessor scheduling. Again,
its worst-case performance is poorer than that of FFD. In [3], it is shown that B2F’s
asymptotic worst-case bound is precisely , while it has been proved in 4 that FFD can
be implemented to ensure a tight bound of 72/61.

Returning to bin packing, Fig. 3 depicts an example illustrating that B2F may require,
asymptotically, as many as 45- the optimal number of bins.

To prove that the ratio cannot be exceeded by B2F, we modify the algorithm
slightly in that items less than or equal to 1/2 the bin size will be held back and packed by
the FFD algorithm. This certainly does not affect the example illustrated in Fig. 3, but
it allows us to assume that no items of size 1/2 or less are used in packing L, which we
now presume to be minimal counterexample. This reduces the number of cases we must
investigate, thereby simplifying our proof (although it probably detracts from the expected
performance of the algorithm).

LEMMA A. Every item in L has less than
Proof. Let b be the largest item in L and suppose s(b) >_- . Then b is packed in B1

by the B2F rule. Removing the items ofB cannot change the remainder ofthe packing.
Since s(b) >_- , ]Bl] ----< 2 and, if ]B1] 2, then B1 contains the largest item that would
fit with b in a bin of size 1. If the item or items of B are removed from L, then both
B2F (L) and OPT (L) can easly be reduced by one, contradicting the presumed minimality
ofL with respect to B2F.

THEOREM A. B2F (L) _-< () OPT (L) + 4.
Proof. We classify an item, x, by its size so that if /(i + <.s(x) _-< /i, then x

is of type X;. The reasoning above shows that all items are of types X, X2, X3, or X4,
and items of type X are less than in size. We now define a weighting function w on
the items ofL based on the B2F packing.

bins bins bins bins bins

(a) B2F(L) 2(1 4k_) 4_ 2(4- 1) .... () 4k_ -
4e

bin bins

32

16

bins

1/2+

bins

(4 1) 4_ ()4_(b) OPT(L)

FIG. 3. Worst-case example for B2F. (B2F(L)/OPT(L)) (5(4k-’) 2)/(4(4k-’) 1)-- 5/4 as
k oo,
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If B is any bin with four items in it, each item is assigned a weight of 1/2. Suppose B
is a bin containing an X item, b. Then if BI 3, w(b) , and the other two items
are each assigned a weight of. If B 2, then w(b) and the other item is assigned
a weight of if the other item is oftype X2. Otherwise, w(b) and the remaining item
is assigned a weight of 1/2.

Suppose the largest item in B is of type X2. Then if BI 2, each item must be of
type X2, and is assigned a weight of , except possibly for the last bin containing an X2
item. If the last bin containing an X). item has only 2 items in it, it will be classified as
exceptional (as will its items). All exceptional items are given weight zero. (This is an
unnecessarily strict weight reduction, accounting for the constant 4 in the theorem. A
more careful analysis using larger weights for the exceptional items could likely reduce
this constant to 1.) If BI 3 and B contains two X). items, each is given a weight of
3 and the remaining item is given a weight of 1/2. If B contains only one X2 item, then it0

is given a weight of and the other two are each given a weight of 1/2. If the largest item
is of type X3, then BI 3 implies all three items are of type X3, except possibly for the
last such bin (which is also classified as exceptional). All three X3 items in such a bin
are given a weight of. One additional exceptional bin shall be identified. If the last X2
item of size exceeding is packed with an X). item of size less than 0, then this bin is
classified as exceptional, and its items assigned weights of zero.

The definition of w is summarized in Table 6.
We now show that each bin B* of the optimal packing must satisfy w(B*) =< 1.

This, together with the observation that w(B) for each nonexceptional bin in the
B2F packing, will complete the proof of Theorem A.

Suppose B* is a bin of the optimal packing with w(B* > 1. Clearly, B*I > 1. (If
B* contains an exceptional item, then after removing the item w(B* would still exceed
1. Thus it is enough to show that w(B* =< for bins not containing exceptional items.)

Case 1. Suppose [B*I 2.
Ifneither item has weight greater than , then w(B * =< < 1. Thus B* must contain

an item of type X. The weight of this item is less than or equal to and the weight of
an X2 item is less than or equal to . Since B* cannot contain two X items, w(B*) =<

Case 2. Suppose B*I 3.
The largest item in B* must have a weight exceeding 1/2, and so must be of type X

or X2

TABLE 6

Weightingfunction w used in analysis ofB2F alone.

Nonexceptional
bin contents

x,x,,x
X3, X3, X3
any four items

Weights assigned

15 15 15

3,3

10, 10,

5, 57

15, 15, 15,,,

i,j>2

i>2

i>2

i,j>2
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Suppose the largest item is of type X, so that B*= {b, c, d}, where s(b)>
s(c) >-s(d). Then neither c nor d can be of type X2. If both are of type X4, then
w(B*) _-< 1. Both cannot be of type X3, since s(b) + s(c) + s(d) cannot exceed 1. Thus
c is of type X3, w(c) =< , d is of type X4, and w(d) =< 1/2. If both c and d were available
when b was packed, then either b was packed with an X2 item or with two other items.
In either case, w(b) and w(B* _-< + 5 + 1/2 1. Therefore, w(b) must be 53-. If c
is packed before b, then w(c) _-< 1/2 and w(B* =< 1. If d is packed before b, then it must
be packed with an X1 item and another item, since c would have fit and was not used.
Hence w(b) ,5 and =< ,3_ + + 1.

Thus the largest item in B* must be of type X2. If there is only one X2 item,
w(B*) <-_ + 2() < 1. Thus B* {b, c, d} with b and c both of type X2, where
s(b) >- s(c). If w(d) <- 1/2, then w(B*) <- 2() + 1/2 1. Thus d is an X3 item and
w(d) . Also, w(b) w(c) , since otherwise w(B*) =< + + < 1. Since
s(d) > 1/4, it must be that s(c) < . If d were packed before c, then w(d) would only be
1/2, so that d must be available. In order for w(c) to be , c must be packed by B2F in a
bin B {c,x} or {c, y, z}. If IB] 2, then since d would not fit in B, s(x) > s(b)
and b must be in a bin with an X2 item and one other item, contradicting w(b) . If
B] 3, then neither y nor z can be of type Xa. Since there must be an X2 item, u, left

(or else B would be exceptional) and since u is smaller than c, the B2F rule would
have placed c, u, and an X3 item in B since c, u, and d would have fit. Thus it is impos-
sible to have w(b) w(c) 52- while w(d) 5 and we conclude that, in any event,

_-< 1.
Case 3. Suppose ]B*I 4.
B* cannot contain an X item, since 1/2 + 3 (1/2) > 1. Neither can it contain two X2

items, since 2 (1/2) + 2(1/2) > 1. Similarly, it cannot contain four X3 items, since each has
size greater than 1/4. However, if it contains three items of type X3 and one of type X4,
then w(B*) =< 3() + 1/2 1. Thus B* must contain exactly one X2 item. If the other
three items have weight less than or equal to 1/2, w(B*) <= -} + 3(1/2) 1. If there were
two X3 items, s(B*) > 1/2 + 2(1/4) + 1/2 > 1. Thus B* must contain exactly one X3 item.
Let B* { b, c, d, e} with b of type X2, and c of type X3. If w(b)<52-, then
w(B*) <= - + + 2(1/2) < 1. Thus w(b) and w(c) 5. This means c must be
available when b is packed.

If b is the largest item in some bin B of the B2F packing, then B would contain two
X2 items and another item since s(b) + s(c) + s(d) + s(e) _-< implies that 2s(b) +
s(c) < 1. This cannot happen, however, so it must be that B x, b } where s(x) >

22s(c), since b was not replaced by two smaller items. Because s(c) <, we know s(x) > 5. Thus B is the third exceptional bin (s(b) < 4 } 720) and
again w(B* _-< 1.

Now, to complete our proof of Theorem A, we note that w(B) for all but at
most four B2F bins (the three exceptional bins and the last bin), so that ,x w(x) >=
()(B2F (L) 4). At the same time, w(B*) _-< for all B* in the optimal packing en-

sures ,x w(x) <= OPT (L). Combining these two inequalities yields B2F (L) _-<

() OPT (L) + 4, as desired.
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SEMIKERNELS, QUASI KERNELS, AND GRUNDY
FUNCTIONS IN THE LINE DIGRAPH*
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Abstract. It is proved that the number of semikernels (quasi kernels) of a digraph D is less than or equal
to the number of semikernels (quasi kernels) of its line digraph L(D). It is also proved that the number of
Grundy functions ofD is equal to the number of Grundy functions of its line digraph L(D) (in the case where
every vertex ofD has indegree at least one).

Key words. Grundy function, kernel, line digraph, quasi kernel, semikernel
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1. Introduction. For general concepts we refer the reader to [1]. Let D (X, U)
be a digraph (also we denote X V(D) and U A (D)). A set K

__
X is said to be a

kernel if it is both independent (a vertex in K has no successor in K) and absorbing (a
vertex not in K has a successor in K).

This concept was introduced by Von Neumann [10] and it has found many appli-
cations [1, p. 304], [2]. Several authors have been investigating sufficient conditions for
the existence of kernels in digraphs, namely, Von Neumann and Morgenstern 9 ], Rich-
ardson [11], Duchet and Meyniel [4], [5], and Galeana-Sfinchez and Neumann-
Lara 7 ].

In [8] Harminc proved that the number of kernels of a digraph is equal to the
number of kernels in its line digraph. In this paper we find similar relations for concepts
nearly related to the concept ofkernel, and we survey the theorems relating these concepts.

DEFINITION 1.1 [10]. A semikernel S of D is an independent set of vertices such
that for every z e(V(D)- S) for which there exists a Sz-arc there also exists
an zS-arc.

DEFINITION 1.2 [3]. A quasi kernel Q ofD is an independent set of vertices such
that X Q u F-(Q) U F-(F-(Q)) (where for any A

__
X, F-(A) {x Y]x has a

successor in A ) ).
DEFINITION 1.3 1, p. 312 ]. A nonnegative integer function g(x) is called a Grundy

function ofD if, for every vertex x, g(x) is the smallest nonnegative integer which does
not belong to the set { g(y) y +(x) }.

This concept, originated by Grundy for digraphs without directed cycles, was ex-
tended by Berge and Schiitzenberger.

The Grundy function can also be defined as a function g(x) such that
(1) g(x) k > 0 implies that for each 0 =< j < k there is a y F+(x) with

g(y) :j.
(2) g(x) k implies that each y e F+(x) satisfies g(y) 4 k.
THEOREM 1.1 3 ]. Everyfinite digraph has a quasi kernel. A generalization ofthis

theorem was obtained by Duchet, Hamidoune, and Meyniel [6].
THEOREM 1.2 [10]. IfD is a digraph such that every induced subdigraph has a

nonempty semikernel then D has a kernel.
THEOREM 1.3 [1, p. 313 ]. IfD is a digraph such that every induced subdigraph

has a kernel then D possesses a Grundyfunction.
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COgOLLngY 1.1. IfD is a digraph such that every induced subdigraph has a non-
empty semikernel then D possesses a Grundyfunction.

2. Semikernels, quasi kernels, and Grundy functions in the line digraph.
DEFINITION 2.1. The line digraph of D (X, U) is the digraph L(D) (U, W)

(we also denote U V(L(D)) and W= A(L(D))) with set of vertices the set of arcs of
D, and for any h, k U there is (h, k) W if and only if the corresponding arcs h, k
induce a directed path in D, i.e., the terminal endpoint of h is the initial endpoint of k.
In what follows we denote the arc h (u, v) D and the vertex h in L(D) by the same
symbol. IfH is a set of arcs in D, it is also a set of vertices of L(D). When we want to
emphasize our interest in H as a set of vertices of L(D) we use the symbol HL instead
of H.

DEFINITION 2.2 [8]. Let D (X, U) be a digraph. We denote by P(X) the set of
all subsets ofthe set X, andf: (X) -- (U) will denote the function defined as follows:
foreachZX,f(Z)= {(u,x)UlxZ}.

LEMMn 2.1 [8]. IfZ
_
X is an independent set ofD then f(Z )L is an independent

set in L(D).
THEOe,EM 2.1. IfD is a digraph such that every vertex has indegree at least one,

then the number ofsemikernels ofD is less than or equal to the number ofsemikernels
ofits line digraph L D).

Proof. Let O be the set of all semikernels ofD and 6 be the set of all semikernels
of L(D). First we will prove that if S is a semikernel of D then f( S)c is a semikernel of
L(D). Let Sbe a semikernel ofD. It follows from Lemma 2.1 thatf(S)/ is an independent
set. Let (s, x) Wbe with s f( S)c, then in D we have s (s, s), x (s2, t)

_
U,

s2 6 S, and since S is a semikernel ofD there exists s3 6 S such that t, s3 6 A (D) and then
y (t, s3)f(S)i with (x, y) rA(L(D)). We will prove thatf’: oct -- 5’, wheref’ is
the restriction of f to O, is an injective function. Let S, Sz 6 O and S :/: Sz. Let us
suppose, e.g., that S $2 :/: . Let v 6 S $2. Since indegree of v is at least one, there
exists (x, v 6 A (D). Clearly, (x, v) 6 (f( S f( $2 ). [--]

THEOgEM 2.2. IfD is a digraph such that every vertex has indegree at least one
then the number ofquasi kernels ofD is less than or equal to the number ofquasi kernels
of its line digraph L D ).

Proof. Let Q be the set of all quasi kernels of D and Q the set of all the quasi
kernels ofL(D). First we will prove that if Q is a quasi kernel ofD, thenf( Q)c is a quasi
kernel ofL(D). Let Q be a quasi kernel ofD. It follows from Definition 1.2 and Lemma
1.1 thatf(Q) is an independent set of V(L(D)). Let x (V(L(D)) f(Q)L); then
x (x, x2) 6 A(D) and since x a f(Q)z it follows from Definition 2.2 that x2
(V(D) Q), and there exists a directed path from x2 to Q of length at most two. We
will analyze the two possible cases:

Case 1. There exists a directed path from x2 to Q of length one. Let T (x2, u) be
such a path, then u 6 Q, y (x, u) f( Q)z, and (x, y) 6 A (L(D)).

Case 2. There exists a directed path from x2 to Q of length two. Let T (x, u, w)
be such a path, then w Q, y (u, w) f(Q)z, and denoting z (x2, u) we have that
T’ (x, z, y) is a directed path contained in L(D) with y f(Q)z.

In any case we have that there exists a directed path from x to f(Q)z in L(D) of
length at most two, so f( Q)L is a quasi kernel of L(D).

Now, we will prove that f": Q -- Q, the restriction of f to Q, is an injective
function. Let Q and Qa 6 Q be such that Q :/: Q. Let us suppose, e.g., that Q Q2 4:, and v (Q Qz). Since indegree of v is at least one, there exists (x, v) F(D),
clearly (x, v 6 (f(Q f( Q2 and then f(Q )z :/: f( Q2 )z. [3
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Remark 2.1. The hypothesis that each vertex has indegree at least one cannot be
omitted in Theorems 2.1 and 2.2. It suffices to consider D with V(D) Ul, u2, u3 }
and F(D) { Ul, u2), u2, u3) }.

Remark 2.2. For each n let us define the digraph Dn as follows: V(Dn)
{ u, v, w w, F(D, u, wi wi, v e {1, n} }. The number of semi-
kernels of D, is two and the number of semikernels of L(D,) is 2 1.

Remark 2.3. Let K to be the complete symmetric directed graph with 3 vertices
and H, the digraph obtained by taking n mutually disjoint copies of K. The number
of quasi kernels of L(Hn) minus the number of quasi kernels ofH is at least n.

LEMMA 2.2. Let D be a digraph and Xo V(D). Iff andf2 are Grundyfunctions
ofD such that for every y I’+(Xo),fl(y) fz(Y) then f(xo) fz(xo).

Proof. The proof follows directly from Definition 1.3.
THEOREM 2.3. IfD is a digraph such that each vertex has indegree at least one,

then the number ofGrundyfunctions ofD is equal to the number ofGrundyfunctions of
its line digraph L D).

Proof. Let us suppose that f: V(D) -- fN U { 0 } is a Grundy function of D and
denotefL V(L(D)) - t_J {0 the function defined as follows: fL(x) =f(x2) for each
X (Xl, X2) e V(L(D)).

OBSERVATION 2.1. fL is a Grundyfunction ofL(D).
f(x) k > 0 implies that for each 0 < j < k, there is a y e I’(D)(x)+ with

J(y) =j.
Suppose thatf(x) k > 0 and 0 =< j < k, then x (x, x2) A (D) and f(x2)

k > 0. Since f is a Grundy function of D and 0 _-< j < k, there exists x3 I’(x2) such
thatf(x3) j and then y (x2, x3) A(D), (x, y) A(L(D)), andf(y) j; i.e., y
+I’L(z)(x), withf(y) j.

(2) f(x) k implies that each y e I’(z)(x) satisfiesf(y) 4 k.
Suppose thatf(x) k and y e I’[(z))(x); then x (Xl, x2) e A(D), y (x2, x3)

A (D),f(x2) k, and x3 I’(x2) and since f is a Grundy function ofD, it follows that
f( x3 4 k andfL(y) f( x3 4 k.

OBSERVATION 2.2. Iff l, f2 are Grundy functions of D such that f 4= f2 then
fl 4= f2.

Suppose that f f2 and that x0 e V(D). Since indegree of x0 is at least one then
there exists an arc (z, Xo) A (D). By the hypothesis we have that f((z, Xo))
fz((z, Xo)), i.e.,fl(x0) fZ(x0).

Let us suppose that g: V(L(D)) -- U { 0 } is a Grundy function ofL(D) and let
us denote ge: V(D) - rN U { 0 the function defined as follows: for each Xo V(D) let
f (y, Xo) A (D) any arc ofD with terminal endpoint Xo (the hypothesis of Theorem
2.3 implies that there exists at least one such arc) and define gz(Xo) g(f).

OBSERVATION 2.3. gz is well defined.
Let xo e V(D) and suppose thatf (Yl, xo) and f2 (Y2, xo) e A(D).

If I’;(Xo) then I’(z)(f) I’L(Z)+ (f2) and Definition 1.3 implies g(fl)
g(fz) O.

+If I’(Xo) 4 then Definition 2.1 implies that I’(m(f I’()(f2) and it follows
from Definition 1.3 that g(f g(f).

OBSERVATION 2.4. gz is a Grundyfunction ofD.
gz(x) k > 0 implies that for each 0 < j < k, there exists a y I’ (z)(x)+ with

gz(Y) j.
Suppose that gz(x) k > 0 and 0 _-< j < k; the hypothesis and the definition of

imply that there exists f (z, x) e A (D) with g(f) k > 0 and since g is a Grundy
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+function of L(D) there exists f’ rL(v)(f) such that g(f’) j, f’ (x, w) for some
w V(D), gD(W) g(f’) j. Clearly w 6 F9(x) and take y w.

(2) gD(X) k implies that each y F(x) satisfies gD(Y) 4: k.
Suppose that gD(X) k; then there exists f (z, x) 6 A (D) such that g(f) k and

+y 6 F(x), so (x, y) FL(D)(f). Since g is a Grundy function of L(D) it follows that
g((x, y)) 4: k and gD(Y) g((x, y)) 4: k.

OBSERVATION 2.5. Ifg, g2 are Grundyfunctions ofL(D) such that g g then

Suppose that gb g and let f (x, y) A(D); then g(y) g(y). The
definition of gig, g implies g(f) g(f).
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WEAK THREE-LINKING IN EULERIAN DIGRAPHS*

T. IBARAKI" AND S. POLJAK{

Abstract. Let G be an Eulerian digraph, and a, b, c an ordered triple of its vertices. A polynomial time
algorithm of O(e + r/E) time is presented to decide whether G contains three arc disjoint ab-, bc-, and ca-paths,
where e and n are the numbers of arcs and vertices, respectively. The algorithm is based on a structural char-
acterization of minimal infeasible instances of the problem.

Key words. Eulerian digraph, disjoint paths, planar graph, polynomial time algorithm, weak three-linking
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1. Introduction. Let G (V,E) be a digraph and (s,t;), 1,-.. ,k, be
ordered pairs of terminals. A collection of k arc disjoint siti-paths is called a weak
(Sltl, sktk)-linking. When the number ofpairs ofterminals is restricted to a constant
k, the problem ofexistence ofa weak (Sltl, sktk)-linking is called the weak k-linking
problem. (The term linking is used for a collection of vertex disjoint paths, but we do
not consider this problem here.)

The digraph H (V, F) where F { tisi: 1, k } is called the demand graph.
In this paper we solve the weak 3-1inking problem in case G + H (V, E tO F) is Eulerian.

Let us recall some related known results on weak linking problems in digraphs.
Fortune, Hopcroft, and Wyllie 2 proved that the weak 2-1inking problem is NP-complete
for a general digraph. However, there are some classes for which the problem is poly-
nomially solvable. If k is fixed, weak k-linking is polynomial for acyclic digraphs [2 ],
and weak 2-1inking is polynomial for tournaments [1 ]. Another result on weak linking
in digraphs is due to Frank [3]. He characterized those demand graphs H for which a
condition called "directed cut criterion" is necessary and sufficient in case G + H is
Eulerian. Another work where the Eulerian condition is involved is 6 ], where the integral
multicommodity flow problem is solved for a class of acyclic planar networks. A recent
survey on linking problems, both in directed and undirected graphs, can be found
in [4].

To solve the weak 3-1inking problem for G + H Eulerian, it is sufficient to consider
only the special case when Sl t3, s2 t, and s3 t2 and G is Eulerian. (Let G and
(si, t), 1, 2, 3, be an instance ofthe weak 3-1inking problem. Construct G’ by adding
three new vertices a, b, and c, and arcs as, tb, bs2, t2c, cs3, and t3a. Then G has
three arc disjoint st-paths if and only if G’ has three arc disjoint ab-, bc-, and ca-paths.)

Let G be an Eulerian digraph, and a, b, c an ordered triple of its vertices. We say
that an instance (G; a, b, c) is feasible, if there are three arc disjoint ab-, bc-, and ca-
paths. Otherwise the instance is infeasible. The specified vertices a, b, and c are called
the terminals. We say that an instance is minimal infeasible if it is infeasible, but after
contraction of any arc, at least one ofwhose head and tail are not in { a, b, c }, we get a
graph G’ such that (G’; a, b, c) is feasible. We prove the following theorems.

THEOREM 1.1. Let (G; a, b, c) be a minimal infeasible instance. Then G has the
following properties:
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(i) G is planar 2-connected. The terminals have degree 2, and all other vertices
have degree 4.

(ii) G has a planar representation in which everyface is a directed cycle, (or equiv-
alently, the arcs incident to a vertex are alternatively oriented out and in), and the ter-
minals lie on a commonface which goes through them in the order c, b, and a.

Conversely, any instance (G; a, b, c) satisfying (i) and (ii) is infeasible (but not
necessarily minimal).

An example of a minimal infeasible instance is given in Fig. 1.
THEOREM 1.2. There is a polynomial time algorithm to decide whether an instance

G; a, b, c) isfeasible or infeasible.
Theorem 1.1 will be proved in the next section where a more general problem, with

possibly more terminals, is considered. We introduce a notion ofan irreducible infeasible
instance and show that every such instance has a certain decomposition, which is called
a series. The series decomposition of an irreducible instance enables us to reduce the
question of feasibility to a collection of subproblems. A polynomial time algorithm,
whose existence is stated in Theorem 1.2, will be presented in 3. There we also show
that the weak linking problem, when the number k of terminal pairs is a part of the
input, is NP-complete for G + H Eulerian.

We conclude this section with some necessary notation.
Notation. A digraph G (V, E) consists ofa set Vof vertices and a set E ofdirected

arcs. For technical reasons, we allow multiple parallel arcs, but loops are excluded. We
recall that a digraph is Eulerian if it is connected, and the outdegree and indegree of each
vertex are equal.

Under a path or a cycle, we always understand a directed path or cycle. Repetition
of arcs is not allowed, but we do not require all vertices ofa path or a cycle to be distinct.
A cycle that visits every arc exactly once is called Eulerian. A path from x to y is called
an xy-path. If P is a path, and x and y are two of its vertices, such that x precedes y on
P, we denote by Pxy the segment of P starting at x and terminating at y. Similarly, if C
is a cycle and x and y are two of its vertices, then Cxy is the part of the cycle from x to
y. If P, P2, Pk is a collection of arc disjoint paths such that the last vertex of Pi
coincides with the initial vertex of Pi+ for each 1, k 1, we denote by P

a

FIG. 1. A minimal infeasible instance G; a, b, c).
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(P, P2, Pk) the concatenation of the paths. In the following discussion, graph G,
path P, or cycle C may sometimes be treated either as a vertex set or an arc set, as far as
its meaning is unambiguous from the context. If it is necessary to specify, we use E(G)
to mean the arc set, and V(G) to mean the vertex set.

For a subset S of vertices, 6+(S) denote the set of arcs from S to V\S, 6-(S) the
set of arcs from V\S to S, and 6S 6-(S) t_) 6 +(S). If G is Eulerian, then 16 +(S)
16- (S)[ for every S, where A of a set A denotes its cardinality. A set S is called a k-
cut if ISI is k. (Since we consider Eulerian digraphs only, k must always be even.)

Given two disjoint sets U, Wc V, we denote by k( U, I4/) the maximum number
of arc disjoint paths from U to W. A set S satisfying S D U, V\S D W, and 6-(S)
k( U, IV) is called a minimum U, IV)-cut. It is well known that the minimum U, IV)
cuts are closed under union and intersection. Hence, among all minimum U, IV)-cuts,
there exists one largest cut S with the property that S D S’ for any other minimum
(U, IV)-cut S’. The largest minimum (U, IV)-cut can be found as a by-product of the
Ford-Fulkerson algorithm of maximum flow.

Some further notion, such as degree, planarity and edge, and vertex connectivity
properties refers to the unoriented graph G obtained from a digraph G by forgetting
the arc orientations. In particular, the degree ofa vertex is the sum ofits out- and indegrees,
and a digraph is called connected if G is connected. A subset U c V is a vertex cut if
G\ U has more connected components than G. A vertex v is called an articulation if { v }
is a vertex cut. A digraph is k-connected if it does not have a vertex cut of size < k. A
maximal (with respect to set inclusion 2-connected subgraph ofa graph is called a block.

2. Structural characterization of infeasibility. In this section we formulate and solve
a more general problem. Let G (V, E) be an Eulerian digraph and X (xl, Xm),
m >= 3, be an ordered m-tuple of its vertices, which are called terminals. We also write
x < x’ for terminals x x and x’ xj if < j. We say that an instance G; X) isfeasible
if there is a triple xi, xj, and xk of terminals such that xi < x/< x and (G; xi, x/, x) is
feasible in the sense of the previous section. Such a triple is called a feasible triple, and
a cycle through these terminals is called afeasible cycle. Equivalently, (G; X) is infeasible
if every Eulerian cycle goes through the terminals in the order Xm, ", x (up to a cyclic
shift). It follows that a feasible instance (G; X) contains a feasible cycle through x for
any terminal x 6 X.

Let us also remark that, to establish feasibility, it is sufficient to find two arc disjoint
paths, say xix/- and xx-paths with Xi < Xj < Xk (uP to a cyclic shift), because the third
one always exists since G is Eulerian.

Another sufficient condition for feasibility, which will be used in the proof ofLemma
2.7 (case iiib), is the existence of a disjoint xlx3-path p3 and XaX2-path p42. Since G
is Eulerian, there exists also a pair of arc-disjoint paths from x2, x3 } to { x, x4 ) in
digraph G\E(P3 t_J p42), i.e., either a pair p34, p2 or a pair p3, p24 (where pi,j stands
for a xixj-path). In the former case, (p3, p34, p42, p2) forms a feasible cycle through
terminals (x, x3, x4). In the latter case, C 13 (p3, p3) and C24 (p24, p42) are
two arc disjoint cycles. Let u V(C3) and v 6 V(C24) be a pair of vertices for which
the length of the shortest uv-path P is minimum. Then P is arc disjoint with both C3

and C24, and since G is Eulerian, there is a vu-path P’ in G\E(C3 t.) C24 t_J P). It is
easy to check that the instance (C3 t.J C24 t_J P t_) P’; x, x2, x3, x4) is feasible for any
mutual position of u and v on C3 and C24 (four possibilities), where P and P’ may be
empty paths. Some other configurations sufficient for feasibility are considered in the
proof of Lemma 2.2.

We say that an instance (G; X) is reducible if one of the following reductions can
be performed.
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Let S be a 2-cut and S th X . Let u be the tail of the arc from V\S to S,
and v the head of the arc from S to V\S. Delete S and add the arc uv.

(2) Let S be a 2-cut, SI ->- 2, and S contain exactly one terminal x. Then contract
S to x and delete the loops. (Terminal x becomes a vertex of degree 2.)

(3) Let S be a 4-cut such that the subgraph induced on S is connected, SI >-- 2,
and S F] X . Then contract S to a single vertex (of degree 4), and delete the loops.

LEMMA 2.1. (G;X) is feasible if and only if it is feasible after performing any of
reductions ), (2), or (3).

Proof. It is obvious that if an instance is feasible, then it is feasible also after any
of the reductions. The converse is not difficult to see for reductions (1) and (2). For
reduction (3), it follows from the following fact. Let s and s’ be the heads of the two
arcs entering S, and let and t’ be the tails of the arcs leaving S. Since S is connected
and G Eulerian, there are both an (st, s’t’)-linking and an (st’, s’t)-linking in S. [3

We say that G; X) is irreducible if none of the reductions ), (2), or 3 can be
performed.

LEMMA 2.2. Let G, X) be an infeasible irreducible instance. Then each terminal
has degree 2, and each nonterminal vertex has degree 4.

Proof. Assume that the degree ofsome terminal, say Xl, is at least 4. We distinguish
two cases.

(i) There are at least two arc disjoint paths from xl to X\Xl. Let the end vertices
of" these two paths be xi and xj, respectively. Since G is Eulerian, these paths can be
completed to two arc disjoint cycles C and C’ containing { xl, x ) and { xl, x ), respec-
tively. If X Xj and < j, then (Xl, Cxlxi Xi, Cxixl Ctxlxj, xj, Cxjx,) is a feasible cycle
through (xl, xi, xj). If j, let Xk be a terminal distinct from xl and xi. There must
exist some third cycle C" containing x and a vertex u of V(C LJ C’), and such that C"
is arc disjoint with C LJ C’. It is easy to show feasibility for { Xl, xi, x) using arcs of C LJ
C’ U C".

(ii) If the assumption of (i) does not hold, there is, by the Menger Theorem, a set
S with S F) X { xl } and 16SI 2. Hence reduction (2) can be performed.

Let u be a nonterminal. Clearly, the degree of u is at least 4, otherwise reduction
can be performed for S { u }. Assume that the degree of u is at least 6. We again

apply the Menger Theorem. There are either three arc disjoint paths from u to X, or
there is a set S containing u, S th X and 16S[ =< 4. Clearly, (G; X) is reducible in
the latter case. In the former case, the three paths from u lead to distinct members ofX,
say xl, x2, and x3, since the degrees ofterminals are 2. These three paths can be completed
to three arc disjoint cycles. It is then easy to see that (G; X) is feasible. E]

Let (G; X) be an irreducible instance and let y be a nonterminal vertex of degree
4 which is an articulation of G. Then G\y has exactly two connected components which
we denote by U1 and U2. Let us say that articulation y well splits the terminals, ifX r)

Ul (x., Xj+l, xk_l) and X F) U2 (xk, Xm, xl, Xj_l) for some =<
j < k _-< m (the roles of U1 and U2 can be interchanged). In this case we define the 1-
decomposition of (G; X) at y as the following pair of instances (G1; Xl and (G2; X2).
For 1, 2, let Gi be the subdigraph of G induced on vertex set V U; U { y } and
Xi (X rh ui) u { y }. The terminals in X are ordered as in X, and y is added as the last
one. (Observe that both G are Eulerian and Xil >-- 3 (otherwise IX th Uil --< and G
is reducible). Hence the instances (G;; X;), 1, 2 are correctly defined.

LEMMA 2.3. Let (G; X) be an irreducible instance such that the degrees of all
terminals and nonterminals are 2 and 4, respectively. Let y be an articulation ofG. Then
G; X) is infeasible ifand only if

articulation y well splits the terminals; and
(ii) (Gi; X), 1, 2, ofthe 1-decomposition of(G, X) at y are both infeasible.
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Proof. Assume that G; X) is infeasible and let C be an arbitrary Eulerian cycle of
G. Ifwe start at terminal Xm, cycle C goes through the terminals in the unique order Xm,
Xm- 1, X since (G; X) is infeasible. Vertex y is entered by C twice, so the terminals
are well split. It is easy to see that feasibility of either of G;; X;), 1, 2 yields feasibility
of(G; X).

The converse follows by an analogous argument. U]

Now we present a rather technical lemma which will be used later in the proof of
Lemma 2.7.

LEMMA 2.4. Let F’ and F be the digraphs given by either Fig. 2(a) or Fig. 2(b).
Then the existence ofweak (Slt, Sztz)-linking in F’ implies the existence ofweak linking
in Ffor the samepairs ofterminals,for every choice of( not necessarily distinct) terminals
s, s2 S and t, t2 T, where S and T are defined as follows.

S {a,,az,y) and T= {az,y’} for Fig. 2(a),

S {a2,y} and T= {a,az,y’) forFig. 2(b).

Proof. Let F’ and F be defined by Fig. 2 (a). Then F’ has weak (st, s2t2)-linking
for the following seven choices of terminals (st,s2t2): (ay’,yy’), (ay’,ya2),
(ala2, yy’), (ay’, a2y’), (ala2, azy’), (yy’, azy’), and (ya2, azy’). It is easy to check that
also F has weak (st, S2tz)-linking in each of these cases. The proof is analogous when
F and F’ are given by Fig. 2 (b).

Our main result is the following description of irreducible infeasible instances.
THEOREM 2.5. Let G X) be an infeasible irreducible instance. Then

G is planar, all terminals have degree 2 and all the other vertices have degree
4; and

a2
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FIG. 2. The graphsfor Lemma 2.4.

a2



WEAK THREE-LINKING IN EULERIAN DIGRAPHS 89

(ii) G has a planar representation in which everyface is a directed cycle (or equiv-
alently, the arcs incident to a vertex are alternatively oriented out and in), and the terminals
lie on the outerface, which is oriented against the order ofterminals.

Conversely, every such instance is infeasible (but not necessarily irreducible).
Proof. We show first that every instance (G; X) satisfying the conditions of the

theorem is infeasible. We may assume that G is drawn so that the terminals are on the
boundary, which is oriented against their order. Assume there is a feasible triple, say Xl,

x2, x3, of terminals. Let P and P’ be arc disjoint xl x2- and XzX3-paths. Let y and y’ be
the predecessor and successor of x2 on the boundary (see Fig. 3). Since x2 has degree 2,
y and y’ must lie on the paths P and P’, respectively. The boundary of G divides the
plane into two regions: inner and outer. The inner region is split by path P’ into regions
RI and R2, where R1 contains vertex Xl, and R2 contains vertices x2 and y. Let u be the
vertex of V(P) fl V(P’) such that Px, lies entirely in R1, and the length of Pxl is
maximum. Then the arc ofP entering and leaving u lies in R and R2, respectively. The
degree of u is 4. But then the two arcs leaving u are neighbouring, which contradicts our
assumption that each face of G is a directed cycle.

To prove the converse, we need to introduce some additional notation. Let P
(Yo Xl, Yl, Yk, Yk+l X2) be an XlX2-path. The graph G\E(P) may split into
several components. A component will always mean a connected component ofG\E(P).
The collection of these components will be called a decomposition given by P. We will
classify the components according to the position ofterminals. The component containing
terminals Xl and x2, which belong to the same component because G is Eulerian, will

x3

Xl

FIG. 3. The proofofinfeasibility in Theorem 2.5.
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be called basic, and denoted by B. The components distinct from B that contain some
terminals will be called important. Finally, the components without terminals will be
called plain. Also note that each component, different from the basic component, is
Eulerian.

We say that a component K2 is surroundedby a component K1 (or that K1 surrounds
K2) if there are three vertices 1)1 Yfi, I)2 Yi2, 1)3 Yi3 of P, il < i2 < i3, such that Vl,

v3 e KI and v2 e K2. We say that an XlX2-path P creates a series decomposition of
(G;X) if the following are satisfied.

(i) There are no plain components in the decomposition.
(ii) The important components do not surround each other (but they may surround

or be surrounded by the basic component).
(iii) The basic component contains only terminals xl and x_.

(iv) Let K1, K, Kp be the important components in the order in which they
are visited by P (cf. (ii)). Then the terminals are distributed in the important
components against their order, i.e., ifX gr, Xj K for some 2 < < j, then
r>-s.

A series decomposition is depicted in Fig. 4.
An instance (G; X) is called trivial ifevery vertex ofG is a terminal. It is not difficult

to see that trivial infeasible instances are just simple directed cycles if G is 2-connected.
Now we prove two lemmas before completing the proof of Theorem 2.5.
LEMMA 2.6. Let G; X) be an infeasible irreducible instance. Then it has a series

decomposition for some xXz-path P.
Proof. Let us start with an arbitrary x xz-path P. We will modify P until we get a

series decomposition.
(i) Let us denote by 5’(P) the set of vertices that are in plain components. We

must find a decomposition satisfying, among others, O (P) . For this assume that
P is chosen so that O (P) is minimum. Assume that a plain component K surrounds
some nonplain (i.e., basic or important) component K’. Let v, v, and /)3 be three
vertices of P that lie on P in this order and such that v, v3 e K and v2 e K’. Let Q be a
vv3-path in K. Define a new xx2-path P’ by P’ (Pxvl, Q, Pv3x2), and consider the
decomposition given by P’. Obviously, we get O(P’) c O(P)\ { vl, v3 } which contradicts
our assumption on the minimality of 0 (P). Therefore assume that a plain component

FIG. 4. A series decomposition (broken arcs denote xx2-path P).
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K does not surround any nonplain component but may surround some other plain
components. Let be the minimum set of components defined as follows: (a) K e
and (b) K" e whenever K" is surrounded by some K’ e . Then contains only
plain components and S t_J is a 2-cut (where 6S consists of two arcs of P), which
contradicts the irreducibility (cf. property (1)) of (G;X). Thus property (i) of series
decomposition is established.

(ii) Assume there are two important components K and K’ such that K sur-
rounds K’. Let Vl, v2, and v3 be vertices of P as in the definition of surrounding. Let x
and x’ be terminals contained in K and K’, respectively, and C and C’ be Eulerian
cycles in K and K’, respectively. Consider the paths (Pxlv,, C, Pv2, C’, P2x2) and
(Px,v2, C’, Pv3, C, P3x). The former path traverses terminals in order x, x, x’ and the
latter one in order Xl, x’, x. This shows that instance (G; X) is feasible.

(iii) Assume that the basic component B contains some terminal xi, > 2. Let Q
be a XzX path in B. Then P and Q are arc disjoint, and hence (G; x, x2, x) is feasible.

(iv) Assume that property (iv) of series decomposition does not hold. Then it is
easy to see that terminals xi Kr and x Ks can be traversed in the order Xl, xi, xj,
which shows feasibility of G; X). rq

Let G; X) be an instance in which G is 2-connected and the degree ofeach terminal
is 2. Let (B, K, ..., Kp) be a series decomposition of (G;X) with respect to an xx2-
path P. Let us call a component Ki trivial if it consists of only one vertex, a terminal.
Component B is defined to be trivial if it consists of only two vertices x and x2. If every
component is trivial, then the instance (G;X) trivially satisfies (i) and (ii) of Theorem
2.5 since it is a directed cycle whose every vertex is a terminal. Ifa component is nontrivial,
then the path P must contain at least two vertices of the component (which are not
terminals) by the 2-connectedness of G. The terminals are not on P because they have
degree 2 and lie in a nontrivial important component.

We define a new ordered set Yi of terminals for every nontrivial component Ki as
follows. The set Yi consists of the original terminals from X which belong to K; in their
original order, and followed by the new terminals which are all the vertices of path P
belonging to K;, ordered in the direction ofP. We call each instance (Ki; Yi) a subproblem
ofthe instance (G; X). For the basic component B, the subproblem is defined in a slightly
different way. We identify in B the terminals Xl and x2 into a new vertex x0 and call the
resulting digraph K0. (Observe that K0 is Eulerian.) The set Y0 of terminals consists of
all the vertices ofP, including x0, which lie in K0. The order ofterminals is given by the
direction of P.

LEMMA 2.7. Let (G;X) be an infeasible irreducible instance, and let
B K1, K p >-_ 1, be a series decomposition with respect to somexx2-path Then
component Ki is either trivial, or the subproblem Ki; Yi) is also irreducible and infeasible
for every O, p.

Proof. We show first that every subproblem is irreducible. For contradiction, assume
that a subproblem (K; Y) is reducible. We distinguish some cases according to which
reduction of ), (2), or (3) can be performed.

(i) If S is a 2- or 4-cut in K and S Y , then S is also a 2- or 4-cut in G and
S fq X 5. Hence reduction or (3) can be performed for (G;X).

(ii) Assume S is a 2-cut in K and S contains exactly one terminal from Y. If
X, then is a vertex of P, and S is a 4-cut in G with S f) X . Then reduction (3)
can be performed. If X, then S is a 2-cut in G, and reduction (2) can be performed.

Further, we have to show that every subproblem is infeasible. For contradiction,
assume that some (K; Y) is feasible. It is not difficult to see that we may assume that a
feasible triple contains at least one terminal x X, since there is a feasible cycle for any
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terminal from Y as stated in the first paragraph of 2. Let C be a cycle in K which
traverses a feasible triple of terminals. Again, we distinguish several cases.

(i) The feasible triple of terminals consists of three terminals from X. Then the
triple is feasible already for (G;X).

(ii) The feasible triple consists oftwo original terminals and one new terminal, say
(K; x, x’, y) is feasible where x, x’ e X, x < x’, and y is a vertex in P f K. We recall
that C is a cycle in K that traverses the terminals in the order y, x, x’. Then the paths

P (Pxl,, C,x) and P2 Cxx, are arc disjoint, and hence (G; x, x, x’) is feasible.
(iii) The feasible triple is of the form x, y, y’.where x X and y, y’ P N K, y <

y’. Here we distinguish two subcases: (iiia) Pyy, K, and (iiib) Pyy, c K, where Pyy, and
K are viewed as sets of vertices.

(iiia) Denote by v a vertex of P,,,\ V( K). IfKis not the basic component B, then
vB. Let Q be an x2v-path in B. Then the paths (Pxi),, C,,,, P,’x) and
(Qx2, Pw’, Cy,x are arc disjoint, which shows that (G; x, x2, x) is feasible. If K B,
then x x0 and the existence of cycle C through x0, y, y’ means existence of an xzxl-
path Q in B through y and y’ (in that order) because terminals Xl and x2 have degree
one in B. Denote by K’ the component containing the vertex v, and let x’ e X be a
terminal in K’, and W a cycle through v and x’ in K’. Then (Qx2y, P, Wx,, Wx,,
Pw’, Qy’, is a path that proves feasibility of (G; x2, x’, x ).

(iiib) This case is the crucial one in our analysis. Assume that K is not the basic
component. (The case when K is basic is quite similar.) We recall that Pyy, is the segment
ofP from y to y’, and that it is entirely contained in K, and that C is a cycle through y,
y’ and x in K. Let us denote by So the vertex set of Py, U Cyy,. Let P be the maximum
segment ofP such that it contains Pyy, and all its vertices are in K. Let K* be the digraph
obtained from K by reversing the arcs of Cy,x, and adding the arcs of Pxl 71 P (in their
original direction) and the arcs of Py’x2 in the reversed direction. We define the set
S as the set of vertices in K* that are reachable from So by a directed path in K*. Fig. 5
illustrates these concepts, in which P is indicated by broken arcs, and set S by bold arcs.

We claim that either (b S is a 4-cut in G with S f) X , or that (b2) G; X) is
feasible.

Case (bl). Assume that S 71 X and S f) P c P, where P and P are viewed as
sets of vertices. We will show that S is a 4-cut in G. Since we also assume S 71 X ,
reduction (3) can be performed with S for (G;X), which contradicts the irreducibility
of(G; X).

CLAIM. The arcs of6S may only belong to either C or P.
Let U be a connected component of K\E(C). Since K is Eulerian, U is Eulerian

as well. Hence U is strongly connected and we have either V(U) c S or V(U) 71 S
by the definition of S. This proves the claim.

Next we show that S f’l E(C)[ 2, and S 71 E(P)[ 2. By the definition of S,
terminal x (lying on C) never belongs to S. Let us denote by u the vertex ofS satisfying
u V(Cy,x) and S 71 V(C,x) { u} (i.e., u is the "highest" vertex ofS on Cy,x; we have
u a2 in the example in Fig. 5). Let us denote by u’ the successor of u on C,x (we have
u’ x in Fig. 5). Then, by the definition of S, all vertices of Cy,u belong to S, and no
vertex of C,,x belongs to S. Hence uu’ is the only arc of Cy,x which belongs to 6S. Quite
analogously, 6S also contains exactly one arc of each segment Cxy, Pxly, and Py’x, since
S does not contain any vertex ofP outside P by assumption. This proves that [6S[ 4.

Case (b2). Assume that either S f) X 4 , or S contains a vertex v of P\P. We
show that (G; X) is feasible in either case. Observe that S cannot contain the terminal
x, since the terminals have degree 2. So ifS N X 4 then S contains some x’ 4 x. The
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FIG. 5. Sequence W (bo, C1, a, P, bz, b6, C7, a7 19).

assumption implies that there is a vertex v e S such that v e X or v P\P, for which
there is a sequence

pk- bk C,a v)W=(bo,C al P bl,C2,a2,p2,b2, ..a_, -1,

such that the following are satisfied:
--bo e So;
--C is a segment of a cycle Ci in K\E(C), 1, 2, .. k;
--every pi is a segment of Cxy, Cy,x or P\E(Pyy,);
--the cycles and paths in the sequence are mutually arc disjoint;
--b;_ and ai are vertices of Ci, 1, ..., k;
--if P; is a segment of Cxy or Pxly then it is an ab;-path;
--if pi is a segment of Cy,x or Pr’x2 then it is a bai-path.
An example of a sequence Wfrom b0 to a7 is given in Fig. 5.
For any sequence I/V, let us define a pair cw and/3w of vertices of P as follows.

Vertex Cw is that ai which lies on P N Pxy and has the highest subscript i; in case there
is no such a we set Cw y. Similarly,/3w is that ai which lies on P Py’x2 and has the
highest subscript i" in case there is no such a; we set/3w Assume that we are given
a shortest sequence W(i.e., k is minimum) which starts in a vertex b0 e So and terminates
at vertex v S fq (X tO (P\V(P))). Let H be the digraph obtained as the union of the
cycle C, the path Pwaw, and the cycles C1, C2, "’, C. We may assume that ai =/= bi,
and the members of W do not have other common vertices than those required, since
otherwise W could be shortened.

CLAIM. H has both a weak (awX, Vw)-linking and a weak (cwV, Xw)-linking.
This claim will be proved by induction, with use of Lemma 2.4. For k 0, the

statement can be easily verified. Let k >- 2. Construct an auxiliary digraph H’ from H so
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that the part W0 (b0, C 1, a, P, bl, C2, a2) is replaced by W (bo, C 12, a2) where
C2 is a segment of a new cycle C2 (not existing in G) containing bo, a2 and disjoint
from other members of the sequence (old cycles C1 and C2 are deleted in H’). Denote
the modified sequence by W’. By induction hypothesis, the claim is valid for H’ since
the length of W’ is k 1. For simplicity, let us assume that aw aw, and 3w
/w’ (i.e., a 4: aw, w). The case when a (aw,/3w} will be discussed later. Let us
denote by L’ (L’, L one ofthe claimed linkings in H’ where L’I and L are arc disjoint
paths. Now we have to show that L’ (L’, L) can be modified to L (L, L2) which
is a weak linking in H for the same pair of terminals as L’ in H’. Assume that a Cxy
tO Px, y. Let Fand F’ be subdigraphs ofHand H’ as depicted in Fig. 2(a), which represents
the portions of H and H’ relevant to the above W0 and W. (In the case when a e
Cy,x t3 Py’x2, the pair from Fig. 2(b) is used. We omit the proof because it is quite
analogous to the considered case.) Observe first that each L can enter F’ only from a,
a2, or y and can exit only from a2 or y’. Observe also that either of L’ and L can go
through F’ at most once, because there is no pair of vertex disjoint paths from
{ al, a2, y } to a2, y’) in F’ such that both use some arcs of F’. Assume that both L’
and L go through F’. Let us denote by s, t and s2, t2 the entrances and exits of L’ and
L in F’, respectively. Since L’ and L induce a weak (st, $212 )-linking in F’, by appli-
cation of Lemma 2.4 there is a weak (st, Sztz)-linking (Q, Q2) in F. For 1, 2,
let Li (L\(L)siti) tO Qi. Then L (L, L2) is the required linking in H. If only
one of L’ and L, say L’, goes through F’, then set L (L’ \(L’)st,) tO Q, where Q
is an st-path in F, and L2 L. If both L’ and L are disjoint with F’, then set

L L’ and L2 L.
It remains to discuss the case when a { aw, w}, say a aw. Then aw, y,

and the induction hypothesis asserts that one of the initial vertices of L’ (L’, L)
is aw, y, but we need to start a path in a aw. In such case we extend it by Pa,y,
because Pay does not belong to H’. Thus the claim is proved.

Now the claim will be used to finish the proof of the remaining part of case (iiib).
Assume v x’ X (v is a terminal). Then either x < x’ or x’ < x hold. Assume x < x’,
say x x3 and x’ x4. Let (L, L2) be a weak (awX, VC/w) -linking which exists by the
claim. Then (Px,,w, L) and (L2, Ptx2) are arc disjoint XlX3- and X4Xz-paths, which
proves the feasibility of(G;X), cf. the conditions discussed after the definition offeasibility
in 2. If x’ < x, then the role of x and v x’ is exhanged, and the weak (awV, Xt3w)-
linking is applied.

Assume v Px,y\V(P). Let (LI, L2) be a weak (awX, V/3w) -linking, and Q be an
Xzz-path in B where z Pww f) B. Then (Px,v, L2, Powx2 and Q, Pzw, L are arc disjoint
xx2- and Xzx-paths. Hence (G;X) is feasible.

Assume v Py,x2\V(P). Let (L, L2) be a weak (awV, X/3w)-linking, and Q be an

zx -path in B where z Pawv fq B. Then (Px,,w, Ll Px2 and (L2, Powz, Q) are arc disjoint
x x2- and xx-paths. Hence (G;X) is feasible.

Now we can summarize and conclude the proofofTheorem 2.5. Given an infeasible
irreducible instance (G; X), consider its series decomposition (B, K, Kp) with
respect to an x XE-path P. By Lemma 2.7, each subproblem is also irreducible and in-
feasible for a nontrivial component. Using Theorem 2.5 as an induction hypothesis for
the subproblems, we obtain that each component is planar, and having the properties
formulated in Theorem 2.5. We may draw each component so that the specified face
with the terminals is the outer face of the component. Assume that the terminals of a
subproblem are placed clockwise on the boundary (i.e., its outer face is oriented anti-
clockwise) for components K, Kp, and anticlockwise for component K0 (i.e., its
outer face is oriented clockwise). Split terminal x0 in K0 back to x x2. Then interconnect
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the components by the path P so that the graph remains planar (see Fig. 4). Degrees of
terminals from X remain two, and degrees of all other vertices become four. Also, each
face of the digraph is oriented. E3

Proofof Theorem 1.1. Theorem 1.1 follows from Theorem 2.5 when the number
ofterminals is restricted to three. Observe that every minimal infeasible instance defined
in is infeasible and irreducible in the sense of 2, since each of the reductions ),
(2), and (3) can be performed as a sequence of arc contractions. (The converse need
not be true.) Finally, an irreducible instance with three terminals must be 2-connected
by Lemma 2.3, since 1-decomposition can be defined only if lXI >-- 4. E3

3. Complexity results. In this section we show that feasibility of an instance
(G; X) can be decided by a polynomial time algorithm, and we prove NP-completeness
of the weak linking problem for G + H Eulerian when the number of terminal pairs is
not fixed. Although the proof of Theorem 2.5 can be directly turned into a polynomial
time algorithm, we prefer to present an algorithm based on the structural characterization
of infeasible instances by Theorem 2.5.

LEMMA 3.1. Let G be a 2-connected digraph, and G; X) be an infeasible irreducible
instance. Then G has a unique plane representation in which all terminals are on the
outerface.

Proof. Let H G + z be obtained from G by adding a new vertex z and the set
of arcs { xz]x e X }. We claim that H is 3-connected. For contradiction, assume that
G + z has a vertex cut { u, v }. Clearly z u, v }, since otherwise G would have an
articulation, and is not 2-connected. There must be at least one component S of G\
{ u, v } which does not contain any terminal, otherwise, H\ { u, v ) would be connected.
We have 16SI > 4, otherwise, reduction or (3) can be performed for S in (G; X).
Since 16SI > 4, u and v are not terminals, and since the degrees of u and v are 4, we have
]6(S U { u, v))l 2. Thus (G; X) is reducible, and the claim is proved. By the well
known Whitney Theorem, a planar 3-connected graph has a unique plane representa-
tion. [2]

Let n and e denote the number of vertices and arcs of a digraph G, respectively.
THEOREM 3.2. Feasibility of an instance (G; X) can be tested by an 0 (e + n 2)

time algorithm (i.e., O( n 2) time algorithm when G is without multiple edges).
Proof. Given an instance (G; X) where G is an Eulerian digraph and X an ordered

set of terminals, we will perform a test consisting of the following Phases l, 2, and 3. At
each phase, if the instance is found feasible, it terminates the whole test. On the other
hand, if the instance passes a phase, the next phase is performed.

Phase 1. Transformation to an irreducible instance.
Label all vertices of G (including the terminals) as "unscanned";

for every unscanned terminal x e X do

begin
Decide whether k(x, X\x) >_- 2, and if not, find the largest minimum
(x, X\x)-cut S (largest in the sense of
If k(x, X\x) >_- 2, then the instance is feasible. Stop;
If (x, X\x) 1, then perform reduction (2) with S, and label terminal x
as scanned.

end;

for every unscanned vertex u e VkX do
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begin
Decide whether k u, X) => 3, and if not, find the largest minimum u, X)-
cut S (largest in the sense of SI );
If k(u, X) >= 3, then the instance is feasible; stop;
If k(u, X) 2 and SI > 1, then perform reduction (3) with S, and label
the vertex obtained by contracting S as scanned;
If ,(u, X) 2 and SI 1, label vertex u as scanned;
If , u, X) 1, then perform reduction with S.

end.

The maximum number (u, X) of arc disjoint paths from u to X (which is equal
to the size Of minimum (u, X)-cut) can be computed by Ford-Fulkerson max-flow-
min-cut algorithm where all arcs ofG receive capacity 1. Given a current flow, the search
for an augmenting path requires O(e) time (since the capacities are ). Ifno augmenting
path exists, the labelling procedure provides a minimum (u, X)-cut S. If the labelling
procedure is started from the set X, then V\SI is minimum, and hence S is the largest
minimum (u, X)-cut.

We are not interested in the exact value of u, X) in case u, X) >= 3, since then
the instance is feasible by (the proof of) Lemma 2.2 (note that, after the first loop, all
terminals have degree 2). Thus we have to perform at most three searches for an aug-
menting path, and thus the complexity of scanning a vertex remains bounded by O(e).
Since there are at most n vertices to scan (the number of vertices of G is decreased when
performing a reduction 1, 2, or 3), the complexity of Phase is O(en).

This time bound can be further improved by the following technique. Let G be the
undirected graph obtained from G by neglecting its arc orientation. Since G is Eulerian,, U1, U2) >= k if and only if d( U, U2) >= 2k for any disjoint subsets U and U2 of V,
where d the edge size of a minimum U, U2)-cut in G. For any positive integer k, the
method of [7] provides a spanning subgraph H of G in O(e) time, such that (i) H has
at most (n )k edges, and (ii) for any disjoint subsets U1 and U2 of V, any minimum
(U, U2)-cut in H is a minimum (U, U2)-cut in G if )a( U, U2) < k (as proved in
8 ]). Therefore, construct H with k 5 and apply the above test to H instead of G.
Since the number ofedges in H is O(n), an augmenting path can be found in O(n) time,
and the total time required in Phase becomes O(e +/72) including O(e)time to con-
struct H.

We must show that Phase yields an irreducible instance unless it is shown feasible.
For a contradiction, assume that the instance still admits a reduction after passing Phase
1. Let S be a set which may be reduced, say it admits reduction (2), and let x be the
terminal in S. But it is not possible since the cut, which is largest in the sense of SI,
had been taken when x was scanned.

Phase 2. Decomposition into the blocks (i.e., 2-connected components).

{ If lXI 3, Phase 2 is not necessary since G must be 2-connected.
The input ofPhase 2 is an irreducible instance (G;X) with the degrees ofterminals
equal to 2, and the degrees of nonterminals equal to 4.
The output ofPhase 2 is a collection (Gi’, Xi), 1, ..., k, ofirreducible instances
with the property that (G; X) is feasible if and only if at least one instance
(Gi’, Xi) is feasible. Moreover, the graphs Gi are 2-connected, since they are the
blocks of G. }
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Decompose G (as an unoriented graph) into the blocks, and compute the list
of articulations. This can be done by the algorithm of Tarjan [10] in O(n)
time, since the number of edges of G is linear in n. Let k be the number of
blocks, and V, V2, "’, Vk be the vertex sets of the blocks of G ordered so that
V/N [,.Jj > Vjl for every 1, k 1. Let Y be the articulation for which
V IJj > Vj { Yi }. Set (formally) G, := G and X:= X.

fori= ltok- ldo
begin
Check whether articulation Y well splits the terminals of (G;_ 1; X--1). If
not, the instance (G; X) is feasible. Stop;
Perform 1-decomposition of (G;_; X-l) at Yi into (Gi; Xi) and
(G; X), where V(Gi) V/and G; is the remaining part of G;_ 1, i.e.,
V(G) V+ I,A Vk and X X Ci V(G).

end.

The complexity of Phase 2 is O(n). The correctness follows from Lemma 2.3. Then
apply the next phase to each block (Gi; xi).

Phase 3. Planar representation test.

{ The input of Phase 3 is an irreducible instance (G; X) with the degrees of
terminals equal to 2, and the degrees of nonterminals equal to 4. Moreover, G is
2-connected.
The output is a planar representation of(G;X) satisfying the conditions ofTheo-
rem 2.5, unless it is proved that the instance is feasible.}
Use planarity test to decide whether G is planar. If not, G; X) is feasible. Hence
assume G is planar. Use the planarity test again for the graph G + z defined in
Lemma 3.1. If G + z is not planar, then (G; X) is feasible, because it does not
have a plane representation with terminals on one face. If G + z is planar, test
whether its plane representation, which is unique and is also obtained as a by-
product of the planarity test, meets the remaining conditions in (ii) of Theorem
2.5. If yes, (G;X) is infeasible, and it is feasible otherwise.

The time complexity ofPhase 3 is O(n), since planarity ofa graph can be tested in linear
time, and also the planar drawing can be obtained at the same time (see [5] and [9]).
We must apply Phase 3 repeatedly to instances (Gi; Xi), 1, ..., k. However, the
total complexity remains bounded by n (the number of vertices of the instance of Phase
2), since 1V,.I --< 21VI.

Therefore the time complexity of the whole algorithm (Phase + Phase 2 + Phase
3 (applied to each block separately)) is O(e + n2). [[]

Theorem 1.2 is a corollary of this result.
Let us call the weak k-linking problem with G + H Eulerian the Eulerian weak k-

linking problem. When the number of terminal pairs is not restricted, we call the weak
linking problem with G + H Eulerian the Eulerian weak linking problem.

The Eulerian weak 2-1inking problem is easy to solve (cf. [3]): a necessary and
sufficient condition is that G is (weakly) connected. The Eulerian weak 3-1inking problem
has been polynomially solved in this paper. We conjecture that the Eulerian weak k-
linking problem can be polynomially solved for any fixed k. However, if k is not fixed,
the problem becomes NP-complete.
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THEOREM 3.3. The Eulerian weak linking problem is NP-complete.
Proof. The problem obviously belongs to class NP. The NP-completeness will be

proved by reducing to it the (general) weak 2-1inking problem, which is known to be
NP-complete (see 2 ]).

Given an instance G (V, E) and (si, ti), 1, 2, of the weak 2-1inking problem,
where G is a general digraph, construct the following instance of the Eulerian weak
linking problem.

Let us denote by indeg(v) and outdeg(v) the indegree and outdegree of a vertex v
in G + H (V, E t.J { lsl, t2s2 } ), respectively. Set G’ (V tO { s, t), E tO E’) where E’
consists of (outdeg(v) indeg(v)) parallel arcs sv for each v for which the difference is
positive, and (indeg(v) outdeg(v)) parallel arcs vt for each v for which the latter dif-
ference is positive. The multiple arcs can be modified to simple arcs by inserting artificial
vertices. Let p be the sum of (outdeg(v) indeg(v)) over all v for which the difference
is positive. For 3, 4, p + 2, define si s and ti t. Now, G’ and (si, ti),
1, ..., p + 2, is an instance of the Eulerian weak linking problem. It is not difficult to
see that this instance is feasible if and only if the original instance of weak 2-1inking
problem was feasible, ff]
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SPANNING TREES WITH MANY LEAVES*

DANIEL J. KLEITMAN- AND DOUGLAS B. WEST:t:

Abstract. A connected graph having large minimum vertex degree must have a spanning tree with many
leaves. In particular, let l(n, k) be the maximum integer m such that every connected n-vertex graph with
minimum degree at least k has a spanning tree with at least m leaves. Then l(n, 3)>= n/4 + 2, l(n, 4)>-_
(2n + 8)/5, and l(n, k) <= n 3Ln/(k + )j + 2 for all k. The lower bounds are proved by an algorithm that
constructs a spanning tree with at least the desired number of leaves. Finally, l(n, k) >= (1 b In k/k)n for
large k, again proved algorithmically, where b is any constant exceeding 2.5.

Key words, spanning trees, vertex degrees
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1. Introduction. Given a connected simple graph G, suppose we wish to find a
spanning tree in G with many leaves. If G is a cycle, we can only guarantee 2 leaves, but
we may have better luck if we require that every vertex have degree at least k. To make
this precise, let Gn,k denote the collection of connected n-vertex graphs with minimum
degree at least k. We wish to determine l(n, k), the maximum m such that every graph
in Gn,k has a tree with at least m leaves. Note that l(n, 2) 2.

The question ofdetermining l( n, k) has occurred independently to several research-
ers. For this investigation, the question was raised by Lovsz and Saks 6 ]. Independently,
Payan, Tchuente, and Xuong [7] showed that every 3-regular graph has a tree with at
least n / 4 leaves, and Storer 8 gave the lower bound of n / 4 + 2 for that case. This was
subsequently rediscovered by Linial and Sturtevant [5] and extended to minimum degree
3. Another proof appears in [3]. Storer was motivated by complexity considerations.
The problem offinding a spanning tree with maximum number ofleaves is NP-complete,
even if G is regular of degree 4 [2]. We provide here a simple algorithm to construct a
tree with at least n/4 + 2 leaves in any G 6 Gn,3. Extending this approach, we also present
an algorithm to construct a tree with at least (2n + 8 )/5 leaves in any G Gn,4. Finally,
we present a simple family of algorithms that provide lower bounds implying l(n, k) >

b In kk)n. In particular, this means that the fraction of the vertices that can be
guaranteed to be leaves in the spanning tree with the most leaves approaches as
k grows.

For arbitrary k, a simple construction yields a G 6 G, with no tree having more
than n 31_n/(k + )j + 2 leaves. When k =< 4 and k + divides n, this achieves the
bound. Griggs and Wu 4 have proved optimality for k 5 (and give an alternate proof
for k 4). Linial 5 conjectured that this construction is essentially optimal in general,
i.e., that l(n, k) >-_ n 3n/(k + + c for each k and an appropriate constant c. More
generally, Linial suspects that a connected graph with degree sequence dl > d2 > >=
d >= 2 has a spanning tree with at least 2;(d; 2)/(d; / leaves.

Albertson and Hutchinson have investigated spanning forests. Ifwe seek a forest
of components with many leaves, then the upper and lower bounds presented here still
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hold, with 2 replaced by 2 c. Albertson and Hutchinson were further interested in limiting
the diameter ofthe components, but our methods do not seem relevant to that question.

2. The upper bound construction.
THEOREM 1. l(n, k) <-_ n 3Ln/(k + )l + 2.
Proof. We construct Gn,k Gn,k having no tree with more than n 3[ n/(k + )l /

2 leaves. Let m n /(k + and r n m(k + ). Partition the vertex set V(G) into
sets Ro, Rm-, where [R/.I k + for 4 0 and Iol k + + r. Choose
xi, yi R;. Place edges between all pairs of vertices in R except xy. Add the edges Z
{XiY(i+l)modm’O =< < m}, and let W= {xi} t.3 {.Vi}.

It suffices to show that any spanning tree T of G,, has at most n 3m + 2 leaves.
Every pair of edges in Z forms an edge cut so T lacks at most one edge of Z. Suppose
first that xy+ f T; T then contains an xiYi-path in Ri for each i. This forces a nonleaf
in R- Wfor each i, and each vertex of W must be a nonleaf except x, yj.+ }. On the
other hand, if T omits no edge of Z, then T lacks an x;, y-path in R for one value of i,
say j. This forces at least 3 (rn nonleaves in V- Rj., and k > 2 forces an additional
nonleaf at xj or yj. [--]

Note that G,g contains many copies ofthe "almost clique" Kg + e. Ifthis induced
subgraph is forbidden, a higher proportion of the vertices must be leaves. In particular,
Griggs, Kleitman, and Shastri [3] have shown that every G e G,,3 that does not contain
K4 e has a tree with at least (n + 4)/3 leaves; this was earlier conjectured in [7]. The
proof is more difficult than that of the unrestricted result in the next section.

We also note that when k is even there is another class ofgraphs where the tree with
the most leaves has n 3/n/(k + )1 + 2 leaves, as shown by a similar argument. The
graph can be described as a cyclic sequence of cliques in which each vertex is also joined
to every vertex of the clique before and after it. The cliques have sizes k/2, k/2, 1, k 2,
k/2, 1, .... Note that G,, can also be described in this way with the clique sizes being
1, k- 1, 1, 1, k- 1, 1,....

3. The case k 3. The lower bound for k 3 appeared in [7] and in [8] for 3-
regular graphs. We include a short proof of the general result, different from those in [7]
and 8 ], to illustrate the method we will use for k 4. Another proof, similar in spirit
to this but phrased also in terms of 3-regular graphs, appears in 3].

This and the later proofs grow the desired spanning tree of G via an iterative algo-
rithm. In each case, we let T denote the current tree with n vertices and leaves. If x is
a leaf of T, then the out-degree of x, denoted d’(x), is the number of neighbors it has
in G T. The operation of expansion at x consists of adding to T the d’(x) edges from
x to all its neighbors not in T. We grow T by vertex expansion sequences (also called
"operations"); this guarantees that all edges from T to G T are incident to leaves
ofT.

THEOREM 2. Every G GN,3 has a spanning tree with at least N4 + 2 leaves.
Proof. A leafx of Twith d’(x) 0 is dead; no expansion is possible at a dead leaf,

and it must be a leaf in the final tree. Let m be the number of dead leaves in T. An
expansion that makes y a dead leaf kills y. We call an expansion sequence admissible if
its effect on T satisfies the "augmentation inequality" 3Al + Am -> An.

We initialize T to a small subtree and provide a collection of admissible operations
to grow T into a spanning tree of G. If G is not 3-regular, we initialize T to be all edges
incident to a vertex of maximum degree A >= 4. If G is 3-regular and every edge belongs
to a triangle, then G K4 and the claim holds. Otherwise G is 3-regular and has an edge
in no triangle, and we initialize T to consist of such an edge and the four other edges
incident to it.
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If T is grown to a spanning tree with L leaves by admissible operations, then all
leaves eventually die and summing the augmentation inequality yields 3 (L A) + L >=
N- A ifG is not 3-regular, or 3 (L 4) + L >= N- 6 ifG is 3-regular. These simplify
to 4L N + 2A -> N + 7 and 4L >= N + 6, respectively. We can improve this to
4L >= N + 8 by considering the final admissible operation. For this operation, the aug-
mentation inequality is satisfied with an excess of at least two because the operation kills
at least two final leaves whose deaths are not usually guaranteed for the operation.

It remains to present a collection of admissible operations of which at least one is
always available until T absorbs all vertices, and to verify the statement claimed about
the last operation. The three operations we use are illustrated in Fig. 1.

O1: If d’(x) >_- 2 for some current leaf x, then expanding at x yields AI An
>= and Am >_-- 0.

02: Ifd’(x) =< for every current leafx and some vertex outside Thas at least two
neighbors in T, then expanding at one of them yields Al 0, Am >_-- An.

03: If y is the only neighbor ofx outside T and y has at least two neighbors not in
T, then expanding at x and then y yields AI An 2 >_-- and Am 0.

Because k 3, any neighbor not in T of a vertex in T has at least two neighbors in
T or at least two neighbors outside T. This implies that one of O 1-O3 is available until
Tbecomes a spanning tree. Also, the inequalities they satisfy imply that each is admissible.

Now consider the final operation. Each of the three operations adds (at least one)
leaf z to T that did not previously belong to T. That leaf has a neighbor w not appearing
in the illustration; since this is the last operation, w must have been a nondead leaf of
T. Since z and w both die now, we obtain the needed excess of two dead leaves.

Before leaving this section, we note that the operations used above also yield the
following result.

THEOREM 3. Ifevery edge ofG belongs to a triangle and G 4: K3, then G has a tree
with at least (IV(G)] + 5)/3 leaves, and this is best possible.

Proof. We use the same terminology as in the previous proofs, except that now an
operation is admissible if it satisfies the augmentation inequality 2AI + Am >= An. Op-
erations O and 02 above satisfy this admissibility inequality; we claim they suffice to
grow T to a spanning tree. If T does not yet span, then there is an edge xy with x 6 T,
y T; xy forms a triangle with some additional vertex z. If z T, then O applies; if z
6 T, then 02 applies.

IfG 4:K3 and A(G) < 4, then G K4 or G K4 e and the bound holds. Otherwise
G has a vertex of degree at least 4 to use as the center of the initial T. If also i(G) >= 3,
then again the last operation provides two additional dead leaves, and summing the
augmentation inequalities yields 2 (L 4) + L 2 >- N- 5, or L -> (N + 5)/3.

If 6(G) 2, then the last operation may provide only one additional dead leaf if it
is 02 to a 2-valent vertex. However, ifG has a 2-valent vertex x, then the edge-in-triangle
property leads to a vertex w of degree at least 4 within distance 2 of x. If w is adjacent
to x, then beginning at w makes x initially a dead leaf and we have the same inequality
as above. Otherwise, x and w have two common (adjacent) 3-valent neighbors u, v. If

Ol 02 03

FIG. 1. Operations used when k 3.
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Ol 02 03

FIG. 2. Elementary operations used when k 4.

the initial tree is the star at w plus the edge ux, then we begin with x, v as dead leaves
and again get an extra at the end. Now the inequality is 2 (L 4) + L 3 >- N- 6, or
again L >_- (N + 5 )/3.

To show that this is best possible, consider the graph Gn+ Ln/3j,3 of 2, delete one
cut edge, and contract the remaining cut edges.

4. The case k 4. For the case k 4 we will use arbitrarily long expansion sequences
as operations. We use the same terminology and notation as above, except that now an
expansion sequence (or "operation") is admissible if it satisfies the augmentation in-
equality 4Al + Am >-- 2An.

THEOREM 4. Every G GN,4 has a spanning tree with at least 2N + 8)/5 leaves.
Proof. Again we initialize T to be a small subtree and we provide a collection

of admissible operations to grow T into a spanning tree of G. If we provide an exhaus-
tive set of admissible operations, summing the augmentation inequalities will yield
4(L c) + (L c2) >- 2(N- c3), or L >- 2N/5 + c, where c, c3 are the number of
leaves and vertices in the initial tree and c2 is the number of leaves not counted as dead
by summing the general augmentation inequalities. We postpone the discussion of the
additive constant.

The first three operations are similar to those used for k 3 and are illustrated in
Fig. 2.

O1: If d’(x) >- 2 for some current leaf x, then expanding at x yields AI An
>_-- landAm>=0.

02: If d’(x) _-< for every current leafx and some vertex outside Thas at least three
neighbors in T, then expanding at one of them yields Al 0, Am >= 2 2An.

03: If y is the only neighbor of x outside T and y has at least three neighbors not
in T, then expanding at x and then y yields Al An 2 >= 2 and Am >-- 0.

Each of these operations is admissible. If none of O1-O3 are available, then every
nondead leaf of T has out-degree one and its neighbor outside T has two neighbors in T
and two neighbors outside T.

The subsequent operations, which involve arbitrarily long expansion sequences, will
apply in this case. We consider only principal expansion sequences; these expand a single
leafx Y0 of Tand then other leaves that do not belong to Tbefore the initial expansion.
The length r of a principal expansion sequence Y is the number of expansions outside
T. A principal expansion sequence is live if each expansion after Y0 introduces two new
vertices to the tree. Y also denotes the set of vertices expanded.

When O1-O3 are not available, a live sequence almost satisfies the augmentation
inequality for admissibility. The expansion at Y0 adds one vertex and kills the other
neighbor of Yl in T. Each subsequent expansion in Y increases l and adds two new
vertices. Altogether, 4Al + Am 4r + and 2An 4r + 2, leaving a deficiency of one
in the augmentation inequality.

04-07 rely on various additional conditions that imply admissibility and are illus-
trated by example in Fig. 3. For specification of04-07, let Ybe a live sequence oflength
r and assume O1-O3 are not available. Let W denote the set of leaves introduced by
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executing Y and let U V(G) T tO Y tO W); U is the set of vertices that would
remain outside the tree after executing Y.

04: If some w 6 Whas a neighbor u T, then Y is admissible. Executing Y kills u,
which increases Am by one to eliminate the deficiency.

05" If some w Whas all its neighbors in Y tO W, then Y is admissible. Executing
Y kills w, which increases Am by one to eliminate the deficiency.

06: If some w 6 W has at least three neighbors in U, then Y followed by (w) is
admissible. The final expansion satisfies 4Al- 2An >= 2, which eliminates the deficiency.

07: If v is the unique neighbor in U for at least four vertices of IV, then Y followed
by expansion at one of these vertices is admissible. The final expansion kills (at least)
three leaves, yielding Am 2An >-- 1, which eliminates the deficiency.

Next we show that some operation of types O1-O7 is always available until T
becomes a spanning tree. To prove this, we consider a special class ofexpansion sequences.
A linear expansion sequence is a live sequence Y (Y0, "’", Yr) such that, for each _>-
1, Yi/l is one of the two leaves introduced by expanding Yi. The illustrations in Fig.
3 suggest linear sequences although expansion sequences of types 04-07 need not
be linear. For a linear sequence, we let zi denote the other leaf introduced by expand-
ing Y and let Zr, W denote the two leaves introduced by expanding Yr. We may refer
to w as Yr+l. Let Z { Zl, Zr} and W Y tO Z tO { w}. For -< -< r, let Yi
(Y0, Yi) and Zi { zl, zi }. We use R. S for the concatenation of two vertex
sequences, N(a) for the set of neighbors of vertex a, and N(S) for toxsN(x).

IfO 1-O3 are unavailable and T does not span G, then any neighbor of T is the end
of a linear sequence of length 1; i.e., linear sequences exist. Because G is finite, linear
sequences cannot be arbitrarily long. IfO1-O7 are unavailable, then for a maximal linear
sequence it must be true that each leaf introduced by the last expansion has exactly one
neighbor in U.

Suppose O1-O7 are unavailable and let Y= (Y0, "’", Yr) be a maximal lin-
ear sequence. In addition to Yr and one vertex v e U, w has at least two additional
neighbors. Because Y is live, these must appear in Z. Suppose zt, Zs N(w) with
min { i: Zi N(w)}, so < s =< r.

We claim that zt must have exactly one neighbor u not in IV. Otherwise, Y is of
type 05 (killing zt) or Yt" (zt) is of type 06. Furthermore, if u 4: v, then Yt" (zt, w) is of
type 06. Hence we may assume- u v. If s < r, then Y_ 1" (zt, Yr / 1, Ys / 2) is a type
05 sequence killing y. Hence we may also assume s r.

Yo 04 Yo 05

Yo 06 Yo 07

FIG. 3. Complex operations used when k 4.
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Applying the same arguments to Z Z W’, we obtain a neighbor zt, of w’ adjacent
to v’ g W (see Fig. 4). If t’, then { w, w’, v, v’ } c N(zt) and Yt" (zt) is of type 06. If
4: t’ and v 4: v’, then Yr- I" (zt, zt,) is a type 05 sequence killing Yr. If 4: t’ and v v’,

then v is the only neighbor in U for each of { zt, zt,, w, w’ } and Y. (w) is of Type 07.
We have provided an exhaustive set of admissible operations. Now consider the

additive constant. Recall that L 2N/5 + c, where c (c2 + 4c 2c3)/5 and c, c2,

c3 are the number of initial leaves, leaves not counted as dead, and initial vertices. As
for k 3, each operation illustrated has a leaf incident to another edge not drawn, which
again means that the last operation must kill at least two additional leaves (except for
02 and 07, the extra count is always at least four). Since G has minimum degree at
least 4, we have c >- (2 + 16 10)/5 8/5. Ul

It should be noted that there are only two known examples of graphs in Gn,4 that
have no tree with at least 2N/5 + 2 leaves. These are the 4-regular graph on six vertices
and the 4-regular graph on eight vertices around a circle in which each vertex is joined
to the four vertices closest to it. The desired bound asks for five and six leaves, respectively.
On six vertices, having five leaves would require a 5-valent vertex, and on eight vertices,
having six leaves would require two vertices whose neighborhoods include all the vertices.
We conjecture that 2N/5 + 2 is a lower bound except for these two examples. If G has
a vertex of degree at least 5, then starting with the edges incident to it yields c _>- 2. If G
is 4-regular and has an edge not in a triangle, then starting with its endpoints and their
neighbors yields c, c2, c3 6, 2, 8 and c 2. Hence any graph that violates this bound
is 4-regular and has every edge in a triangle.

5. Larger values of k. In general the conjectured lower bound on l(n, k) is
(k 2)n/(k + / 2, except possibly for small exceptions. Whenever k is even, there
is a small example that slightly violates this bound. Whenever k > 2, we can choose n
so that 3k/2 + 2 =< n < 5(k + )/3 and let G be the graph on n vertices around a circle
in which each vertex is adjacent to the k closest vertices, k2 in each direction. Then
(k 2)n/(k + + 2 > n 3, so the bound asks for a tree with n 2 leaves. However,
there are no two adjacent vertices whose neighborhoods cover V(G).

The most interesting question, of course, is the coefficient of n in l(n, k). For k
5, Griggs and Wu [4 have proved the conjecture (they also have an alternate proof of
the bound for k 4, using a different augmentation inequality for admissibility). For
large k we give a short proof that the coefficient approaches 1. The ease of this argument
is attributable to the fact that we are not seeking an optimal algorithm for any individual
value of k. By considering more operations, i.e., by making the algorithm more com-
plicated, we could improve the rate of convergence.

THEOREM 5. Ifk is sufficiently large, then there is an algorithm that constructs a
spanning tree with at least b In kk]n leaves in any graph with minimum degree k,
where b is any constant exceeding 2.5.

Proof. We design an algorithm as those above in which the current tree Tis expanded
at leaves. We will develop an admissibility inequality that has the form r AI + AM >=
(r )An where r is a function of k. Here M is a measure of "deadness" for the leaves

Y

Zt

Zt- Zt

FIG. 4. Resolution ofmaximal live sequences when k 4.
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of the current tree. This is not a physical concept. Rather, the final value of M is a
multiple counting of the leaves of the final tree, and the individual changes in M are an
amortized distribution of this count over the operations.

The statistic we use to measure "deadness" is M 2 i= 0 aims, where mi is the
number of leaves of T having neighbors outside T; the coefficients O/i will be chosen
shortly. It is natural to think that a leaf is more dead when it has fewer outside neighbors,
so we will require 0 ar- <= ar-2 <= <= Co. This requirement guarantees that
expansion at any leaf with out-degree at least r will satisfy rAI + AM >= (r )An; the
net change in M will be nonnegative. Note that it makes sense to assume r < k.

If every operation used by the algorithm satisfies rAl + AM >_- (r )An, then
beginning with a star at a vertex of degree k and summing the augmentation inequal-
ities yields r(L k) / c0L >_- (r )(N- k ), or L >_- [(r )N + (k / r)]/
(r + co) > (co + )/r)N. We will choose the values of r and { ai} so that the
operations are admissible and (c0 + )/r < b In kk, as desired.

For each < r, define an i-operation to be an operation that is performed only when
the maximum out-degree of current leaves is i. Each/-operation begins by expansion at
a vertex x with d’(x) i. This or additional expansions may add to the tree a vertex y
that was an outside neighbor of some z in the current tree with d’(z) j =< i. The net
changes to M for this operation include a for the loss of x as a leaf and a_ %. for
the effect of the edge yz on d’(z). It will suffice to consider changes of these types.

Let ci i-1 Oli for all i. If in addition to Otr-1 < -< Or0 we also have Cr- <--
_-< c, then for any/-operation each edge from a new vertex to an old leaf contributes

at least c to AM. Since we lose the contribution from the leaf expanded to begin the
operation and ignore the possible gains for the new vertices, it suffices to show rAl +
cq ai --> (r An for each/-operation, where q is the number of nontree edges from
new vertices to old vertices of the tree.

To guarantee the desired properties of the operations we will choose r [k 5 J and
ci (r i)/[ i(k 3r) r]. Note that this formula for ci increases as decreases and
that c < when k >-5r.

Let us now specify the/-operations. Let < r be the maximum out-degree ofcurrent
leaves and let x be a current leaf with maximum out-degree. Either we expand at x and
stop, which we call Oi, or we expand at x and also at the new neighbor y ofx for which
the second expansion gives the maximum number of additional leaves; we call the latter
Pi. We choose Pi if the number of vertices introduced by the second expansion is more
than 3r- i.

By construction there is always an operation available to grow T until T spans. For
the admissibility of Pi, we have AI An 2. Ignoring gains due to possible edges from
new vertices to old vertices, it suffices to show that An >= 2r + ai. Since An > 3r, this
holds when i since Ol ;-il+ lcj < rci.

For the admissibility of Oi, suppose that y is an outside neighbor of x and that a
second expansion at y would introduce at most 3r new vertices. Because y also has
at most neighbors among x and the vertices introduced by expanding at x, it has at
least k 3r neighbors in T besides x. This is true for each outside neighbor of x, so q >_-
i(k 3r) for the conditions under which we apply Oi. We have AI and An
i, SO

rAl+ciq-ai>--r(i 1)+ci(q-r)>-r(i 1)+(r-i)=(r 1)An.

Finally, we study Zci ao. Since k >= 5r, we have ,ci <= zri-(r i)/r(2i 1).
Using calculus we can bound this by 1/r[ r- + f- (r- x)dx/(2x- )]. With the
substitution u 2x we can evaluate the definite integral as

1/4 [(2r- In (2r- 3)- (2r- 4)].
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Putting this all together yields

a0< 1/4 (r)[4(r- 1)-2(r- 2)+(2r- 1)In (2r- 3)] <.5 +.5 In 2r.

When we replace r by /k 5 J, we find (ao + / r > b In kk for sufficiently large
k as long as b > 2.5.

This constant b can be reduced by choosing ci and r to make use of some slack in
the argument. In particular, the admissibility of Pi requires only An >= 2r + ai, so we
can use Pi whenever the second expansion introduces more than 2r + ai additional
vertices. When this fails for all neighbors ofxwe have q >= i(k 2r ai). The admissibility
of Oi requires only ciq i r- i, so it suffices to define ci iteratively with ar-I O,
ci (r- + ai)/[i(k- 2r- ai)], and ai- ai + ci. We still wish to keep each c/small
to make a0 of at most logarithmic size, and for this it suffices to have k 2r > /r (i.e.,
r Ik(2 +/3) J for some constant/3 > 0). The aim is then to bound a0 by some function
f(/3) In r, which would lead to the constant C/f(/3) in place ofb. It does not seem worthwhile
to pursue the details ofthis, since better improvements could be generated by considering
a larger variety of operations.

Acknowledgment. The authors are deeply indebted to J. R. Griggs and Mingshen
Wu for valuable comments on and corrections to earlier versions of this paper.
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TREE-MATCHINGS IN GRAPH PROCESSES*

TOMASZ LUCZAK" AND ANDRZEJ RUCIISKI’

Abstract. For a tree T a perfect T-matching in a graph G is a subgraph of G with at least G[ TI +
vertices, each component of which is isomorphic to T. Two properties, . and , are introduced where the
former is a modification of the fact that the largest component of G has a perfect T-matching and the latter is
a suitably chosen necessary condition for , expressed in terms of forbidden "pendant" subgraphs. We show
that in the random graph process n the hitting times of both above properties coincide. This paper is the first
one that deals with the hitting times of nonmonotone graph properties. It extends results of Bollobfis and Frieze
[Ann. Discrete Math., 28 (1985), pp. 23-46] and Bollobfis and Thomason [Ann. Discrete Math., 28 (1985),
pp. 47-98 ].

Key words, random graph process, hitting time, generalized matchings
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1. Introduction. Let G(n, M) be a random graph chosen uniformly from the family
of all graphs on vertex set [hi { 1, 2, n which have M edges, 0 < M =< ().

Let /be the property of having a perfect matching and let A/’- be the property
of not containing an isolated vertex. Erd6s and R6nyi proved in 1966 the following
fundamental result.

THEOREM ER66 ]. Let xn Mn log n. Then

lim Prob (G(2n,M)/) lim Prob (G(2n,M)I/’-)

0 ifXn--
exp(--2e-x) ifxx

ifXn .
We generalize this theorem in three ways. First, similarly as in papers of Bollobfis

and Thomason [BT85 and Luczak [L87 ], we ask about the existence ofa perfect match-
ing in the largest component of a random graph. Second, we match veaices not into
adjacent pairs but into bunches which follow a tree pattern. To be precise, given
a connected graph G and another graph H we say that F is a perfect G-matching in H
if F is a subgraph of H, eveff component of F is isomohic to G and HI FI
[GI 1, where [KI is the number of veices of a graph K. The last condition allows
us not to care about the divisibility of lHI by GI. This is impoant since we cannot
predict the exact size of the largest component of a random graph. We will be interested
in perfect T-matchings where T is a tree.

The most impoant strengthening ofTheorem involves graph processes. Let , be
the family of all () sequences of graphs on veex set In], , (Go, G, G)),
where Gi has edges and contains its predecessor as a subgraph. We turn the family ,
into a probabilistic space by assigning to each the same probability. Equivalently, we
can sta with the empty graph and keep selecting edges at random, one by one, in the
equiprobable manner. The resulting graph sequence is called a graph process and denoted
by , (G(n, 0), G(n, ()). The Mth stage of the process, G(n, M), coincides
with the random graph described above.
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Graph processes were introduced by Erd(Ss and R6nyi in 1959, who realized that
this is the most subtle tool for investigating the evolution of random graphs.

For a graph property and a graph sequence ( we define the trace of /in
as the binary sequence _a _a(/, ) (a0, a) such that a if and only if
G,. s’. The hitting time of /in (, is defined as h(, G,) min ai 1}
(h(M, () () + if all a,. are equal zero). If /is an increasing property then GM
s’ if and only if h(s, (,) _-< M and so the following reformulation of Theorem is
immediate.

THEOREM ’. Let x Mn log n. Then

lim Prob (h (d/g, 2,) --< n (log n + x,))

lim Prob h f’-, 2n n(log n + x)

O ifx---o
exp(-2e-x) ifx,-x

ifx--o.
Bollobfis and Frieze proved that actually the two hitting times almost surely coincide.
THEOREM 2 [BT85 ].

lim Prob h (d/g, 02n) h V’-, 2n) 1.

The meaning of this result is that in most instances vertex degrees tell us whether
a graph has a perfect matching. This approach, appropriate whenever an increasing prop-
erty implies 3 and h(/, (,) h(, (), almost surely, fails for arbitrary
In principle, it may happen that a(, () has many 1-runs and then the fact that
h(s’, G,) h(#3, G,) is useless. We cannot conclude anything about h(/, ()
from the knowledge of G(n, M) (as we did deducing Theorem 1’) either. It is possible
that for each M M(n) Prob (G(n, M) xff) -- 0 whereas Prob (G(n, M) 1 for
some M, 0 _-< M <- ()) -- as n -- oe. (For instance, this is the case of the property
that the maximum degree equals /n/2j.) One way to overcome these difficulties is
by proving that for almost all (, e , there is only one 1-run in the trace a(s], (,).
We say that (, is M-increasing if there is exactly one 1-run in a( s/, () and K, e
i.e., a) 1.

In the next section we introduce two graph properties rig}(T) and V(T). The first
one is a modification of the fact that the largest component has a perfect T-match-
ing where T is a tree. The latter is a carefully chosen necessary condition for rig}(T).
Our main result asserts that almost surely the graph process (, is dg}(T)-increasing
and, moreover, h(dg(T), #J,,) h(dV’l(T), ). The asymptotic distribution of
h(Ul(T), (,) will be established by standard methods.

2. Statement of the result. Let (T) be the property that a graph has a perfect
T-matching, where Tis a tree. A necessary condition for the existence ofa perfect matching
in G, when ]G] is even, is nonexistence of a "cherry," i.e., a pair of pendant vertices
with a common neighbor. We are going to find a necessary condition for perfect T-
matchings in terms of nonexistence of specified branches. We say that B is a branch
of G with root v if B is an induced subgraph of G, v VB, and for each u VB V },
deg (u) dega (u). Assume first that G[ is divisible by T[. If G has a branch that is
a star S on IT[ + vertices rooted at the center, then G has no perfect T-matching.
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However, for P being a path with at least three edges, already a "cherry" is a constraint
for a perfect P-matching. On the other hand, a branch that is a path of any length rooted
at the endpoint does not exclude a perfect P-matching. As we can see, we need a detailed
analysis of the structure of T in respect to the shapes of its branches. As it will become
clear soon (see Lemma 2, 3), we should be interested in the smallest trees that are
not branches of T.

Let //k be the family of rooted k-vertex trees. Families 0]/3 and ’4 are presented in
Fig. 1. The roots are indicated by open circles.

Let a(T) be the largest integer k such that for every U o//k there is a branch of T
isomorphic to U (the isomorphism has to map the roots on each other). We denote by
(T) the set of all U -[a(T)+ for which there is no branch of T isomorphic to U. A
branch of G isomorphic to a member of (T) excludes a perfect T-matching with the
exception of T Pi, 1, 2, where Pi is the path of length i. (These two trees are special
since for them and only for them a(T) [TI .) But it may happen that a branch of G
makes a perfect T-matching impossible even when it is isomorphic to a member of//’a(T).
TO see this, define the outdegree of a branch B with root v as

and set

+dz, deg (v) deg (v)

du,r min{ +dB,r B is a branch of T isomorphic to U).

dB,r du,r. Ifthere is a branchLet B be a branch of T isomorphic to U [a(T) with /

D ofG isomorphic to Uwith outdegree smaller than d,r then, clearly, there is no perfect
T-matching in G. Let

b(T) max dv,r: Urlla(r)).

If b(T) -< then, provided G is connected, such a situation cannot happen. Observe
that b(T) 0 if and only if T P, 1, 2.

Now we are ready to list the types of branches whose appearance in G contradicts
the existence of a perfect T-matching. We say that a branch B of G is r-attached if it has
outdegree r. As we will learn from Lemma 3 of 3, in case b(T) > 1, only (b(T) )-
attached branches of G isomorphic to a member of

(T) { Ulla(r) d:,r b(T)

will be of critical importance. Hence, we say that a branch B of G is T-excluding if
(i) T P and B U_, or
(ii) T P and B {W:, W3 }, or
(iii) b(T) > and B is isomorphic to a member of 1(T), or

FIG.
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(iv) b(T) > 1, B is (b(T) 1)-attached and B is isomorphic to a member of
(T).

For better understanding we list below the introduced notions a(T), b(T), (T)
and (T) for paths P, stars Sr, and the tree To of Fig. 2.

(Here Sr stands for the star with r arms and trees U1, U2, WI and other members
of families //3 and //4 are given in Fig. 1.)

Let A/’(T) be the property that a graph G has no T-excluding branch. Then (T)
is a necessary condition for /(T) provided [G[ is divisible by [TI. To avoid this
constraint, let us alter slightly the property //(T) by imposing the restction that all
unmatched veices have degrees greater than 1. The new propey, denoted by ’(T),
always implies ’(T).

Another obstacle related to the fact that our object of interest is the largest component
and not the whole graph is that, at the early stages of the graph process, ,, the largest
component, may not be unique and, moreover, it "keeps changing places." Eventually,
the process stabilizes in the sense that staing from some moment M0 the veaex sets of
the largest components of G(n, M), M > M0, are well defined (i.e., there is just one
largest component) and fo an increasing sequence of sets. The point M0 lies somewhere
around n/2 (see [B85]), so it is safe to assume that we begin to watch the process ,
after it acquires c n] edges for c > . The constant c is fixed throughout the paper.

For a graph propey we denote by t the propey that a graph G has more
than c[ G[ edges and the largest component of G has . By (T) we denote those from
families (T), (T) that will be of critical impoance for us, namely

{ U2} if T= P1

{W2, W3} ifT=Pz
(T)

N(T) if b(T)=

(T) if b(T) > 2

whereas, when b(T) 2, cg(T) consists ofrooted (k + )-vertex trees U such that either
U e (T) or U U’ + v where U’ e (T) and the additional vertex v, which is the
root of U, is adjacent only to the root of U’.

FIG. 2
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At last, we are ready to formulate our main result.
THEOREM 3.
(i) Almost surely, On is "/l( T)-increasing;

(ii) lim Prob (h(dVz(T) dn) < n

n-- =2a(T)
0

(log n + c(T) log log n +dn))

ifdn- -, dnl o(log n)

ifd,, de(-,

where c(T) max { a(T), a(T) + b(T) 2 ),
e-d

r!kk + u e(r) aut U)’

and

aut (U) is the number ofautomorphisms of U that fix the root of U,

f b( T) ifb( T) >
r--

ifb(T) <= 1,

and k a( T);
(iii) Almost surely, is /1( T)-increasing and

h(///(T), ()= h(t/’l(T), On).
COROLLARY 1. For all trees T, almost surely
(i) h(//(T), On) h(dl/’/(e,), On)

(ii) h(d//’(T), (,)= h( dl/’-, (n).
Let/I/’’k be the property that the second largest component has less than k vertices.

In 1960 Erd6s and R6nyi proved that for

n
M -(log n + (k log log n + d)

if dn-- -, dnl o(log n)

if d--- d

if dn--" .
O

(1) lim Prob (G(n,M)6dV’-k) exp (--kke-d/k!)
n--

The lemma below supplements that result.
LEMMA 1. Let I/’’ be the property that a graph G has more than c lGI edges and

G t/’-k. Then, almost surely, (n is t/’’-increasing and

lim Prob (h(4/’(T), (,)_-< (log n+(k- log log n+ d,))

(2) o ifdn-, dnl o(log n)

exp (-kke-d/k!) ifdn d

ifd--.
Of course, provided the first part of the assertion holds, (2) is just a reformulation

of (1). Since ]TI >= a(T), almost surely, G, hits dV)(t) at the moment when each
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component different from the largest one has less than [T[ vertices. Thus Theorem 3
can be stated in a slightly stronger form.

THEOREM 3’. Let //g’( T) [V’a(T)] be the property that a graph G has at least
c G] edges and all components with at least T] vertices haveproperty /l’(T) ff(T) ].
Then, almost surely, n is /g’a( T)-increasing and

h(.//ff’a( T), (n) h(V’a( T), (n) h(’l( T), (n).
The above theorems and their corollaries immediately imply respective results for

the random graph G(n, M).
COROLLARY 2. ForM (n/2a(T))(log n + c(T) log log n +

lim Prob (G(n,M)6ff( T))= lim Prob (G(n,M)6Ul( T))

O ifdn---, [dn[ =o(log n)

e-x ij’dn-d(-,)

ifdn---,

where ) is given in Theorem 3.
COROLLARY 3. IfM (n/4)(log n + 2 log log n + dn), dn -- , then, for every

tree T, almost surely, the subgraph of G( n, M) induced by vertices of nonzero degrees
coincides with the largest component and has a perfect T-matching.

COROLLARY 4. IfM (n/2)(log n +dn), dn -- , then,for every tree T, almost
surely, G( n, M) has a perfect T-matching.

3. The lroof. Part (i) ofthe theorem is a consequence ofthe following two lemmas,
which will be proved in 4.

LEMMA 2. For U llk + 1, let gO (U) be theproperty that a graph contains no branch
isomorphic to U. Then, almost surely, On is gOl( U)-increasing and

n
lim Prob (h(Ml(U), 0n)-< gz(log n+ k log log n+ d)) e-x,

where ) edk aut U))- and aut (U) is the number ofautomorphisms of U that fix
its root.

LEMMA 3. For U ll and r 1, 2, ..., let gO U, r) be the property that a graph
contains no r-attached branch isomorphic to U. Then, almost surely, On is gOl( U, r)-
increasing and

n
lim Prob (h( gOl( U,r), On) <=-gz(log n+(k+ r 1) log log n+ d))= e-x,

where ) (edk+r- lr! aut (U)) -.
Part (ii) can be shown using the routine method ofmoments, similarly to the proof

of (5) presented in 4. To prove part (iii) we will define a set of properties which
together with Vl(T) imply ///(T). We will prove that, almost surely, for all M’ <
M< n log n,M’= (n/2a(T)) log n, G(n,M)6 . Knowing already that, almost surely,
h(/’l(T))> M’ and 0n is V/(T)-increasing, this allows us to conclude that
h (J//(T), (n) h (V’l(T), 0n), almost surely. Moreover, the property that G 6

//(T) and G is connected is increasing. Therefore, keeping in mind that the hitting
time of connectivity in 0n is approximately n log n/2 (see Lemma above with k ),
0n is, almost surely, ( T)-increasing.
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The remainder of this section is devoted to proving that

(3) Nz(T)_/g(T).

Despite technical details, the idea of our proof is simple. Let T be a tree with
V(T) [t] and let V, Vt be a partition of[n] into equal size sets (for a moment
assume that n is divisible by t). To show that a graph on vertex set [n] has a perfect T-
matching, it is enough to find perfect Kz-matchings in bipartite graphs generated by
pairs V;, V for which i, j 6 E(T). An obvious weakness of this straightforward
approach is that we "lose" all edges within the sets Vi. With some more effort it can be
refined to gain the required result. To do so, we distinguish "bad" vertices that have few
neighbors in at least one of Vi. First we match bad vertices. Then we modify the partition
by deleting matched vertices, moving so called "safe" vertices to keep the partition even.
Then all bipartite graphs generated by the pairs of sets of the new partition, have large
minimum degree and therefore satisfy the Hall’s condition.

Now the details come. Let us set k a(T), V(T) [t] and partition [n] V
t_J Vt so that [I Vii Vl[ < for all andj. We define di(v) IN(v) f V/.[,

1,..., and d(v) d(v) + + dt(v). We call v bad if, for some [t], di(v) <
log n/5Okt; otherwise, v is called good. A vertex v is small if d(v) < 5kt2; otherwise, v
is called large.

DEFINITION (Property ). A graph G on vertex set [n] is said to have property
1 if

(i) G has no more than n/log2t n bad vertices,
(ii) no 2kt bad vertices are within distance 10t from each other,
(iii) no k small and bad vertices are within distance 10t from each other,
(iv) no small vertex lies on a cycle of length less than 3kt,
(v) for all pairs of disjoint subsets of [n] of size Sl IS21 n(log log n)2/

log n there is an edge from $1 to $2,
(vi) every subset S c n with S < 2n(log log n) 2/log n contains less than

(log log n) 31 S edges,
(vii) there are less than n/log2t n vertices outside the largest component,
(viii) the maximum degree is smaller than 6 log n.

(The quantities 2kt, 10t, and so on are quite arbitrary.)
LEMMA 4. For M’ n/2k) log n, almost surely, a random graph process Jn is

such that, for all M satisfying M’ <= M <= n log n, G(n, M) 6 /.
The proof of Lemma 4 is postponed to 4.
The proof of (3). We ignore all vertices outside L, the largest component of G.

Assume that vl, Vm are the bad vertices in L and that d(v) <= <= d(l)m). Now
we describe a procedure matching the bad vertices into copies of T. Our variables are
H--the graph induced by yet unmatched vertices and v--a bad vertex in H with the
lowest index. At the beginning we set H L and v v. Actually, we show only how
the procedure matches bad vertices into branches of T such that either the root or r of
its neighbors (when the branch is r-attached in T) are good vertices of G. These branches
are immediately extended to a whole copy of T. Such extensions are possible due to
property (ii). Below M stands for the branch and M for the copy of T matched at the
current stage.

Description of the procedure.

I. Assume first that v is small and choose u to be the nearest large vertex from v.
Let P be the shortest path linking v and u. By (iii), PI --< k + 1. Consider
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a component C of H V(P) with [C[ < kt and a vertex x in C. By (iv),
di(x) <= kt. Moreover, dL(x) di-i(x) < 2kt2, since, by N(ii), at most 2kt
already matched bad vertices were joined to x and, in addition, NL(x) Ni-i(x)
could have contained at most 2kt(t good vertices. Hence, C contains only
small vertices, C[ < k, and, by /(iv), C is a branch ofH rooted at a vertex of
P. Let us denote by B the subgraph ofH induced by P and the components of
H V(P) of order at most k. Clearly, B is a tree. Coming back to the choice of
u, we assume that u is picked to minimize the order of branch of B hanging at
u. In general, by /(iii), B[ _-< k + 1.

I1. However, if u is bad then [B[ =< k.
Ila. [B[ _-<k- 1.

Each vertex has at least 4kt2 good neighbors in L and at least 2kt2 good neighbors
in H. Let w be a good neighbor of u in H. Set M B tO { uw }. By the definition
of k there is a branch of T isomorphic to M with w as the root.

Ilb. [B[ =k.
B is isomorphic to a branch of T with u as the root. We pick d =de,r good
neighbors of u, Wl, wa, and set M B tO {uwl, uwa}.

I2. Ironically, the case when u is good is more complicated.
I2a. But not if [B[ =< k. Then M B is ready.
I2b. Assume, hence, that [B[ k + 1.

Let w be the neighbor of u in P. For all x V(B) u, w}, d(x) dz(X)
de(x) by /(iii).

I2b(i). Ifd(w) de(u) then B is a branch of L and, by V’I(T), there
is a branch of T isomorphic to B with u as the root. Set M B.
I2b(ii). Otherwise, w has a good neighbor different from u. In such case,
by the special choice of u, de(u) (again, by /(iii)). Thus B u is
a branch of L of order k with w as the root. By V’l(T) the out-degree of
w must be at least d de-u,r. Set M B tO { wwl, ww}, where
w, we are good neighbors of w (u is among them).

Once we have gotten through the early phase of the procedure and matched all
small vertices there are no difficulties any longer.

II. If v is large, choose u among good neighbors of v. Set M B P vu }.
After each round is completed we substitute H for H- . Since, by /(ii), each

vertex is joined to at most 2kt (good or bad) already matched vertices, each vertex of
L’, the subgraph of L induced by yet unmatched vertices, has at least log n 50kt
2kt 2 > log n/51kt neighbors in each set V Vi f-) L’, 1, ..-, t. By /(i) and
(vii) [L’[ > n -f, f 2tn/log2t n and so, for all i,j [t], [[ V[ [V.[[ < f. To
balance the partition, let us choose a set W of "safe" vertices such that for each
t] W ffl V} > tf and no two vertices of W are within distance two from each other.
The existence of W follows from the fact that A(L’) _-< A(G) < 6 log n. Indeed, W can
be defined recursively. After including vertex x to W cross out the set N(2), IN(2)[ <
36 log 2 n, of all vertices lying within distance 2 from x and repeat this step. (Let us re-
call that [V}[ [V;[ n/t.) Now we move "safe" vertices around and, possibly,
delete up to of them to obtain a partition V’f, V7 of L’ satisfying IVY’[
1[ L’[/t] h, [t]. Let us focus on the bipartite graph F induced in L’ by (VT, V:).
By the careful choice of W, 6(F) > log n / 51 kt > log n / 52kt. To finish the proof of
(3) we must find a perfect matching in F. Due to Hall’s theorem it is enough to check
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whether, for each S _c VT, the set N(S) of neighbors ofS in Vj: has at least SI elements.
Suppose there is S with IN(S) < SI and consider two cases.

Case 1. S <= g n(log log n) 2/log n.
Then S t3 N(S) < 2g which contradicts (vi).
Case 2. SI > g.

Since there is no edge between S and N(S) V)’ N(S), IN(S) g by s(v).
Let N(N(S)) be the set of neighbors of N(S) in V. Arguing as in Case 1, we can show
that IN(N(S))I>= IN(S)I. Thus IN(S)I- h-IN(S)I >= h-IN(N(S))l >= SI,
since S N N(N(S)) .

This completes the proof of (3) and therefore the proof of Theorem 3.

4. The proof of lemmas. In this section we will be frequently using the estimate

A-a A B)b

where A, B, a, b are functions of n for which B o(A), b o(a), a 2 O(A), and
b2= o(B).

Proof of Lemma 1. Let M0 cn l, M (n/ 2k)(log n log log log n), m2
(n/2k)(log n + (k log log n log log log n), M3 n log n.

Let Xi be the number of isolated paths Pk- in G(n, M;), 0, 1, and let Y be the
number of those isolated Pk_ of G(n, M_ 1) that are still isolated in G(n, Mi), 1,
2. We have

EXi= k 2 2

Mi-k+

(2c)-n 2Mi - 2kMi 2--- e-2Cn if 0

2k n n
-log-nloglogn ifi=l

and

E:zXi EXi(Xi

k k 2 2 (EXi), fori =0,1.

Mi-2k+2

Hence, by Chebyshev’s inequality, almost surely, Xi > EX/2, for 0, 1. Clearly,

Prob(Yi=0) Prob(Yi=OIXi_l=l) Prob(Xi_l=/), where a=[EXi/2].
l>a

But Prob (Yi OlXi-= l) is a decreasing function of and we must only
prove that

(4) Prob (Yi- O S 1- a)--- O.
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We have

2
-Mi_+k-1

2
--Mi-1

E(Yi[Xi-I =a)=a

Mi-Mi-1 Mi-Mi-1

aexp ---(Mi-Mi- ) .
Similarly, E(Y[X_ a) 2, and (4) follows by Chebyshev’s inequality. Hence,
almost surely, the graph process ( is such that for all Mo --< M _-< M2 there is a component
of order k in G(n, M).

Let Z [{ M" M2 < M < M3, G(n, M) has a k-vertex component that was not
present in G(n, M- )}[. We will show that, almost surely, Z 0. Since a new k-
component can only emerge by joining two smaller components,

EZ <- ., k--(k 2 n-- (M-1)-(k-2) 2
-(M-l)

o(1),

where M M2 + (n/2k) log log n andf(x) x- 2 e-kx. (Note that f is decreasing in
the interval 2/k, ).)

Since, almost surely, G(n, M3) is connected (see ER59 ), almost surely, the graph
process (n is such that, after moment M2, no new k-component is created. Hence, for
every natural k, almost surely, ( is dl/’ -increasing, where dV/, is the property that
a graph G has at least c lGI edges and there is no k-component in G. We already know
that, almost surely, G(n, M2) has no/-component for >= k + 1. The first new/-component,
l > k + after moment M2 could be created only by joining two components of order
at most k and therefore would be at most 2k. This is unlikely, since (, is, almost surely,
V’?-increasing, simultaneously for all k + 1, 2k. This implies that, almost
surely, after moment m2 no new/-component, > k, is created and so (, is, almost
surely, dV--increasing. 7q

ProofofLemmas 2 and 3. Let U be a tree and W V(U), W 4: such that each
vertex of V(U) W is joined to a vertex from W. An induced subgraph H of graph G
is called a U, W)-subgraph of G if there is an isomorphism a between U and H such
that for each x W, du(a(x)) da(a(x)). If W[ [UI 1, this coincides with the
notion of a branch introduced in 2. The following lemma is a common generalization
of Lemmas 2 and 3. (An r-attached tree-branch B of G with root v can be interpreted
as a (U, W)-subgraph with U (V(B) tA Na(v), E(B) {v, u} u Na(v)}) and
w V(B).)

LFMMA. Let U, W) be the property that a graph G has no U, W)-subgraph.
Then, almost surely, dn is 1( U, W)-increasing and

n
(logn+(IU[- 1)loglogn+d))=e-x(5) ,-lim Prob(h(/(u, W),(n)<2[ wl

where (eaw aut U, W)) -1 and aut U, W) is the number ofautomorphisms r

ofUfor which a( W) W.
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Proof oflemma. Let IWI w, IUI u,M_ (1 + c)n/2, M0 cn, M
(n/2w)(log n log log log n), M2 (n/2w)(log n + (u log log n log log log n),
M3 n log n, and

n
M(d) w(log n + u- log log n + d).

First, we will prove (5) by showing that the number X of (U, W)-subgraphs in
G(n, M(d)) converges in distribution to a Poisson random variable with expectation .
By Lemma 1, almost surely, (U, W)-subgraphs of G(n, M(d)) belong to the largest
component. We have, with h ()(w!(u w)!/aut(U, W)),

EX= h
u

m(d)-(u-1)

and

+(u-w)(u-w- 1)+2w(u-w) -1

EX(X- )= h 2

u u
M(d)-2(u- 1)

"- O( / u u-I

(n-2w) +(u-w-l)(u-w-l-1)+ (l)2
M(d)-2(u- 1)+/-

where stands for the number of common vertices in two (U, W)-subgraphs. Note
that two different U, W)-subgraphs must be W-disjoint. Similarly, one can prove that
EX X )... X r + -- k for r 3, 4, and (5) is shown.

Let X_ be the number of isolated U-trees in G(n, M_ ). By the second moment
method one can easily prove that, almost surely, X_ > an for some constant a

a(c) > 0. Moreover, it is known (see [ER60]) that, almost surely, the largest component
L_ of G(n, M_ has more than 3n vertices,/3 3(c) > 0.

Let Y0 count isolated U-trees of G(n, M_ that are joined by an edge with V L_

and are (U, W)-subgraphs of G(n, Mo). (For each isolated U-tree of G(n, M_), from
among all isomorphic choices of W, we fix them lexicographically first.) Clearly,

Prob (Yo O) Prob (Y0 O X-1 x, L-11 1) Prob (X_I x, L_ l)
x

_
an

_
3n

=< Prob (Y0 01 X_ an, L_ 3n),
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since the conditional probability is a decreasing function of x and l. We have

E(YoI X_I on, L_, n)

n-w)+2
-I- W( U-- w)-M-1 nt- W

-- W( U W) M-1 h- W- u w)n

-1

(u- w)fl(c- )an
w)+(u-w2

cfl(c- 1)(u-w)exp (-w(c- 1))n.

-1

With only some more effort we can compute E(Yo(Yo )l X-1 oH’/, ]L-1l n) and
deduce, using Chebyshev’s inequality that, almost surely, Yo > c’n’ for some c( > 0.
Note that U, W)-subgraphs counted by Y0 are vertex-disjoint. Now, let Y be the num-
ber of those (U, W)-subgraphs counted by Y0 Which remain (U, W)-subgraphs of
G(n, M ). Conditioning on Y0 we can easily show that, almost surely, Y1 > 0. Note that
due to Lemma 1, almost surely, every U, W)-subgraph ofG(n,M belongs to the largest
component of it. Thus, almost surely, 0n is such that for all M0 =< 3//<- M1 the largest
component of G(n, M) contains a U, W)-subgraph. To cover the period (M, M2) we
can prove using the same techniques that, almost surely, there are at least cd’ log log n
disjoint U, W)-subgraphs in G(n, M1 ), where cd’ > 0, and at least one ofthem remains
a (U, W)-subgraph in G(n, M2). Let Z I{M: M2 <= M <- M3, G(n, M) has a
U, W)-subgraph that was not present in G(n, M- }1. By Lemma 1, almost surely,

for M >= M2 the largest component cannot "catch" an isolated U-tree, so

EZ<=(1)+O(1) -, nu 2 In\
M=M2 M-l-u+2 / )2 -M+I

(exp =0(1).

By (5), almost surely, there is no U’, W’)-subgraph in G(n, M3) for all U’ U, W
V(U’). Since this is an increasing property, almost surely, 0n is such that for all M >-
M3 there is no U, W)-subgraph in G(n, M). Summarizing, we have proved that, almost
surely, after moment M2 no new (U, W)-subgraph emerges. Hence, almost surely, 0n
is #)t( U, W)-increasing.

The proof ofLemma 4. Properties 1(i), a(v), vii ), vi ), a viii are
increasing [decreasing] and therefore it is enough to prove that, almost surely,
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G( n, M’) G(n, n log n) possesses them. This can be done by showing that the expectation
of the number of respective objects is asymptotically small and by then applying Markov’s
inequality (see B85 ], BF85 ], L87 for similar proofs). Properties .e/( ii )- /(iv) are
not monotone and the proofs are similar to each other and to those of previous lemmas.
We restrict ourselves to present the proof of N(ii).

Let X count sets of 2kt bad vertices of G(n, M’) that are within distance 10t from
each other (call them bunches) and let Yl be the number of/-vertex trees, 2kt <= <=
20kt2, containing at least 2kt bad vertices. Then, clearly,

n
ll_2 , t2ktf-[EYI’" 2kt ml,...,m2kt<logn]5Okt ’= mj

(n) -2kt(n/t) 2M
-1

2

M’-,mi-l+l

mi mj n 2 }

O( )n -1 (log n)2t+ l- (50e) og n/25

O(n -0"9+0"24) O( ),

since the function f(x) (c/x) is increasing for c > ex. Therefore,
20kt

EX= , EYl=o(l).
2kt

Let Z I{M M’ _-< M =< n log n, G(n, M) has a bunch that was not present in
G(n, M- }1. Clearly, the appearance of a new bunch causes the appearance of a new
/-vertex tree, 2kt <= <= 20kt2, containing at least 2kt bad vertices. Let Zl count how
many times in the period (M’, n log n) of the process (n such a tree emerges. Then

t=t’ 2kt ml,’",m2kt<logn/5Okt

t2kt I-I 2
j=l mj

M-l-mi-l+l

n
-1 2

-M+I

=O(1) lTl-2 j (ert/t2---mmJ(2Ml-2
M mJ n2 } --1

-O(1)(logrt)2kt+l-.(lOOekM)’gn/25
t n logn

The last series can be bounded from above by a geometric series with the same first term
and the quotient

exp(-(l+(1))( 4kn 25M’
<exp -ran
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Thus

This completes the proof of ’(ii).

EZt <= O( 1)(log n)2k+l-2H(3k lOOekM’)gn/nlog n

O( )(log n) 2kt+ l- In-1 (50e)logn/25

O(H -0"9 + 0"24) O( ).

exp
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THE EXPECTED CAPACITY OF CONCENTRATORS*

NICHOLAS PIPPENGERf

Abstract. The expected capacity ofa class ofsparse concentrators called modular concentrators is determined.
In these concentrators, each input is connected to exactly two outputs, each output is connected to exactly three
inputs, and the girth (the length ofthe shortest cycle in the connexion graph is large. Two definitions ofexpected
capacity are considered. For the first (which is due to Masson and Morris), it is assumed that a batch of
customers arrive at a random set of inputs and that a maximum matching of these customers to servers at the
outputs is found. The number of unsatisfied requests is negligible if customers arrive at fewer than one-half of
the inputs, and it grows quite gracefully even beyond this threshold. The situation in which customers arrive
sequentially is considered, and the decision as to how to serve each is made randomly, without knowledge of
future arrivals. In this case, the number of unsatisfied requests is larger but still quite modest.

Key words, communication network, maximum matching, branching process, random packing
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1. Batch arrivals. For the purposes ofthis paper, a concentrator is a bipartite graph
G (A, B, E) comprising a set A of inputs, a set B of outputs, and a set E

_
A B of

edges. The intended interpretation is that the inputs correspond to "customers," the
outputs correspond to "servers," and the edges correspond to "channels" or "switches,"
each capable of providing direct access by a given customer to a given server.

We consider two modes of operation for a concentrator. In the first mode, the
operation of the concentrator takes place in "cycles," each of which has two "phases."
During the first phase, a subsetX_A ofthe inputs, called the requesting inputs, is chosen.
This represents the arrival ofa "batch" ofcustomers. During the second phase, a maximum
matching M

_
E fq (X B) between the requesting inputs and the outputs is chosen.

This represents the action ofa controller granting access to servers to as many customers
as possible. The cardinality #Xis called the offered traffic; #Mis called the carried traffic;
and #X- #M is called the lost traffic.

The actual capacity of a concentrator is the largest k such that the carried traffic is
k for all X

_
A such that #X k. The expected capacity of a concentrator (which is a

function ofthe offered traffic k) is the expected carried traffic when the requesting inputs
are chosen at random, with all sets X A such that #X k is equally likely.

These definitions of actual and expected capacity were given by Masson and Morris
[MM], who investigated their values for "binomial" concentrators. In this paper we
study their values for a new class of concentrators that we call "modular" concentrators.
The asymptotic behaviour of the expected capacity for modular concentrators can be
estimated quite sharply, and it appears quite attractive in view of the sparsity of these
concentrators. In particular, the lost traffic is negligible when the offered traffic is less
than one-halfthe number ofinputs, and it grows quite gracefully even beyond this thresh-
old. Scheinerman S] has used the methods of this paper to show that even "random
concentrators" have performance only slightly worse than that ofmodular concentrators.

In the second mode, customers arrive sequentially, and the decision as to how to
serve each is made randomly, without knowledge of or dependence on future arrivals.
We define this mode of operation in more detail in 7.
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2. Modular concentrators. We deal with a class of concentrators for which each
input meets exactly two edges and each output meets exactly three edges. For such a
concentrator there is a natural number n such that #A 3n, #B 2n, and #E 6n.
These concentrators will be called (3 2)-concentrators.

We begin with the observation that the actual capacity of a (3 2)-concentrator is
always rather small. By the cyclomatic number of a graph with v vertices and w edges,
we mean the number w v + 1. If the cyclomatic number of a graph is at most one,
then it contains at most one simple cycle, and thus it has at most two independent paths
between any two vertices.

THEOREM 2.1. The actual capacity ofa (3 2)-concentrator is O(log n).
Proof. Given the (3"2)-concentrator G=(A,B,E), construct the graph

G* (B, E*) with vertices B corresponding to the outputs of G and edges E*=
{ { b, b’}" { a, b }, { a, b’} E for some a A } corresponding to pairs of outputs that are
connected to a common input. Let b be any vertex of G*. Since each vertex meets
exactly three edges in G*, there are exactly 3.2k- paths of k steps starting from b.
Thus, ifk [log2 (2n + )q, there will be three distinct paths starting from b and ending
at a common vertex c. The union U of these three paths has at most 3 (k + 4
3k- vertices, since the beginning and ending vertices are common. But since there are
three independent paths from b to c in U, the cyclomatic number of U must be at least
two, and thus U must contain more edges than vertices. It follows that there is a set of
at most 3k inputs in G that are connected only to a smaller number of outputs; thus the
actual capacity of G is at most 3k O(log n). V]

We now turn our attention to a class of (3 2)-concentrators for which the expected
capacity is much larger than the actual capacity. The girth of a graph is the length of the
shortest simple cycle in the graph. We construct 3" 2 )-concentrators with girth f(log n).
Our construction follows ideas of Margulis [M 1] and Imrich [I].

Let PSL(2, Z denote the group of two-by-two integer matrices (ca ) with deter-
minant one (ad- bc ), where two matrices are considered the same if their corre-
sponding entries are negatives of each other. This group is generated by the matrices
S (_0 ) and R (_ I). We have S R3 -I, where I is the identity matrix.
Furthermore, these are the only relations satisfied by S and R. Thus PSL(2, Z is the
free product of Z/(2 (generated by S) and Z/( 3 (generated by R ).

Let q >_- 5 be a prime and let PSL(2, Z(q)) be the quotient group of PSL(2, Z
in which two matrices are considered the same if their corresponding entries differ by
multiples of q. There are (q )q(q + )/2 elements in PSL(2, Z/(q)). The natural
homomorphism r from PSL(2, Z to PSL(2, Z/(q)) reduces entries modulo q.

A word in S and R that is reduced with respect to S2 I and R I must consist
of occurrences of S alternating with occurrences of R or R2 R-. If such a word is in
the kernel of r, it must have norm at least q 1. (By the norm of a matrix (a ), we

a )(y ), as the vector (xmean the maximum length of the vector ( varies over the circle
x2 + y2 1. In particular, the norm of a matrix is at least the maximum of the absolute
values of its entries.) It follows that a reduced word in the kernel of r must contain at
least loga (q occurrences ofR and R -1, where/3 + f)/2, since the norm of
S is 1, the norms ofR and R -1 are/3, and the norm is submultiplicative.

For each prime q >_- 5, let Gq denote the (3 2)-concentrator whose edges correspond
to the elements of PSL(2, Z/(q)), whose inputs correspond to pairs of elements that
differ by a factor of S, and whose outputs correspond to triples of elements that differ
by factors of R+ Such a concentrator will be called a modular concentrator. Clearly,
n (q )q(q + )/12. By the argument of the preceding paragraph, any simple cycle
in Gq must have length at least 2 log (q ft(log n). Thus we have proved the
following lemma.
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LEMMA 2.2. The girth ofa modular concentrator is 2( log n).
The first construction ofa 3 2 )-concentrator with girth 2(log n) is due to Gallager

([G, Appendix C]), in the form ofthe parity-check matrix of a low-density parity-check
code with rate over GF(2). (Gallager’s construction can be carried out in "polynomial
time," but it is not as explicit as the one given above, which can be carried out in
"logarithmic space.") We observe that there are more sophisticated constructions that
give (3 2)-concentrators with even larger girth than Gq (roughly (8 / 3) log2 n rather than
(2 / 3 loga n) (see Biggs and Hoare BH ], Weiss W], Margulis M2 ], and Chiu C ).
We also observe that we do not need the full strength of Lemma 2.2. If g denotes the
girth, it is sufficient that g -- as n - .3. Hypergeometric and binomial capacities. The expected capacity has been defined
hypergeometrically, that is, by taking all sets X ofinputs with #X k to be equally likely.
We begin by showing that it is possible to deal instead with a set X of inputs that is
defined binomially, that is, in which each input appears independently with probability
p k/2n.

Let H(3n, k) denote the expected cardinality of a maximum matching when each
set ofinputs Xwith #X k is equally likely. Let J( 3n, p) denote the expected cardinality
of a maximum matching when X contains each input independently with probability p.

LEMMA 3.1. For 0 < p < 1, 0 < e < min {p, p } and 3np an integer, we have

J( 3n,p- e)- ,-2 H( 3n, 3np) <= J( 3n, p + e) + ,-2.

Proof. Let X’ be a set in which each input appears independently with probability
p + e. We have Ex (#X’) 3n(p + e) and Var (#X’) =< 3n. Thus, by Chebyshev’s
inequality, we have Pr(#X’< 3np) <- 1/3ne 2. If #X’>= 3np, then we may delete
#X’ 3np inputs from X’ to obtain a set X with exactly 3np inputs, in such a way
that every set of 3np inputs is equally likely. The expected cardinality of a maximum
matching for X’ is thus at least H(3n, 3np) in this case. We thus have J(3n, p + e) >=

1/3neZ)H(3n, 3np). Since H(3n, 3np) <= 3n, we obtain the fight-hand assertion
of the lemma. A similar argument yields the left-hand assertion, ff]

In the following sections we prove the following.
THEOREM 3.2. For 0 < p < 1, we have

J( 3n,p) 3nh(p) + O(n/(log n)1/2),
where

h(p)
(2p )3/3p3,

ifO<p<__

if 1/2<p< .
Since h(p) is continuous in p, we may apply Lemma 3.1 with e -- 0 as n -- to

obtain the following corollary.
COROLLARY 3.3. For rational 0 < p < and n such that 3np is integral, we have

H( 3n, 3np) 3nh(p) + O(n/(log n)/2).
4. Reduction to small components. We seek to determine the expected number of

pairs in a maximum matching when each input is independently requesting with prob-
ability p. Let F(p) be the subgraph of G obtained by deleting each input that is not
requesting and each edge meeting such an input. Let F* (p) be the corresponding subgraph
of G*, in which each edge is retained independently with probability p.

LEMMA 4.1. In an acyclic connected component ofF* (p all but exactly one ofthe
outputs appear in a maximum matching. In a cyclic connected component ofF* (p ), all
ofthe outputs appear in a maximum matching.
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Proof. If F* (p) contains a vertex that meets exactly one edge, we may pair the
input corresponding to the edge with the output corresponding to the vertex, then find
a maximum matching in the graph that remains after this edge and vertex are deleted.
This transformation does not change the cyclomatic number of any component. Since
an acyclic component that contains an edge must contain a vertex that meets exactly
one edge, repeated application of this transformation to an acyclic component must
eventually yield an isolated vertex. This proves the first assertion. Repeated application
to a cyclic component must eventually yield a graph K* in which every vertex meets at
least two edges. In the corresponding bipartite graph K, every input is connected to
exactly two outputs, and every output is connected to at least two inputs, so the marriage
theorem ensures the existence of a matching including all of the outputs. This proves
the second assertion. V1

Let Z(p)denote the expected number of acyclic component in F*(p). Lemma 4.1
implies that

(4.1) J(3n,p)=2n-Z(p).

Let g denote the girth of G, and let Y(p) denote the expected number of components
ofF* (p) that contain at most g/8 edges. A component with at most g/8 edges must be
acyclic, so Y(p) <= Z(p). On the other hand, there are at most 6n/(g/8) 48n/g
components with more than g/8 edges, so Z(p) <= Y(p) + 48n/g. Since g ft(log n),
we have

(4.2) Z(p)= Y(p)+O(n/logn).

Let V(p) denote the expected number of vertices in F*(p) in components with at most
g/8 edges, and let W(p) denote the expected number of edges in such components.
Since these components are all acyclic, we have

(4.3) Y(p)= V(p)- IV(p).

Equations (4.1), (4.2), and (4.3) together give the formula

(4.4) J(3n,p)=2n V(p)+ W(p)+O(n/logn)

for the expected capacity in terms of the expected numbers of vertices and edges in small
components of F* (p). In the next section we determine the asymptotic behaviour of
these expected numbers.

5. Analysis of small components. Let I be an infinite tree in which each vertex
meets exactly three edges. Let I(p) be a random subgraph of I in which each edge is
independently retained with probability p. Let vk(p) be the probability that a vertex of
I belongs to a component of I(p) with at most k edges. Let wk(p) be the conditional
probability that an edge e of I belongs to a component of I(p) with at most k edges,
given that e is retained in I(p). It is clear that

V(p)= 2nVg/g(p) and W(p)= 3npWg/g(p),

since a neighbourhood of radius g 8 about any vertex or edge in G* is isomorphic to a
corresponding neighbourhood in I, and all quantities in (5.1) are defined in terms of
random variables that are independent of events outside these neighbourhoods.

Let v(p) denote the probability that a vertex in I belongs to a finite component of
I(p), and let w(p) denote the conditional probability that an edge e of I belongs to a
finite component of I(p), given that e is retained in I(p). The theory of branching
processes gives the following lemma.
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and

LEMMA 5.1. We have

v(p)
(1 p)3/p3,

ifO<p<=1/2

1, if O<P<= 1/2;
w(P)=

(1 _p)4/p4, if 1/2 <p< 1.

Proof. Consider a branching process in which the first generation contains a single
individual, and each individual in the th generation independently contributes to the
(i + )st generation a number of offspring that is binomially distributed with generating
function p + px)2. According to Harris ([HI, Chap. I, Thm. 6.1]), the probability
of extinction (that is, the probability that the family generated in this way is finite) is the
root q(p) of equation x p + px) 2, given by

1, ifO<p<= 1/2;
q(P)

(1 p)2/p2, if 1/2 <P< l.

The probability that a vertex in I(p) belongs to a finite component is simply the
probability of extinction when the first generation contains a number of individ-
uals distributed with generating function p + px) 3, the generating function for the
number of edges incident with the given vertex in I(p). This extinction probability is

p / pq(p))3 (which is as given in the statement of the lemma).
Similarly, the conditional probability that an edge e in Ibelongs to a finite component

of I(p), given that e is retained in I(p), is p + pq(p))4 (which is as given in the
statement of the lemma), since p / px)4 is the conditional generating function for
the number of edges incident with e in I(p), given that e is retained in I(p). E3

LEMMA 5.2. We have

Vk(P) v(p)/ O(k-1/2)

and

w(p) w(p) / 0(k-1/2).

Proof. Clearly, Vk(P) <= v(p). Furthermore, v(p) vk(p) is simply the probability

and

W(p)= 3npw(p)+ O(n/(log n)/2).
Substitution of these formulae and Lemma 5.1 into (4.4) completes the proof of Theo-
rem 3.2.

that, in the branching process described in the proof ofLemma 5.1 (with the generating
function of the initial distribution being p / px)3), extinction occurs after the size
of the family exceeds k. According to Harris ([H, Chap. I, Thm 13.1] ), the conditional
probability that the size of the family is j, given that extinction occurs, is 0(j-3/9-). (The
decay is actually much faster than this unless p 1/2.) Thus the probability that extinction
occurs after the size exceeds k is j>kO(j-3/2) O(k-1/2). The proof for wk(p) and
w(p) is analogous.

Applying Lemmas 2.2 and 5.2 to (5.1) yields

V(p)= 2nv(p)+ O(n/(log n) 1/2)
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6. Extensions for batch arrivals. The concentrators that we have considered are
one-stage networks; that is, each edge directly connects an input to an output. It is easy
to see, however, that the analysis we have given has immediate application to some
multistage networks.

Consider for example the "two-stage (9"4)-concentrators" constructed in
the following way. Let q >= 5 and q’>= 5 be primes (equal or distinct), and set n
(q )q(q + )/12 and n’ (q’- )q’(q’ + )/12. Take 3n’ disjoint copies of Gq and
2n disjoint copies of Gq,, and link each output of each copy of Gq to an input of a copy
of Gq,, with exactly one link between each copy of Gq and each copy of Gq,. If the inputs
ofthe resulting network are independently requesting, and ifappropriate random choices
of the maximum matchings in the copies of Gq are made, then the inputs of each copy
of Gq, will be independently requesting, and the analysis given above can be applied to
each stage in turn. (The traffics offered to the various copies of Gq, will be dependent,
but this does not affect the expected capacity.) The expected capacity will again be piece-
wise rational, now with breakpoints at p (the onset of loss in the second stage) and
p 1/2. The extension to three or more stages should be clear.

It is possible to extend the analysis we have given, with hardly any changes in the
arguments, to "(a" 2 )-concentrators with large girth" (for integer a > 2 ). The construc-
tion of such concentrators can be accomplished by the methods of the papers cited in

2.) It may also be possible to extend Theorem 3.2 (though not Theorem 2.1 to
"(a b)-concentrators with large girth" (for integers a > b > ). There seems to be
nothing as simple as Lemma 4.1 in this case, but the success of Karp and Sipser [KS] in
treating the problem of maximum matchings in sparse random graphs gives hope. For
b 2 we prove (and for b > 2 it is natural to conjecture) that v(p) is replaced by
q(p)a and w(p) is replaced by q(p)ta-l)b, where q(p) is now the appropriate root of
the equation x p + pxb- )"-

7. Sequential arrivals with random hunting. We now turn to a second mode of
operation for concentrators. Consider a concentrator G (A, B, E). Associate with each
input a A an arrival time ’a, uniformly distributed in the interval 0, ], and independent
of all other arrival times. The intended interpretation is that the customer corresponding
to input a arrives at time Za-

Next associate with each input a A a hunting order Ba, uniformly distributed over
the total orders among the outputs connected to a, independent of the hunting orders
of other inputs and independent of the arrival times of all inputs. The intended inter-
pretation is that when the customer arrives at input a (at time Za), it examines the outputs
connected to a in the order prescribed by/a until it finds one that has not been engaged
previously (that is, at a time less than Za). If it finds such an output, the output is engaged
at time Za. If it finds no such output, no action is taken, and the customer remains
unserved.

Some comments about this mode of operation are in order. First, the assumption
of uniformly distributed arrival times will facilitate calculations, but other independent
and identically distributed arrival times would also result in all possible orders of arrival
being equally likely, and in the number of arrivals before time being binomially dis-
tributed. (The choice of the arrival-time distribution may be regarded as a choice of the
parametrisation of time. An exponential distribution, corresponding to Poisson arrivals,
seems the most natural physically.) Second, results concerning the expected number of
customers served for this "binomial" arrival process can easily be translated (by the
argument given in 3) into results for the "hypergeometric" arrival process, in which
some number k of customers arrive at distinct inputs, with all possible sets of k inputs,
as well as all possible orders of arrival, being equally likely.
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8. Sequential arrivals for trees. We begin our analysis by looking at some concen-
trators that are trees. Let Co denote the concentrator with a single input that is connected
to two outputs, one of which is called the root and the other of which is called the leaf.
For some k >= 1, suppose that Ck-1 has been defined. Let Ck denote the concentrator
obtained by identifying the leaf of a copy of Co with the roots of two copies of C_ to
form an internal output (neither a root nor a leaf); the root of the copy of Co becomes
the root of C, and the leaves of the copies of C_ (of which there are 2) become the
leaves of Ck.

For k >= 0 and 0 =< =< 1, let Q(t) denote the probability that the root of C is
engaged at time t.

LEMMA 8.1. We have

and

Qo(t)=t/2

Q(t) -( -Q_ (S))2ds.

Proof. For the root of Co to be engaged at time t, the customer must arrive by time
t, which happens with probability t, and must choose the root before the leaf in the
hunting order, which happens independently with probability 1/2. This proves the first
assertion. For the root of Ck to be engaged at time t, the customer must again arrive by
time t. If the customer arrives at time s, then it will engage the root unless it chooses the
leaf of Co before the root in the hunting order, and the leaf of Co is not engaged by time
s. This leaf will be engaged by time s if and only if the root of one of the copies of C_
would be engaged by time s (with the same arrival times and hunting orders in the
copies). These events depend on arrival times and hunting orders for disjoint sets of
inputs, so they are independent. This proves the second assertion.

We now show that the transformation Q_ Q has a fixed point; that is, a
solution Q of the integral equation

)2(8.2) Q(t) 1-(1-Q(s) ds.

To do this, we differentiate (8.2) with respect to to obtain the differential equation

(8.3) Q’(t) 1-(1-Q(t))2,

with the initial condition Q(0) 0. Since (8.3) does not involve explicitly, it can be
solved by quadratures:

O( dx
(8.4) x)2/2 t,

where the lower limit of integration has been chosen to satisfy the initial condition.
The substitution y x)/V reduces the integral to

V dy / tanh_
1-Q(t)

(-O(t))/ y2 -ftanh-lf
Thus

Q(t)=l-tanh ln(l+V)-
since tanh-’ 1/V In + f).
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LEMMA 8.2. We have Qk(t) -- Q(t) uniformly in as k -- c.
Proof. Set Ak(t) Qk(t) Q(t). Since 0 =< Q0(t), Q(t) =< 1, we have A0(t)l =< 1.

Furthermore, 8.1 and (8.2) imply

A(t)l
2

ds

Since 0 <= Q_ (s), Q(s) =< 1, we have 12 Q-(s) Q(s)l =< 2, so that

IX(t)l--< X- s) ds.

Thus by induction on k we obtain

IA(t) ----< t/k!.
This completes the proof.

For k >- 0, let Dk denote the concentrator obtained by identifying the roots of three
copies of Cg to form the root of Dk; the leaves of the copies of Cg (of which there are
3-2) are the leaves of Dk. Letting R(t) denote the probability that the root of Dk is
engaged at time t, we clearly have R(t) Qg(t))3. Finally, putting R(t)

Q(t)) 3, we see that R(t) -- R(t) uniformly in as k -- . Thus we have
proved the following proposition.

PROPOSITION 8.3. As k -- , the probability Rk( t) that the root ofD is engaged
at time tends to

uniformly in t.

R(t)=l- Vtanh ln(l+V)-

9. Sequential arrivals for modular concentrators. Now consider the concentrator
Gq and arbitrarily designate one output of this concentrator as the "root." Let N denote
the subgraph of Gq induced by the inputs of Gq at distance at most 2k + from the root
and the outputs of Gq at distance at most 2k + 2 from the root. Call the outputs at
distance 2k + 2 from the root the "leaves" of N. Set k /(g- 6)/4/, where g is the
girth of Gq. Since g ft(log q) (by Part I, Lemma 2.2), we have k as q -- .Furthermore, since 4k + 4 is less than the girth of Gq, Nk is a tree isomorphic to D,
with root corresponding to root, and leaves corresponding to leaves. Let Sq(t) denote the
probability that the root of Go is engaged at time t.

LEMM 9.1. We have Sq(t) Rk(t) uniformly in as q -- and hence k -- .Proof. Suppose we wish to determine whether the root of Gq is engaged at some
time t. This is determined by the arrival times and hunting orders of the inputs in N,
unless some input at distance three from the root has an earlier arrival time than the
intermediate vertex at distance one; that is, unless there is a path of decreasing arrival
times from the root to some leaf of N2. Even if there is such a path, the engagement of
the root is determined by the arrival times and hunting orders ofthe inputs in N, unless
there is a path of decreasing arrival times from the root to a leaf in N3. In general, the
engagement of the root is determined by the arrival times and hunting orders of the
inputs in N, unless there is a path of decreasing arrival times from the root to a leaf
in N.

Let X denote the event "there is a path of decreasing arrival times from the root
to a leaf in N." We have Pr (X) --< 3.2/k!, since there are 3-2 paths from the root
to a leaf in N, and the probability that the arrival times along some such path are
decreasing is /k! (since all k! orders of arrival are equally likely). Furthermore, unless
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Xk occurs, the root is engaged in Gq when and only when it is engaged in Nk. Thus we
have Sa(t) Re(t)l =< 3"2/k!.

Combining this with Proposition 8.3, we have proved the following theorem.
THEOREM 9.2. As q -- et3, the probability Sq( t) that an output in Gq is engaged at

time tends to

R(t) f tanh In (1 + f)-
uniformly in t. In particular, the probability that an output is never engaged tends to

(tanh(ln(l+r)-22))3=0.0145 "’’.

10. Extensions for sequential arrivals. The extensions we have described for batch
arrivals all apply to sequential arrivals as well. In particular, for "(a b)-concentrators
with large girth," we obtain integral equations that can still be solved by quadratures,
though not in general in terms of elementary functions. It is easy, however, to carry out
the quadratures numerically and to obtain the fraction of unused servers as a function
of time.

When the concentration ratio ab is an integer, a new possibility arises that does
not occur for (3 2)-concentrators. In this case, it is possible to assign fixed hunting
orders to the inputs in such a way that each output is the first choice for a/b inputs, the
second choice for another ab, and so forth. For such an assignment, there can be no
unused servers after all customers have arrived. The analysis of this mode of operation
leads to differential equations (or systems ofdifferential equations) that cannot be solved
by quadratures. It is easy, however, to integrate them numerically, and to obtain the
fractions ofrequests that are served by their first choice, their second choice, and so forth.
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EDGE-DISJOINT HOMOTOPIC PATHS IN STRAIGHT-LINE
PLANAR GRAPHS*

A. SCHRIJVERf

Abstract. Let G be a planar graph, embedded without crossings in the euclidean plane R 2, and let 11, ,
Ip be some of its faces (including the unbounded face), considered as open sets. Suppose there exist (straight)
line segments L, Lt in R so that G kl 11 U kl I LI U Lt kJ Ii U I and so that each
Li has its end points in 11 U L I. Let C, Ck be curves in R2\(I I,.) 1,3 Ip) with end points in
vertices of G. Conditions are described under which there exist pairwise edge-disjoint paths P, Pk in G
so that P is homotopic to Ci in R2\(II [..J [.J Ip), for 1, k. This extends results of Kaufmann and
Mehlhorn for graphs derived from the rectangular grid.

Key words, edge-disjoint, paths, homotopic, packing, planar

AMS(MOS) subject classifications. 05C 10, 05C38

1. Introduction and statement of the theorem. Let G (V, E) be a planar graph,
embedded without crossing edges in the euclidean plane -. We identify G with its image
in :. Let I, Ip be some of its faces, including the unbounded face, called the black
holes. (We consider faces as open sets.) Moreover, let paths C, Ck be given with
end points in V, not intersecting any black hole. (That is, for each i, Ci is a continuous
function [0, 1] -- -\(I U L Ip) with C(O), C( e V.)

Motivated by the automatic design of integrated circuits, Mehlhorn posed the fol-
lowing question:

Under which conditions do there exist pairwise edge-disjoint paths P,
Pk in G so that Pi is homotopic to Ci in the space 2\(i1 t.J t.J Ip) (for 1,

,k)?

Here a path in G is a continuous function P: [0,1]--G with P(0), P(1)V.
Paths P, Pk are pairwise edge-disjoint if the following holds: if Pi(x) Pj(y) V
then x =y and =j. (In particular, if P1, "’", Pg are pairwise edge-disjoint, then
each Pi does not pass the same edge more than once.) Two paths P, C: [0, 1] -- 2\(I t.J t_J Ip) are homotopic in 2 \(I t.J Ip)), denoted by P C, if there ex-
ists a continuous function : [0, 1] [0, 1] -- 2\(i t.J Ip) so that for all x
[0, 1]: I,(x, 0) P(x), rb(x, 1) C(x), (0, x) P(0), ( 1, x) P(1). (In particu-
lar, P(0) C(0) and P(1 C(1).)

Mehlhorn proposed to study question with the help of the following "cuts." A
(homotopic) cut is a continuous function D: [0, 1] -- 2\(V t_J I U Ip) so that
D(0) and D( belong to the boundary of I1 t_J Ip and so that D-(G)] is finite.
The cut condition (for G; I, Ip; C1, C) is:

(2)
k

(cut condition) for each cut D" cr (G, D) >_- mincr C/, D).
i=1
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Here we use the following notation for curves C, D: [0, 1] -- 2\(11 to to Ip):

cr (G,D):= [(ye[O, 1][O(y)rG}[,

(3) cr (C,D):= I{(x,)e[O,][O,]lC(x)=O(y)}l,

mincr C, D) := min ( cr (,/)1 C,/ O in 2 \ (21 tO... tO Ip) }.
Clearly, the cut condition is a necessary condition for a positive answer to question

). It is generally not sufficient, not even for quite simple situations. For example, take
k 2, p 1, and consider

I1

where the straight lines stand for edges of G and where the interrupted lines stand for
curves C1 and C2.

It turned out that one additional condition, the so-called parity condition, can be
helpful (cf. 2 below):

(4) (parity condition) for each cut D" cr G, D) /= mincr C/, D) (mod 2).

Let us now state our theorem. We say that G; I1, "", Ip; C1,
straight-line case if

and

(6)

.., C is in the

there are line segments L1, Lt in N2 so that G U I1 U to Ip L1 to
U Lt U 13 to tO Ip and so that each L. has its end points in I1 tO U Ip,

if the aperture at vertex v of G is larger than 180, then the number of times v
occurs as end point of the curves Ci is not larger than the number of edges
terminating at v.

Here the aperture at vertex v of G is the largest angle that can be made at v so that none
of the black holes adjacent to v intersect the interior of the angle. (More formally, let
o > 0 be so that the circle K of radius o and centre v does not contain any other ver-
tex of G in its interior and does not intersect any edge except for those adjacent to v. Let
K\(I3 (3 tO I) have components K3, Kh, making angles p, Ph. Then the
aperture at v is equal to max { 93, 9h } .) Edge e { X)u + Xv]0 < X < } of
G is said to terminate at v if for some > the set { X) u + Xv[ < X < z} is con-
tained in 13 U t_J Ip.

THEOREM. If we are in the straight-line case and the parity condition holds, then
there exist pairwise edge-disjoint paths as in ifand only ifthe cut condition holds.

As an illustration, Fig. gives an example ofthe straight-line case (where the shaded
faces, together with the unbounded face, are the black holes, and where the interrupted
curves stand for the paths Ci).

The theorem generalizes a result ofKaufmann and Mehlhorn 2 for graphs derived
from the rectangular grid in the following way. G is a finite subgraph of the rectangular
grid. (That is, V is a finite subset of 7/ and each edge is a line segment of length 1.)
I, ..., Ip are exactly those faces of G that are not bounded by exactly four edges of G.
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FIG.

Moreover, for each vertex v it is required that deg (v) + r(v) -< 4, where deg (v) denotes
the degree of v in G, and

r(v):= [{i= l, ,k[C(O)=v}[ + [{i= l, ,k[C(1)=v}[.
COROLLARY (Kaufmann and Mehlhorn). If the conditions given in the previous

paragraph are satisfied and the parity condition holds, then there exist pairwise edge-
disjoint paths as in ifand only ifthe cut condition holds.

In fact, Kaufmann and Mehlhorn found a linear-time algorithm to find these paths,
if they exist.

In 4 we give a proof of our theorem. We make use of a lemma to be proved in
3 (showing that in the straight-line case we may restrict the cut condition to (almost)

straight cuts (analogous to the idea of" 1-bend cuts" in [2])), and of results of[4] to be
reviewed in 2.

2. Review of preliminary results. In this section we return to the general case of a
planar graph G (V, E) embedded without crossing edges in the Euclidean plane R 2,
with black holes 11, Ip (including the unbounded face) and curves C, Ck. Let
each Ci have its end points in vertices on the boundary of 11 kA t3 Ip.

It was shown by Okamura and Seymour 3 that ifp the cut condition together
with the parity condition imply the existence of paths as in ). (Note that for p two
paths P, P’ are homotopic if and only if P(0) P’(0) and P( P’( ).) This was
extended by van Hoesel and Schrijver [1] to p 2. It cannot be extended to higher p,
as is shown for p 3 by:

% SS
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However, it was shown in [4 that, for arbitrary p, the cut condition is equivalent
to the existence of a "fractional" packing of paths as required, i.e., to the existence of
paths el, p]l, e, e,, ..., e and rationals Xl, "’, X], X, X,
X > 0 such that:

(i) P C (i= 1,... ,k;j 1,... ,ti),

t
(ii) Z,=I (i=l,...,k),

(7) j=l

k t
(iii) ixe(e)_-< (eE).

i=lj=l

Here Xe(e) denotes the number of times path P passes edge e.
Another result from [4] to be used below was derived with the theory of simpli-

cial approximations. Let C, D: [0, 1] -- R2\(I1 t_J t_J Ip) be continuous. Let C(0),
C( ), D(0), and D( be on the boundary of 11 (-J t_J Ip, with { C(0), C( }
{ D(0), D( } . Let

(8) X:= {(y,z)[0, 1] [0, 1]lC(y)=D(z)}

be finite, where each (y, z) in X gives a crossing of C and D. For y, y’ 6 [0, 1] let C
denote the path from C(y) to C(y’) given by:

(9) (Cl’)(k)’=C((1-k)y+ky’) fork[0,1];

similarly for D. Define for (y, z), (y’, z’) X:

(10) (y,z)(y’,z’)(Cl’)(DlZz’) in R2\(I1 (_J (_Jlp).

We call the classes of the equivalence relation the classes ofintersections of C and D.
Such a class is called odd if it contains an odd number of elements. Let odd (C, D)
denote the number of odd classes of X. Then

11 mincr C, D) odd C, D).

3. A lemma on straight cuts. We call a cut D: [0, 1] -- 2\(V t_J 11 U (_J Ip) a
straight cut if

either (i) D is linear,
or (ii) the line segment connecting D(0) and D( is contained in G, the

(12) functions D I[ 0, 1/2] and D I[ 1/2, are linear, there is no vertex of G
contained in the interior of the triangle D(O)D( 1/2 )D( ), and no
edge is intersected more than once by D.

In (ii) we might think ofD as being very close to the line segment connecting D(0) and
D( ). So a straight cut is determined by its end points, in case (12) (ii) up to "slight"
homotopic shifts, which, however, do not change the number of intersections with G.

LEMMA. In the straight-line case, the cut condition holds if and only if
cr G, D) > /k= mincr Ci, D) for each straight cut D.

Proof. Necessity being trivial, we show sufficiency. Let the cut inequality be satisfied
by each straight cut. Suppose there exists a cut D: [0, 1] -- 2\(V U 11 t.) Ip)
so that

k

13 cr G, D) < mincr Ci, D).
i=1
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We choose D satisfying (13) so that := cr (G, D) is as small as possible. The idea of
the proof is to straighten out D as much as possible.

First observe that we may assume that if D( is not on the line through the edge
containing D(0), then the line segment D(O)D( does not intersect V (this can be
achieved by slightly shifting D(0) along the edge containing D(0)). Moreover, we may
assume that there exists an e > 0 so that

(i) DI [0, e] is linear;

(14) (ii) for all 6 (0, e]" D(6) does not belong to any line through any pair of
vertices of G nor to any line through a pair of points consisting of a vertex
of G and an intersection ofD and G.

Let ,l, "’", ,t be so that 0 1 < ,2 <"" < ,t-< t 1, with D(Xi) G for all
i. Define

p:=D(e),
(15) pi’=D()i) fori=2,...,t.

Finally, we may assume that D[[ e, )2] and D I[ )i-1, )i] are linear functions (i 3, t)
(since in the straight-line case each face not in I, Ip } is convex).

Let h(D) be the smallest index h with 2 =< h =< so that the angle between
ph-lP, and phph+ is not 180. If no such h exists, let h(D) := t. We may assume that
we have chosen D so that (fixing cr (G, D)) h(D) is as large as possible. Let
h := h(D).

First consider the case h < t. Choose the largest ), [0, 1] so that the triangle with
vertices p, ph, and ph + )(ph+ ph) does not intersect 11 tO tO Ip. Let p, := ph +
)(ph + ph). Let D’ be the piecewise linear function obtained from D by replacing parts
pp, and P,P’h ofD by PlP’h.

If ) 1, then p, ph +, and hence by (14)(ii) pP’h does not intersect any vertex
of G. So D’ is a cut, with cr (G, D’) cr (G, D) (by the conditions (5) and (6) for the
straight-line case) and D’ D. As h(D’) > h(D) this contradicts the fact that we have
chosen D so that h(D) is as large as possible.

If ) < 1, then PlP’h intersects a vertex v of G, on the boundary of I tO tO Ip.
This vertex is unique by (14) (ii) and has aperture larger than 180. Consider a circle K
with center v, not containing any other vertex of G, and not intersecting any edge of G
except for those adjacent to v. Let K\(I tO tO I) have components K1, Kh. So
each Ki is a cut. We may assume that K intersects D’ twice. So K is a circular arc of
angle larger than 180. Use the notation A, B, C, E, F for the parts of D’ and K as
indicated in Fig. 2. Let H denote the part of D from p, to p. As we have chosen D so
that 13 is satisfied with cr G, D) as small as possible, we have

h

cr G, D cr G, EBFH) cr G, EA + cr G, CFH) + , cr G, Kj.)
j=2

+ (number ofedges terminating at v)
k k h k

16 >_- mincr( Ci, EA + , miner C/, CFH) + , , mincr( C/, K)
i=1 i=1 j=2i=l

k k

+ (number of times v is end point of C/) >= miner C,., D)
i=1 i=1

(using (6)). This contradicts (13).
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"D (0)

FIG. 2

As h < leads to a contradiction, we know h t. If the line segment D(O)D( is
not contained in G, then by our assumption this line segment forms a straight cut D’,
with cr (G, D’) cr (G, D) and D’ D, whence

k k

17 cr G, D) cr G, D’) >= mincr Ci, D’) mincr Ci, D),
i=1 i=1

contradicting (13). If D(O)D( is contained in G, then D itself forms a straight cut,
contradicting 13 ). V1

4. Proof of the theorem. We now prove our theorem.
THEOREM. If we are in the straight-line case and the parity condition holds, then

there exist pairwise edge-disjoint paths as in ifand only ifthe cut condition holds.
Proof. The proof is by induction on the number of faces not in { I1, Ip). If

each face belongs to I1, , Ip ), then the theorem is trivially true. So assume that not
all faces belong to { 11, Ip ).

I. We first consider those situations where the following holds:

G has an edge e0, connecting vertices u and w, both of degree 2, so that e0
(18) separates a face in { I, ..., Ip } from a face not in I, Ip } and so that

one of the curves Ci connects u and w following e0.

Without loss of generality, e0 separates face 11 from face F { I1, Ip ), and CI
connects u and w following e0. Moreover, we may assume that none of C2, Ck
passes eo (we can make detours along the other edges of F). By the parity condition,
there exist h, j so that Ch has an end point in u and C has an end point in w (possibly
h =j).

Now let Ip / := F. Clearly, G; Ip, , Ip, Ip / 1; C1, ", Ck is again in the straight-
line case, in which the parity condition holds. We show

(19) the cut condition holds for G; 11, Ip /; C1, C.
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As the number of faces not in {I1, "’", Ip+l} is one less than in the original situa-
tion, (19) implies by induction that there exist pairwise edge-disjoint paths PI C1,

Pk Ck in R2\(11 t_) t.) Ip/l). This implies P1 C1, Pk Cg in R2\
(11 tA tA Ip) as required.

We prove (19). We will refer to G; Ii, Ip / 1; C1, C as the new structure,
and to G; 11, , Ip; C1, C as the original structure. For the new structure we use
the notation mincr’ instead of mincr.

To show (19) by the lemma, it suffices to prove the cut inequality for straight cuts
only. Let D be a straight cut in the new structure. If D(0) and D( belong to the
boundary of 11 tA tA Ip, then D is also a cut in the original structure, and the cut
inequality follows (as mincr’ Ci, D) mincr (Ci, D) for each i). Ifboth D(0) and D(
belong to the boundary of Ip / F, then mincr’ Ci, D) 0 for each (as F is convex),
and the cut inequality follows. So we may assume that D(0) belongs to the boundary of
11 tA tA Ip and D( belongs to the boundary of F. We can extend D in F to a cut
D’ ending on eo. Then D’ is a cut in the original structure. Thus we have

k k

(20) cr (G, D) cr G, D’) >_- mincr (Ci, D’) mincr’ (Ci, D),
i=1 i=1

thus showing the cut inequality for D. This proves (19).
II. Now we consider the general case (i.e., we do not assume 18 )). As not all faces

belong to { Ii, Ip }, there exists an edge, say eo, separating a face Ih (1 <= h <= p)
from a face F not in { II, Ip }. We may assume h 1. Without loss of generality,
no path Ci intersects e0 or F (we can make detours along the boundary of F). Extend G
to a graph G’ by adding two new vertices, say u and w, on e0. Let e be the edge connecting
u and w. Let Cg / and Ck + 2 be two curves, each connecting u and w via e. We consider
two cases.

Case 1. The cut condition holds for G", I1, Ip’, C1, Ck, Ck + Ck + 2 Now
we can apply part I of this proof above, and paths P1, P, P+I, P+ 2 as re-
quired exist.

Case 2. The cut condition does not hold for G’; I1, Ip; C1,’" C, Ck+ l,

C+ 2. Since also in this new situation we are in the straight-line case, by the lemma there
exists a straight cut D so that

k+2

(21) cr(G’,D)< mincr(C/,D).
i=1

Since mincr C+ 1, D) mincr C+ 2, D) _-< and since the parity condition holds for
G; II, Ip; C1, C we know

k

22 cr G, D) mincr Ci, D),
i=I

and mincr (Ck + 1, D) mincr (C+ 2) 1. Hence D has one of its end points on e.
As the cut condition holds for G; 11, Ip; C C, there exists a "fractional"

packing of paths PI, P’, P],, P, with coefficients ,I, ’,
,),, > 0, satisfying (7). By (22), at least one of the P, say P I, passes edge eo.
So PI Rle’oR2 for certain paths R1 and R2.

We now show the following claim.

CLAIM. For each straight cut D’ (for G’) we have

(23) mincr(R1,D’)+mincr(Ck+l,D’)+mincr(Rz,D’)<=mincr(C1,D’)+2.
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Proofofthe claim. Since

k k ti

(24) cr (G D)= i’cr(Pi,D)Ncr(G,D),
i=1 i=lj=l

and since X > 0, we know that cr (P, D) miner (C1, D).
Without loss of generality,

and (PI 1/4) with R2. Moreover, we may assume that P( 1/2) D(0).
Let D’ be any straight cut. To show (23) we may assume that D and D’ intersect

each other at most once, and that if D’ intersects e, then D and D’ do not intersect.
Let

(25) X:={(x,y)e[O, 1][O, 1llPl(x)=D’(y)}.
Let be as in (10). So mincr
We show

if (x, y), (x’, y’), (x", y"), (x’", y’")
X(26) (x y’"), x, x" (0, 1/2) and x, (1/2, 1), then D and D’ intersect and

(x,y)(x",y").

Indeed, as (x, y) (x’, y’), we know (PI Ixx’) (D’I’). So (P] Ix’)(D’l,) forms a
homotopically trivial cycle K. Since (PI x’ passes D(0), D splits K into two homotop-
ically trivial cycles. That is, there is a X 6 (0, so that

either (i) 3z Ix, x’]" (PI Iz/)(Dl) is a homotopically trivial cycle,
(27) or (ii) q_z (y, y’)" (PI Ix/2)(Dl/z)(D’lz) is a homotopically trivial

cycle.

Since cr (P], D) miner (PI, D), 27 (i) does not occur. So (27) (ii) applies. Hence

(28) (PI I/2)"(D’I,)(DI/2).
In particular, D and D’ intersect, with D(X) D’(z). We similarly derive from the fact
that(x", y") (x’", y’")that

1/2 I/2(29) (Pl Ix. )’-(D’Iy.)(DI ).

Therefore,

x
x" I/2 y"(30) (PI Ix")’(Pl I/2)(P] ll/2)’(D’ly)(D] )(DIt/z)(D’Iz")’(D’Iy ).

So (x, y) (x", y"). This shows (26).
Now cr (Ck + , D’) =< 1. If cr (Ck + l, D’) 0, then the above implies

(31) odd (PI,D’)-> (odd (R1,D’)- 1) +(odd (R2,D’)- 1),

since by (26) all but at most one class of intersections of R1 and D’ is also a class of
intersections of P and D’. Similarly for R2. Equation (31 implies (23).

If cr (Ck+, D’) 1, then D and D’ do not intersect, by assumption. Hence, by
(26), no class of intersections of
(0, 1/2 and x’ 6 1/2, ). Since cr (Ck + l, D’) 1, there is only one element (x, y) in X
with x 6 , ). Except for the class ofintersections of P] and D’ containing this element,
all other classes also form a class of intersections of R1 and D’ or of R2 and D’. Hence

(32) odd (P],D’)->_ odd (RI,D’) + odd (R2,D’)- 1,

and (23) follows.
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We next show

(33) the cut condition holds for G’; I1, Ip; Rl, R2, C2, Ck, Ck+ 1.

Suppose not. Since we are again in the straight-line case, by the lemma there exists a
straight cut D’ so that

k+l

(34) mincr(Ri,D’)+mincr(R2,D’)+ mincr(Ci,D’)>=cr(G,D’)+2,
i=2

using the fact that the parity condition holds also for G’; I1, Ip; R1, R2, C2,
Ck+ 1. Since the cut condition does hold for G’; I1, Ip; C1, .._ C, it follows that

(35) mincr(R1,D’)+mincr(R2,D’)+mincr(C+l,D’)>mincr(C1,D’).

Hence

(36) cr(PI,D’)=cr(R1,D’)+cr(R2,D’)+cr(C+l,D’)>mincr(C,D’).

Therefore,

(37)

k ti k ti

cr(G D’) > Z E X cr(P,D’)> Z , XJi" mincr (G, D’)
i=lj=l i=lj=l

k

mincr(C/,D’).
i=1

However, (34) and (37) imply
k+l

mincr (R1 ,D’) + mincr (R2, D’) + mincr (Ci,D’) >= cr (G,D’) + 2
i=2

(38)

> mincr (Ci, D’) + 2,
i=1

contradicting the claim.
So (33) holds, and hence by part I of this proof there exist pairwise edge-disjoint

paths Q’ Rl, Q’ Re, Qe Ce,..., Qk C, Q+I C/1. By sticking Q’,
Qk+, to one path, which is homotopic to C1, we obtain paths as required. [-3
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REPRESENTATIONS OF GRAPHS ON A CYLINDER*

ROBERTO TAMASSIA’f AND IOANNIS G. TOLLIS:I:

Abstract. A complete characterization of the class ofgraphs that admit a cylindric visibility representation
is presented, where vertices are represented by intervals parallel to the axis ofthe cylinder and the edges correspond
to pairs of visible intervals. Moreover, linear time algorithms are given for testing the existence ofand constructing
such a representation. Important applications of cylindric visibility representations can be found in the layout
of regular VLSI circuits, such as linear systolic arrays and bit-slice architectures. Also, alternative "dual" char-
acterizations are presented of the graphs that admit visibility representations in the plane and in the cylinder.
It is interesting to observe that neither of these two classes is contained in the other, although they have a
nonempty intersection.

Key words, visibility graph, visibility representation, design and analysis of algorithms, computational
geometry, cylinder, planar graph, caterpillar
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1. Introduction. The concept of visibility plays a fundamental role in a variety of
geometric applications 10 ]. Ofparticular interest are the problems dealing with visibility
graphs between parallel intervals, which have various applications in VLSI layout [4 ],
7 ], 8 ], 13 ], 18 ], motion planning 5 ], 11 ], and graph drawing ], 12 ], 14 ], 15 ].
The combinatorial properties ofthese graphs have also been extensively investigated 2 ],
[14], [17], [19]. Visibility graphs also arise in the well-known hidden-surface elimination
problem for two- and three-dimensional figures.

Let I be a set of parallel intervals in the plane, where an interval is a segment that
might or might not contain one or both of its endpoints. Two intervals are said to be
visible if they can be joined by a line orthogonal to them that does not intersect any
other interval of I. The visibility graph of I is the graph whose vertices are the intervals
of I, and whose edges connect pairs of visible intervals. Conversely, a visibility represen-
tation for a graph G is a set of intervals whose visibility graph is isomorphic to G. It has
been shown that G admits a visibility representation in the plane if and only if there
exists a planar embedding for G such that all the cutpoints appear on the boundary of
the same face 14 ], 19 ]. Furthermore, such a representation can be constructed in linear
time 14 ].

In this paper we consider visibility on a cylindric surface, where vertices are associated
with intervals parallel to the axis of the cylinder. Namely, we present a characterization
ofthe class ofgraphs that admit a visibility representation in the cylinder, and give linear
time algorithms for testing the existence of and constructing such a representation. Im-
portant applications of cylindric visibility representations can be found in the layout of
regular VLSI circuits, such as linear systolic arrays and bit-slice architectures [9 ]. Also,
we present alternative "dual" characterizations of the graphs that admit visibility rep-
resentations in the plane and in the cylinder. It is interesting to observe that neither of
these two classes is contained in the other, but they have a nonempty intersection.
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A graph admits a visibility representation in the plane or cylinder if and only if all
its connected components do. Hence, in this paper we only consider connected graphs.
Let G (V, E) be a connected graph. A cutpoint ofG is a vertex whose removal disconnects
G. If G has at least one cutpoint, it is said to be 1-connected; otherwise, it is said to be
2-connected. A block of G is a maximal 2-connected subgraph of G. The block-cutpoint
tree T of G is the graph whose vertices are the blocks and the cutpoints of G, and whose
edges connect every block B to the cutpoints contained in B. T can be constructed in
O(I El ) time by using depth-first search 3 ]. A caterpillar is a tree whose nonleaf vertices
form a path. Figure (a) shows a graph whose block-cutpoint tree, given in Fig. (b),
is a caterpillar. Blocks and cutpoints are represented by large and small circles, respectively.

We show that a graph admits a cylindric visibility representation if and only if it is
planar and its block-cutpoint tree is a caterpillar. We present linear time algorithms for
testing the existence of and constructing a cylindric visibility representation for a given
graph. Also, we characterize visibility representations in the plane and in the cylinder by
means of the block-cutpoint trees of the dual graphs. Namely, we show that a planar
graph G admits (i) a planar visibility representation if and only if it admits a dual graph
G* whose block-cutpoint tree is a star; and (ii) a cylindric visibility representation if and
only if it admits a dual graph G* whose block-cutpoint tree is a path.

Note that there exist planar graphs whose block-cutpoint tree is a caterpillar and
such that in no planar embedding all the cutpoints appear on the boundary ofthe same
face. Indeed, this is the case for the graph ofFig. 1. Conversely, the existence ofa visibility
representation in the plane does not impose any restriction on the structure ofthe block-
cutpoint tree. For example, Fig. 2 (a) shows a graph that admits a visibility representation
in the plane, but whose block-cutpoint tree (Fig. 2(b)) is not a caterpillar. Therefore,
visibility in the plane does not imply visibility in the cylinder, and vice versa.

In the next section we introduce the concept of cylindric orientation and show its
relation with cylindric visibility representations. In 3 we present a linear time algorithm
that constructs a cylindric visibility representation for any 2-connected planar graph.

(a)

(b)

FIG. I. (a) A 1-connected graph and b) its block-cutpoint tree.
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(a)

(C) o (C)

o

(b)

FIG. 2. (a) A graph that admits a visibility representation in the plane; (b) the block-cutpoint tree ofthe
graph in part a ).

The characterization of cylindric visibility representations is given in 4. Finally, the
dual characterizations are presented in 5.

2. Cylindric orientations. An (infinite) cylinder C is the locus ofpoints at the same
distance from a straight line, called the axis of the cylinder. A cylinder is also the union
ofan infinite family ofcircles with their center on the axis and drawn on a plane orthogonal
to the axis. Alternatively, C is the union of an infinite family of lines parallel to the axis,
and at the same distance from it. The circles and lines of C naturally define a coordinate
system, since every point of C is the unique intersection of a line and a circle. Every
point of C will be denoted by a pair (x, 0), where x is measured on the axis and 0 is the
angle with respect to some reference line and some "clockwise" orientation, with 0 =<
0 < 2r.

We will consider cylindric embeddings of graphs, where vertices are mapped into
points of the cylinder, and edges are mapped into nonintersecting Jordan curves on the
cylinder. Clearly, a graph admits a cylindric embedding if and only if it is planar. Unlike
planar embeddings, cylindric embeddings can have two unbounded faces, which are
referred to as the lefimostface and rightmostface of the embedding.

Let I’ be a cylindric embedding with distinct leftmost and rightmost faces. A cycle
3’ of I’ is said to wrap around cylinder C if it intersects any Jordan curve on the surface
ofCwith endpoints in the leftmost and rightmost faces of I’, respectively. In other words,
the removal of 3" disconnects C into two unbounded pieces. A cylindric orientation I"
of I’ is an orientation of the edges of I’ such that:

(1) I" has no sources (vertices without incoming edges) and no sinks (vertices
without outgoing edges);

(2) every directed cycle wraps around C in the clockwise direction.
The following lemma gives two important properties of cylindric orientations. It

can be proved using arguments similar to the ones in the proof of Lemmas and 2 of
14 ], which give analogous properties for planar st-graphs.
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LEMMA 1. Let F’ be a cylindric orientation. We have:
for every vertex v ofF’, the incoming (outgoing) directed edges appear consec-

utively around v (see Fig. 3 (a));
(2) the boundary of each internal face of ’ consists of two directed paths with

common origin and destination (see Fig. 3 (b)).
In the following, the concepts of left and right refer to the orientation of the edges

in a cylindric orientation. For example, the face to the left of a directed edge u, v],
denoted LEFT (u, v), is the face containing [u, v that appears on the left side when
traversing u, v] from vertex u to vertex v. Face RIGHT u, v) is symmetrically defined.
By Lemma 1, for each vertex v, there are two distinct faces that separate the incoming
edges from the outgoing edges. These faces are denoted by LEFT (v) and RIGHT (v),
where LEFT (v) is the face to the left of the leftmost incoming and outgoing edges, and
RIGHT (v) is the face to the fight of the rightmost incoming and outgoing edges (see
Fig. 3(a)).

An interval of cylinder C is a topologically connected subset of a line of C. An arc
ofC is a topologically connected subset ofa circle of C. Let I be a set of disjoint intervals
of C. Two intervals i and i2 of I are said to be visible if there is an arc a of C with
endpoints on i and i2 that does not intersect any other interval of I. Arc a is said to be
a visibility arc between i and i2 and is directed according to the clockwise orientation.
In other words, let 01 and 02 be the angles of i and i2, respectively, with 01 < 02 if a does
not intersect the reference line than we direct a from i to i; otherwise, we direct a from
i2 to il.

A cylindric visibility representation K for a graph G is a mapping of vertices of G
into disjoint intervals of C, called vertex intervals, such that there is an edge (u, v) if
and only if the intervals associated with u and v are visible. Each edge of G is mapped
into either one or two visibility arcs. In the latter case, the union of the two visibility
arcs is a circle of C. For simplicity, we use the same name for the vertices of the graph
and their corresponding vertex intervals. Figure 4(b) shows a cylindric visibility repre-

LE IGHT(v)

(a)

(b)

FIG. 3. (a) lncoming and outgoing directed edges around a vertex; (b) directedpathsforming the boundary
ofaface.



REPRESENTATIONS OF GRAPHS ON A CYLINDER 143

(1)

(2) (3)

FIG. 4. a A planar graph G; (b) a cylindric visibility representation Kfor G; and c) the cylindric orientation
associated with K.

sentation for the graph of Fig. 4(a). Note that the top and bottom heavy lines represent
the same line of the cylinder, say the reference line.

From Kwe can construct a cylindric orientation I’ by shrinking every vertex interval
into a point and accordingly deforming the visibility arcs, as shown in Fig. 4(c). Note
that the undirected graph obtained from I’ by ignoring the edge directions and the double
edges is isomorphic to G. The above construction shows that any graph that admits a
cylindric visibility representation must be planar.

Given a planar embedding II of a 2-connected planar graph G, and two distinct
faces fl and f2 of II, we can construct a cylindric orientation r of G with the same
topology as II, leftmost face fl, and rightmost face f2.
ALGORITHM CYL-ORIENT.
Input: A 2-connected n-vertex planar graph G (V, E), with n >_- 3. A planar embedding
II for G, and two distinct faces fl andf2 of II.
Output: A cylindric orientation I’ of G with the same topology as II, leftmost face f,
and rightmost face f2.

Embed II on the surface of a sphere.
(2) Pierce two holes in the sphere inside facesf andf2, and deform the pierced sphere

into a cylinder. This gives a cylindrical embedding II’.
(Note that faces fl and f2 might share one or more vertices and/or edges. This,
however, does not affect the rest of the algorithm.)

(3) Orient the edges on the boundary of face fl in the clockwise direction. Mark facefl
as "oriented."

(4) Let f be an unmarked face that is adjacent to a marked face. Since G is 2-connected,
the edges on the boundary off can be partitioned into two simple paths, 3/1 and 3’2,

where 3"1 contains the oriented edges, and 3"2 contains the unoriented edges. Let u
and v be the common endpoints of these two paths such that 3"1 is directed from u
to v. We orient all the edges of 3"2 in the direction from u to v. This step is repeated
until all faces are marked.
(Note that this process is essentially a visit of the dual graph.)
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THEOREM 1. Algorithm CYL-ORIENT constructs a cylindric orientation I’ for an
n-vertex (n >= 3) 2-connected planar graph G in O(n) time.

Proof. The algorithm maintains the invariant that after each iteration of step 4 the
oriented portion of the graph is a cylindric orientation. If the orientation of 3"2 creates a
cycle in the oriented portion that does not wrap around C in the clockwise direction,
such a cycle must be the union of 3’2 and of a directed path 3"3 from 1) to U. This implies
that the union of 3" and 3"3 is a cycle that does not wrap around C, which violates the
invariant. The correctness of the algorithm easily follows by induction. Regarding the
time complexity, we observe that O( time is spent at each edge. V]

Note that the cylindric orientation I’ constructed by the above algorithm does not
have double edges. The cylindric orientation for a 2-connected graph with two vertices
is a cycle consisting oftwo symmetrically directed edges, and can be trivially constructed.

3. Construction of cylindric visibility representations. Given an acyclic digraph
D (V, E), a topological ordering - on D maps each vertex v into a nonnegative integer
-(v) such that z(u) < r(v) for every directed edge u, v e E. A topological ordering can
be computed in O(IVI / ILl) time by means of the following recursive formula:

r(s) 0, for every source-vertex s V
(2) r(v)= + maxtu,vlFr(u ).
A face of a cylindric visibility representation is a maximal topologically connected

region of the cylinder delimited by the vertex intervals and the visibility arcs. The faces
of a cylindric visibility representation are in one-to-one correspondence with the faces
of the associated cylindric orientation. In the rest of this section we restrict our attention
to 2-connected graphs, and show how to construct a cylindric visibility representation
in linear time.

ALGORITHM VISIB-2C.
Input: A 2-connected n-vertex planar graph G (V, E). A planar embedding II for G,
and two distinct faces fl and f2.
Output: A cylindric visibility representation K for G with leftmost facef and rightmost
face f_.

Construct a cylindric orientation I’ of G with leftmost facef and rightmost face f2,
using algorithm CYL-ORIENT.
(The digraph I’ intuitively represents a "circular order" of the vertex intervals in
the 0-direction.)

(2) Construct the dual digraph I’* of F, where dual edges are oriented "from left to
fight." Namely, the dual of[u, v] is the directed edge [LEFT (u, v), RIGHT
(u, v)]. I’* is acyclic and has exactly one source (f) and exactly one sink (f2).
(A directed edge If, g] in I’* implies that face f will be to the left of face g in the
cylindric visibility representation.)

(3) Compute a topological ordering a on the digraph obtained from I’ by removing the
edges that intersect a path of I’* fromf to f2.
(The ordering a will be used for determining the 0-coordinates ofthe vertex intervals
and the visibility arcs.)

(4) Compute a topological ordering/3 on I’*.
(The ordering/3 will be used for determining the x-coordinates ofthe vertex intervals
and the visibility arcs.)

(5) Let 0o 2r/n,
for each v V do
draw a vertex interval from ((LEFT(v)), offv)Oo) to (13(RIGHT(v)), a(v)Oo),
which includes the left endpoint but not the fight one;

endfor;
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(6) For each [u, v] I’ do
let x 1/2 3(LEFT u, v + B(RIGHT u, v );
draw a visibility arc directed from (x, a(u)Oo)to (x, a(v)00);

endfor;

An example of the construction performed by Algorithm VISIB-2C is shown in
Fig. 5: Fig. 5 (a) shows a planar embedding of a 2-connected graph G; Fig. 5 (b) shows
the cylindric orientation I’ computed in step l, in heavy lines, and its dual I’* computed
in step 2; primal and dual vertices are labeled with the value of the corresponding to-
pological ordering, computed in Step 3 or 4; finally, Fig. 5 (c) shows the cylindric visibility
representation K computed in steps 5 and 6.

Now, we discuss the complexity of the algorithm. Since G is a planar graph, both
G and its dual G* have O(n) vertices and edges. From the results of 2, steps and 2
take O(n) time. The computation of a and 3 in steps 3 and 4 can be performed in O(n)
time. Finally, steps 5 and 6 take O(n) time. Hence, we have the following theorem.

THEOREM 2. Algorithm VISIB-2C constructs a cylindric visibility representation K
for an n-vertex 2-connected planar graph G in O(n) time.

4. Cylindric visibility representations and caterpillars. As discussed in the intro-
duction, not every 1-connected planar graph admits a cylindric visibility representation.
Here, we provide a necessary and sufficient condition that characterizes the class of
graphs that admits such a representation. Before we prove the main theorem of this
section, we need some preliminary results.

LEMMA 2. Let K be a cylindric visibility representation for G, and " be a circle of
the cylinder that intersects at least three vertex intervals of K. Then there is a cycle in G
that consists ofexactly the vertices associated with the vertex intervals intersected by 3’.

Proof. Any two consecutive vertex intervals intersected by 3’ are visible, and thus
the corresponding vertices are adjacent. [3

a)

d,30

0%

(3

FIG. 5. A running example for Algorithm VISIB-2C: (a)a planar embedding ofa 2-connected graph G;
(b) the cylindric orientation F for G (in heavy lines), computed in step 1, and its dual I’* computed in step 2;
c the cylindric visibility representation for G computed in steps 3-6.
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We define a section of a cylinder C as the portion of C generated by the rotation of
an interval of C around the axis.

LEMMA 3. Let K be a cylindric visibility representation for G, and c be a cutpoint

ofG. Then the vertex interval ofany other cutpoint c’ ofG is not completely contained in
the section generated by the vertex interval ofc.

Proof. Assume that there is a cutpoint c’, distinct from c, that is completely contained
in the section generated by c. There must exist a block B that contains c’ but not c. Let
v be a vertex of B adjacent to c’. By Lemma 2, there is a cycle of G associated with a
circle of the cylinder intersecting c, c’, and v. Since every cycle must contain vertices of
the same block, we obtain a contradiction.

The following theorem characterizes the class ofgraphs that admit a cylindric visibility
representation.

THEOREM 3. A planar graph G admits a cylindric visibility representation ifand
only if its block-cutpoint tree T is a caterpillar.

Proof. Necessity. Assume, for a contradiction, that T is not a caterpillar. Then G
has either a cutpoint contained in three or more nonleaf blocks, or a block containing
three or more cutpoints. We discuss only the first case. The second case is similar. Let c
be a cutpoint contained in distinct nonleaf blocks B, B2, and B3, and let xL and XR be
the x-coordinates ofthe left and fight endpoints of c, respectively. For 1, 2, 3, consider
a cutpoint c; in Bi distinct from c. Such cutpoints exist since B, B2, and B3 are not
leaves of T (see Fig. 6(a)). From Lemma 3, at least two of these cutpoints, say c and
c2, are both on the same side ofthe section generated by c, i.e., either their left endpoints
are on the left of xL or their fight endpoints are on the fight of XR. Without loss of
generality, assume the first case. There must be vertices v in B and v2 in B2 whose vertex
intervals intersect the circle of the cylinder at abscissa xz (see Fig. 6 (b)). By Lemma 2,
there is a cycle of G associated with this circle. Clearly, such cycle contains vertices from
both B and B2, which is a contradiction to the fact that B and B. are distinct blocks.

()

(2)

FIG. 6. Examplefor the proofof Theorem 3 (necessity).
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Sufficiency. We show how to construct a cylindric visibility representation for the
graph G from the cylindric visibility representations of its blocks. Denote the nonleaf
blocks of G as B, Bk, and the cutpoints of G as Co, c, ck, where block Bi
contains the cutpoints ci_ and ci, for 1, ..., k. In the construction of a cylindric
visibility representation KB for a block B of G, we have two cases.

Case 1. B is a leaf of T.
In this case B contains exactly one cutpoint c of G. We construct KB such that both

the leftmost and rightmost faces of K contain the cutpoint c. This can be done by
selecting facesf and f2 in Algorithm VISIB-2C as two faces containing c. Note that all
the vertex intervals ofK are contained in the section of c.

Case 2. B Bi, for some in { 1, .... k}.
In this case, we construct K such that the leftmost face contains cutpoint ci_ and

the rightmost face contains cutpoint ci.
At this point the cylindric visibility representations of all the blocks have been con-

structed. For each block B, slice K at abscissas/3(fl and/3(f2). The sections so obtained
are then glued together along a common axis, in such a way that, for each 1, ...,
k 1, all the sections corresponding to leaf blocks connected to ci are placed between
the sections of blocks Bi and Bi+l. The leaf blocks connected to Co and c are placed
before block B and after block B, respectively. To complete the construction, the sections
must be rotated so that the vertex intervals of different sections corresponding to the
same cutpoint become aligned, r-q

The construction described in the proof ofTheorem 3 is illustrated in Fig. 7. Figure
7 (a) shows the block-cutpoint tree of a graph, where blocks are denoted by uppercase
letters, and cutpoints by lowercase letters. Figure 7 (b) shows the arrangement of the
sections corresponding to the blocks along the cylinder. Note the leaf blocks A, B, D,
E, G, H, and I are contained in the sections of their respective cutpoints. Also, nonleaf
blocks C and F have one cutpoint at the left and the other cutpoint at the fight, which
link them to the rest of the representation.

The time complexity of the construction described in the proof of Theorem 3 is
analyzed as follows. Let n be the number of vertices of G. The blocks and cutpoints of
G can be computed in time O(n) using depth-first search. By Theorem 2, the cylindric
visibility representation of each block B is constructed time O(mB), where ma is the

(a)

a

A B C D E F G H

FIG. 7. Construction in the proofof Theorem 3 (sufficiency).
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number ofedges in B. This sums up to O(n) because each edge belongs to a single block.
Finally, combining the sections of the blocks into a unique cylindric visibility represen-
tation is easily done in O(n) time.

To test whether a planar graph G admits a cylindric visibility representation, we
construct its block-cutpoint tree T, and determine whether it is a caterpillar. This can
be done by removing all the leaves from T, and verifying that the resulting graph is a
simple path. The above computation takes O(n) time. Hence, we conclude that the
following theorem holds.

THEOREM 4. Given a graph G with n vertices, there are O(n) time algorithms for
testing the existence ofand constructing a cylindric visibility representation for G.

5. A dual characterization of visibility representations. In this section we provide
"dual" characterizations ofthe classes ofgraphs that admit planar visibility representations
and cylindric visibility representations.

THEOREM 5. A planar graph G admits a planar visibility representation ifand only
ifit admits a dual graph G* whose block-cutpoint tree is a star.

Proof. G is 2-connected if and only if all of its duals are [6, Ex. 11.4, p. 124 ].
Hence, the theorem is trivially true for 2-connected graphs. Now, suppose that G is 1-
connected. We recall that G admits a planar visibility representation if and only if it has
a planar embedding such that all the cutpoints ofG are on the same face, say the external
face 14 ]. Hence, if G admits a planar visibility representation there exists a planar
embedding of G such that all blocks are embedded in the external face. Let G* be the
dual graph associated with this embedding. G* has exactly one cutpoint, i.e., the exter-
nal face.

Conversely, suppose that G admits a dual graph G* whose block-cutpoint tree is a
star. The embedding associated with G* has a face (the center of the star) containing all
blocks, and hence all cutpoints of G. This implies that G admits a planar visibility rep-
resentation. Vl

THEOREM 6. A planar graph G admits a cylindric visibility representation if and
only if it admits a dual graph G* whose block-cutpoint tree is a path.

Proof. Suppose that G admits a dual graph G* whose block-cutpoint tree T* is a
path. Let T be the block-cutpoint tree of G. If T is not a caterpillar, then G has either a
block containing three or more cutpoints, or a cutpoint contained in three or more
nonleaf blocks. We discuss only the first case. The second case is similar. Let B be a
block containing distinct cutpoints (71, c2, and c3. Let B, B2, and B3 be blocks of G
distinct from B that contain cutpoints c, c2, and c3, respectively. Since B* has at most
2 cutpoints, one of them, denoted f, must contain at least two of these blocks, say B
and B2, which are connected to B only through cutpoints Cl and c2. Hence, in T*, f is
adjacent to B*, B *, and B, a contradiction. Therefore, Tis a caterpillar and, by Theorem
3, G admits a cylindric visibility representation.

Now, suppose that G admits a cylindric visibility representation, and consider the
one constructed in the proof of Theorem 3. By construction, for every block B, the rest
of the cylindric visibility representation is contained in the leftmost and rightmost faces
of K. Shrink every vertex segment to obtain a cylindric embedding of G. The above
property is preserved by this transformation, and hence the block-cutpoint tree of the
dual graph G* is a simple path. [

6. Extensions and open problems. In the definition of visibility on the cylinder we
can exchange the role of intervals and arcs, so that the family I consists of circular arcs,
and visibility is defined by intervals parallel to the axis. This new definition induces a
different type of cylindric visibility representation, which is topologically equivalent to
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an open visibility representation on the sphere, where the family I consists of open arcs
of parallels (i.e., entire parallels are not allowed), and visibility is defined by arcs of
meridians 16 ]. A characterization of the class of graphs that admit an open visibility
representation on the sphere (or, equivalently, the aforementioned variation of cylindric
visibility representation) is presented in [16 ], where it is developed in the framework of
a new representation of planar graphs, called tessellation representation. We have the
following theorem.

THEOREM 7. [16] Let G be a planar undirected graph with n vertices. G admits an
open visibility representation on the sphere ifand only ifG admits an embedding such
that all the cutpoints are on the boundary ofat most twofaces. Also, there are O( n )-time
algorithms for testing the existence ofand constructing an open visibility representation
on the spherefor G.

It would be interesting to characterize the class of graphs that admit a toroidal
visibility representation, where the intervals of I wrap around the torus in one way and
visibility is defined by arcs wrapping around the torus in the other (orthogonal) way. In
this case, the problem appears to be far more difficult, since the graphs that admit such
a representation need not be planar.
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MOTION PLANNING, TWO-DIRECTIONAL POINT REPRESENTATIONS,
AND ORDERED SETS*
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Abstract. Ordered sets are used as a computational model for motion planning problems. Every ordered
set has a two-directional point representation using subdivisions. These subdivision points correspond to direction
changes along the path of motion.

Key words, motion planning, ordered set, diagram, two-directional point representation, subdivision, tree,
cycle
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How may a robot arm be moved to grasp a delicate object from a crowded shelf
without unwanted collisions?

How may a cluster of figures on a computer screen be shifted about to clear the
screen without altering their integrity and without collisions?

These questions highlight instances of the recent and rapidly growing theme of
"motion planning." Rival and Urrutia (1987) initiated the study of motion planning
using a computational model based on the theory of ordered sets. Subsequently, Now-
akowski, Rival, and Urrutia (1987) proposed the problem to characterize the ordered
sets here called "two-directional orders."

One example ofa motion planning problem is the following. Given a finite collection
of disjoint figures in the plane, is it possible to assign to each a single direction of motion
so that this collection of figures may be separated, through an arbitrarily large distance,
by translating each figure one at a time, along its assigned direction? In this model we
have considered only convex figures in the plane. Indeed, given a collection of disjoint,
convex figures, the separability problem always has a positive solution. Loosely speaking,
at least one of the convex figures is on the "outside" or "boundary" of the collection,
and therefore it may be removed. Of course, instead of disjoint figures in the plane we
can consider robots moving along assigned directions.

To make the mathematical matter more definite, we will here idealize each robot
as a point (a circle of negligible radius) on the plane. Suppose that each point is assigned
a single direction of motion not necessarily all the same. For points A and B we say that
B obstructs A if the line joining A to B follows the direction assigned to A. We write
A - B. More generally, we write A < B if there is a sequence A A1 -- A2 -- --Ak B. This relation < is transitive. It is appropriate to call this binary relation <
the blocking relation. Ifthe blocking relation has no directed cycles then it is antisymmetric,
also. In that case the blocking relation < is a (strict) order on the given set of points. If
each of the points is assigned the same direction, we call the relation one-directional. In
that case, any maximal point (with respect to <) is on the "outside."

We say that a collection of points, each assigned one of rn directions, is an m-
directional point representation of an ordered set P, if its blocking relation is identical to
the ordering of P.
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Nowakowski, Rival, and Urrutia (1987) considered ordered sets, which have an m-
directional point representation, and called these m-directional point orders (see Fig. ).
Indeed, we may even imagine such point representations as models for an assembly line
based on a many machine scheduling environment, in which the robots correspond to
machines or machine parts.

Nowakowski, Rival, and Urrutia showed that there are ordered sets with no m-
directional point representation, for any positive integer m, yet every finite ordered set
has a subdivision with such an m-directional point representation, for some m. This
subdivision consists precisely of the original ordered set with an extra element adjoined
along some of the (coveting) edges (with just the comparabilities induced, in each case,
by just this edge).

Throughout the paper we will use the customary order diagram of an ordered set
in which the y-coordinate of a point b is larger than that of another point a if a < b and
an edge joins them just if b is an upper cover of a. (Say that b is an upper cover ofa (b
covers a or a is a lower cover orb or a is covered by b) if a < b and if a < c =< b implies
b c.) Thus, an ordered set that contains an element with m lower covers requires at
least m directions in its point representation--if it has one. We usually use upper case
characters A, B, C, to stand for the robots in the point representations and lower-
case characters a, b, c, for the elements of ordered sets and the same symbol < for
the order relation in both contexts.

An alternative, perhaps more suggestive, interpretation of subdivision is this: Let b
cover a and suppose a subdivision point (a, b) is placed along the corresponding coveting
edge. In a corresponding two-directional point representation a robot A may itself be
assigned two directions, in succession, the first followed until a junction corresponding
to the subdivision point (a, b) and the second followed from this junction to B (see
Fig. 2).

Note that, by transitivity, it may be that A < B and B < C, that is, A < C, yet C is
not "visible" from A along either a horizontal eastward or a vertical upward path. At the
same time, although D covers A it may be that B lies along the line of sight from A to
D, apparently "obstructing the visibility" between them (see Fig. 3 ). From the viewpoint
of motion planning we may suppose that once B begins to move along its intended
direction ofmotion there is an unobstructed path from A to D. In the interest ofcontinuity

A two-directional point
representation of the

ordered set {a<b, a<c }.
FIG.

b

An order diagram of the
ordered set {a<c, b<c }.
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point representation An ordered set A subdivision of it.
of a subdivision of {a<b<d, a<c<d}.
{a<b<d, a<c<d}.

FIG. 2

we will insist, too, that all elements be assigned directions, including, in particular, the
maximal elements, even though a maximal element is not constrained to precede
any other.

Our leading problem is to characterize two-directional point orders among all orders.
Here are our main results. The first highlights a class of ordered sets, each of whose
members has a two-directional point representation. Call an ordered set a tree if its
coveting graph contains no cycle (a subset al, a_, , am ofdistinct points, m >_- 4, such
that ai covers ai+ or ai+ covers a for each 1, 2, , m and a covers am or
am covers a ). A simple cycle in an ordered set is a cycle a, a, a2g, k >= 2, such
that a29 covers a2- for each j 1, 2, k, and a2 covers al. Moreover, we will call
a cycle al, a2, a3, a4, in which al < a2 < a4 and a < a3 < a4 a simple cycle also (cf.
Fig. 4).

THEOREM 1. Every tree in which each element has at most two lower covers has a
two-directional point representation, yet an ordered set that contains a simple cycle has
no two-directional point representation at all.

On the positive side we will also show that any "lexicographic sum" of ordered sets,
with top and bottom, has a two-directional point representation, provided that both the
index set and the blocks do, also.

A ot a

A two-directional point
representation of {a<b<c, a<d}.

FIG. 3

An order diagram
of (a<b<c, a<d}.
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a a3 a2k-1

Simple cycles

a2 a 3

a

FIG. 4

How many subdivision points along any coveting edge ensure that an ordered set
has a two-directional point representation? Or, in the language ofmotion planning, how
many changes of direction for any robot guarantee that an order has a two-directional
point representation?

THEOREM 2. For any ordered set in which each element has at most two lower
covers, at most one subdivision point along some ofits covering edges ensures that it has
a two-directional point representation.

In some sense this result is the best possible.
THEOREM 3. There exist ordered sets in which each element has at most two lower

covers such that almost half of its covering edges need be subdivided to ensure a two-
directional point representation. Moreover, there are ordered sets in which each element
has at most two lower covers with no two-directionalpoint representation ifevery covering
edge is subdivided exactly once.

Note that while Theorem 2 ensures a two-directional point representation by sub-
dividing some coveting edges of P, according to Theorem 3 too many subdivisions may
spoil the two-directional point representation.

We are still unable to characterize the ordered sets that have a two-directional
point representation. Nevertheless, it seems to us that the solution to the bipartite case
would shed light on the general problem.

Trees and cycles. It is easy to see that an ordered set with a two-directional point
representation also has one in which the two directions are perpendicular. We will suppose
throughout that these directions are northward (n) and eastward (e).

Our first aim is to show that no simple cycle has a two-directional point represen-
tation. Suppose that P is an ordered set with a two-directional point representation. Let
a and b be distinct elements of P. If both a and b point northward and lie on the same
vertical line in the representation of P, then they must be comparable. For if the y-
coordinate of a is below the y-coordinate of b in this representation, then as a points
northward, a < b; if the y-coordinate of b is below that of a then b < a. Now, let a, b
be distinct lower covers of c in P. In the representation, c must be located along the "line
of sight" of a and of b. Thus, if a and b had the same direction, then each would be
along the line of sight of the other and, according to our observation above, a and b
would be comparable. Therefore, we may suppose that a points northward and b eastward,
say, and that, therefore, c lies at the point of intersection of the northward and eastward
lines from these points. It follows, of course, that every element in P has at most two
distinct lower covers.

From these preliminary remarks it is an easy matter to deduce that no simple cycle
al, a2, a2, k -> 3 and k odd, has a two-directional representation. Suppose one did.
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As al, a3 are lower covers ofa2 they have different direction n, e, say, respectively. Then,
a5 has direction n, a7 e, and so on, alternatively, which, of course, is impossible as k
is odd.

We claim that no simple cycle at all has a two-directional point representation. The
cases al < a2 < a4 and a < a3 < a4 as well as al < a2, a4 and a3 < a2, a4 can be checked
directly to have none, as a simple longhand effort shows. For the remaining cases another
remark is handy. Let cl, bl, 2, b2, Cm, bin, Cm+l, be a "zigzag," that is, 1 covers
bl and ci covers b;_ and bi, for 2 =< -< m, and cm+l covers bm, and consider a two-
directional point representation of it. We may suppose that its minimal elements
b2, bm alternate in direction n, e, .... As each bi, <-_ k <= m, is covered by two
of the c’s, then both of them, namely ci-1 and ci, lie along the line of sight of b. As
cg_ and c are noncomparable, neither can be along the line of sight of the other. It
follows that in the representation, successive triples of the ci’s follow either an upward
staircase pattern or a downward staircase pattern in which an upward staircase may meet
a downward staircase with increasing subscript, yet a downward staircase continues only
downward (see Fig. 5 ).

Let al, a:, ..., a_, k >= 3, be an arbitrary simple cycle, that is, a2 covers az-
j 1, 2, k, and azg covers al. Suppose that it has a two-directional point represen-
tation. Then its maximal elements must follow the staircase pattern indicated above.
Since the sequence a2, a4, ofmaximal elements will repeat following the enumeration
of the cycle, at least one portion must be a downward staircase, and, in that case, must
continue as a downward staircase throughoutwhich is impossible. Thus, no simple
cycle at all has a two-directional point representation.

We now show by induction on PI that any ordered set P that is a tree does have
a two-directional point representation. Let a be an endpoint of the coveting graph of P,
that is, either a maximal element of P with precisely one lower cover or else a minimal
element with precisely one upper cover. Suppose that a is maximal, that b is its unique
lower cover and that a two-directional point representation ofP { a } is given. We may
assume that b has direction n. We will locate a along the vertical from b above it. We
may choose its y-coordinate less than any other point already on this vertical yet larger
than b, and distinct from the y-coordinate of any other point. Assign a the direction e.
This constitutes a two-directional point representation of P.

Suppose now that a is minimal with unique upper cover b and that P { a } has a
two-directional point representation. There is no loss in generality to assume that b has
direction n. By hypothesis, b has at most one lower cover c, besides a. Suppose c has

Ci+5o-- , Ci+Ii+5 Ci+ oo

Ci+4
Ci+3 Ci+3 Ci+l’.__! Ci+4

1

i+2 I i+2
Ci+ Ci+5

i+8 Ci+
i+2 A Ci+4 Ci

Ci o
Ci+l

Ci+ Ci+9

Upward staircase A downward staircase ci+ 11

FIG. 5

An upward staircase meets a downward staircase.
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direction e. Then we may locate a on the vertical below b with y-coordinate distinct
from the y-coordinate of any other point and above any point already on this vertical
yet lower than b. We may assign a the direction n to obtain a two-directional point
representation of P. Now, suppose that c has direction n, in which case c lies on the
vertical through b beneath it. Before locating a we make a small change to the represen-
tation ofP { a by shifting the location of b just an "epsilon" northward so that its y-
coordinate is distinct from the y-coordinate of any other point. In this case we may
locate a on the horizontal through b anywhere to the left of it and assign it the direction
e. This gives a two-directional point representation of P.

Actually we can say somewhat more, for ordered sets constructed as a "lexicographic
sum." For an ordered set P and a family (Qplp e P) of ordered sets, indexed by P itself,
the lexicographic sum p Q is the ordered set whose underlying set is the union of the
Qp’s and in which x < y if x, y Qp, for some p P, and x < y in Qp or, if x Qp, y
Qr and p < r in P.

PROPOSITION. Let Zp Qp be a lexicographic sum of ordered sets. IfP as well as
each Qp has a two-directional point representation, and ifeach Qp has a top and a bottom,
then Zp Qp itselfhas a two-directional point representation.

Proof. Suppose a two-directional point representation ofP is given. Let p P with
coordinates (x, y), let p be directed northward, and suppose that p’, with coordinates
(x’, y’), is the first vertex on this vertical northward path from p. If Qp is a chain, then
we may take a two-directional point representation of it in which each vertex is directed
northward. Then ifwe contract the total vertical distance between the bottom vertex and
the top vertex of Qp to a total distance less than y’ y, we may insert this representation
of Qp into the vertical between p and p’, replacing p by the bottom of Qp and avoiding
all y-coordinates already occupied by existing points.

Suppose that Qp is not a chain. In this case we construct another two-directional
point representation of P, by shifting each vertex r on the vertical along p by a small
horizontal distance e > 0 to the fight less than the horizontal distance between p and
any other vertex in its representation. We now contract the region occupied by the rep-
resentation of Qp into the e by y’ y rectangle from p to p’, again replacing p by the
bottom vertex of Qp avoiding all y-coordinates already occupied.

In this way we may successively add the blocks to produce a two-directional point
representation of the lexicographic sum itself.

It is not clear to us at this writing how we may naturally extend the class of ordered
sets with a two-directional point representation. Lattices with at most two lower covers,
even planar ones, need not have a two-directional point representation (e.g., the simple
cycle {a < b < d, a < c < d}).

Elsewhere (cf. Czyzowicz, Pelc, and Rival) we have studied ordered sets, and es-
pecially lattices, with a diagram using only two different slopes for its edges. For instance,
the 4-element cycle lattice can, of course, be drawn using only two slopes, yet it does not
have a two-directional point representation. On the other hand, there are ordered sets
(see Fig. 6) with no two-slope diagram (for nontrivial reasons) yet, which have a two-
directional point representation (see Fig. 7). Still, there is an obvious connection between
two-slope diagrams and point representations. If each vertex is allowed not just one of
two directions, but both of the two directions, then it is easy to verify that there is a two-
slope diagram. The converse, too, is obviously true.

Subdivision. Let P be an ordered set in which each element has at most two lower
covers. Even if P itself has no two-directional point representation, we will show that
there is an ordered set obtained from P by subdividing some edges of the diagram of P
at most once that, in turn, has a two-directional point representation.
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Before we do this, let us record a rather simple transparent construction that, however,
proves less. We show that there is an ordered set P’ constructed from P by adjoining at
most two subdivision points along every coveting edge which itself has a two-directional
point representation.

An example of this construction is ii’lustrated in Fig. 8.
Let L be a linear extension of P and arrange the elements of P as points at unit

intervals along the y x line on the plane in the same increasing order as they occur in
L. We proceed by induction on the height of an element in L (that is, the size of the
longest chain in L from it to the bottom ofL) to assign it successive directions, changing
at most twice, to produce a two-directional point representation. Suppose that the elements
of L labelled A, A2, Am- are already directed. Suppose that An is an upper cover
of Am. As An has at most two lower covers in P either the eastward direction to An is
available or else the northward direction to An is available. Suppose then that the eastward
direction is available and is chosen from a single subdivision point on the (Am, An) edge

o14

12 o/ No13

FIG. 7
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(cf. Fig. 9). In fact, for any upper cover An, of Am for which this eastward direction is
available we may choose a single subdivision point and direct Am northward, as before,
and direct the subdivision point eastward. Now, let C be an upper cover ofAm for which
there already exists a point directed eastward toward it. In this case two subdivision points
along the (Am, C) edge suffice: the first located north ofAm at a point whose y-coordinate
is distinct from the y-coordinate of any other point already constructed; the second
located along the horizontal east from the first subdivision point and along the vertical
below C. Then direct the first eastward and the second northward. The same construction
can be carried out for any upper cover D ofAm whose incoming northward direction is
available.

Am

OD

FIG. 9
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We turn now to the proof of Theorem 2. We first treat the special case that every
chain in P has at most two elements, that is, P has "height" at most two. Moreover, let
us assume that P has a quite specific structure. Indeed, suppose that P P(G) is con-
structed from a graph G on the n vertices Vl, v2, vn with the minimal elements of
P corresponding to these n vertices of G and the maximal elements of P corresponding
precisely to those pairs wi9 (vi, vi) of vertices of G, joined by an edge in G. Then put
vi < wo and v < wi. Evidently each element of P(G) has at most two lower covers.

We will now make P even more particular. Let P P(Kn), where Kn stands for the
complete graph on n vertices, that is, every pair of vertices is joined by an edge. We will
show that there is an ordered set obtained from P(K) by subdividing at most half of its
edges that has a two-directional point representation. To begin, select locations Pl, P2, ,
p for the vertices/)1,/)2, /)n on n horizontal lines with equations y yl, y Y2,
y y,, say Pi has coordinates (xi, Yi), 1, 2, n. We locate the vertices wo beyond
(that is, to the fight of) the vertical line x max {xil 1, 2,... n }. For each wo
satisfying < j, choose a location p on y y9 with coordinates (xo, yg) and define
another location p on y yiat (xig, Yi). We may suppose that all of these x-coordinates
xo. are distinct. Now, for each Pi assign it the horizontal direction to the fight and, for
each Pi and pj. assign the vertical upward direction. The vertices p correspond to sub-
divisions of the corresponding edges from vi to wi9 (see Fig. 10). In this way half of the
edges of P(Kn) are subdivided and this resulting subdivision has a two-directional point
representation.

It is an easy consequence that, actually, for any graph G, some subdivision of the
ordered set P P(G) also has a two-directional point representation. To see this, just
erase the points Po, P from the representation of the above described subdivision of
P(K,), n being the number of vertices of G, whenever vi, v9 are not joined by an edge
in G.

We may now extend this idea to supply a two-directional point representation of
some subdivision of any ordered set P in which each maximum chain has at most two
elements. Indeed, just like the case for P(K,), subdividing at most half of the edges is
enough. Locate the minimals ofP, each on a different horizontal line. For each maximal
element with two lower covers we proceed as for the representation of P(G). In fact, if
all the maximals ofP have two lower covers, then P P(G), where possibly G has some
multiple edges (see Fig. 11 ).

If, on the other hand, there are maximals with just one lower cover, then it suffices
to locate these on the horizontal line corresponding to its unique lower cover and direct
it upward (see Fig. 12).

For this "bipartite" case, we have consistently directed the minimals horizontally
and the maximals, together with all subdivision points, vertically. Of course, we could

w12 w23 w13 w12 w23 w13 Y =Y3

Vl v2 v3 Vl v2 v3 Y --Yl
P(K 3) A subdivision

of P(K3)

a ’P23" "? PI3v3
/

O-P,12 o p 13
V

A two-directional point representation
of a subdivision of P(K3)

FIG. 0
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have interchanged the two directions, with an appropriate change to all locations (a
reflection along the diagonal y x).

We are now ready to treat the general case. First, we partition P into "levels":

L min (P);

where min (P) stands for the minimals ofP. Note that consecutive pairs L,., Zi/l deter-
mine bipartite orders, each of which does have a two-directional point representation.
In fact, as long as there are no coveting relations between pairs of elements x e Li, y
Lj-, j >___ + 2, then we may successively locate positions for the elements of the levels,
alternating directions for the levels. Thus, if for L1 t_J L2 all vertices associated with L1
are directed horizontally, then the vertices ofL2, as well as subdivision points, are directed
vertically. At the next step in L2 L) L3 each vertex in L3 is directed horizontally just as
the subdivision points in L2 t_J L3, and so on. Note that not all edges are subdivided; for
instance, no edge associated with the lower cover of an element with only one lower
cover is itself subdivided.

Let a two-directional point representation of a subdivision of the ordered set
(L t_J L2 [-J (L3 I,.J L4) I,J be given. We suppose now that there are, however, coveting
edges joining elements.in levels two or more apart. To this end let us suppose that x e

v v2 v v2 v2o-=-. o o

P A subdivision A two-directional point representation
of P of a subdivision of P

FIG. 12
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Pz Py

" Pxy
FIG. 13

Li, odd say, and y Lj, j >- + 2, are such elements. Let Px, Py stand for the corresponding
points in the representation of (L1 tO L2) tO (L3 tO L4) tO Then each coordinate of
py is larger than the corresponding coordinate ofpx. By hypothesis, y can have precisely
one other lower cover z 4: x and z Lj_ 1, and, by construction, the coveting edge y
above z is not subdivided. Now, Pz is directed either horizontally or vertically. If hori-
zontally, like Px, then we insert a point Pxy, directed upward, at the intersection of the
horizontal through Px and the vertical through py (see Fig. 13 ). Now, if there is a point
Pc already located on the vertical between Pxy and py, it cannot be comparable to py. As
no point in the representation of the subdivision can be directed upward to Pc, we may
shift Pc slightly to the fight. This results in a representation ofthe subdivision again, along
with the required comparability of x < y using a single subdivision. Otherwise, Pz is
directed upward. As z is not itself a subdivision point, py must be directed horizontally.
Then move py slightly to the fight, say a distance e > 0. Insert a point Pzy, directed
horizontally, at the intersection of the vertical through Pz and the horizontal through py,
that is, at the former location of py itself. Also insert a point Pxy, directed vertically at
the intersection of the horizontal through Px and the vertical through py, (now shifted a
distance e > 0 horizontally). We may suppose that no other points lie on the segment
between Pxy and py (otherwise, shift it horizontally by a small distance) (see Fig. 14). In
this fashion we can produce a two-directional point representation of a subdivision of
P. This completes the proof of Theorem 2.

Pxz?

Pz o

FIG. 14

o-
Py

Pxy
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X W UV IIW UX VW VX WX UV UW UX VW VX WX

U V W X U V W X

P4 0,4

FIG. 15

We now turn to the proof ofTheorem 3 and first prove the second part. We construct
a family (Pnln >= 7 of ordered sets, each member ofwhich has no two-directional point
representation. We will also prove that if the diagram of Pn is subdivided by adding
exactly one point along each coveting edge, the ordered set Q thus obtained has no two-
directional point representation. Indeed, let P P(K,) (see Fig. 15). Of course, this
bipartite order P itself has no two-directional point representation, for any n >- 3, as it
certainly contains a simple cycle. We will show that adding exactly one subdivision point
along each edge of Pn, n >= 7, cannot produce an ordered set with such a representation.
Suppose, for a contradiction, that every ordered set Q, n >= 7, obtained from P, by
adding precisely one subdivision point (u, uv) along every coveting edge u to u v, does
have a two-directional point representation.

Our aim is to construct a particular two-colouring of the edges of P, based on the
representation of Q. Let u be an arbitrary vertex of K,. Note that, in the representation
of Qn, all but at most one of the upper covers of u have a direction different from that
assigned to u. Colour the edge from u to uv if (u, u v) is directed eastward, otherwise
colour the edge 0. Note that the two incident edges of each maximal vertex uv of P,
carry distinct colours (see Fig. 16). On the other hand, among the n incident edges of
each minimal vertex u all, but at most one, receive the same colour. Now orient the
edges of K, according to this rule: u -+ v if the edge u to uv in Pn has colour 1; v -- u if
this edge u to uv in P has colour 0 (see Fig. 17). Then for any vertex u of K, either all

UW

’------: o

t
uO---- o

UV

_’
XW

X

A two-directional point representation ofQ

t_ _t_.t_

FG. 16

UV UW UX VW VX XW

U V W X

FAge-colouring of P4
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X W X W

U 0
V U V

Orientation of K4
Bipartite subgraph

FIG. 17

but at most one ofthe edges are directed away from u or, all but at most one ofthe edges
are directed into u. For each vertex u delete from Kn, n >= 4, the minority edge, if it
exists. Then, for every vertex u of the induced subgraph, either every edge is directed
away from u or every edge is directed into u, that is, the induced subgraph must be
bipartite. In summary, we have shown that the removal of at most n edges from Kn
produces a bipartite graph. If n >- 7 then one of the two parts of the bipartition contains
at least four vertices whose six edges must have been removed, according to the construc-
tion. This is impossible if only n edges are removed in all, each one incident to a distinct
vertex.

To prove the first part ofTheorem 3, we will show that ifP is a subdivision ofP(K,)
which has a two-directional representation, then there are at most n vertices w i,j

such that neither of the two original edges v/. to w;,j or v to wi, is subdivided in P. For
contradiction, suppose that there are n such vertices wi,. These n vertices together with
the 2n incident edges and all n minimal vertices of P(K,,) form a bipartite order on 2n
vertices with 2n edges. Such an order must contain a cycle, which contradicts Theorem 1.
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REED-SOLOMON CODES*
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Abstract. The complete weight enumerator ofa code enumerates the code words by the number ofsymbols
of each kind contained in each code word. As for the ordinary weight enumerators, the complete weight enu-
merators for linear codes satisfy a duality theorem. These weight enumerators are studied here for certain
realizations of Reed-Solomon codes ofdimensions two, three, and four over a field of characteristic two. Some
applications of these results are considered.
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1. Introduction. The complete weight enumerator (cwe) of a code enumerates the
code words by the number of symbols of each kind contained in each code word. As for
ordinary weight enumerators for linear codes, they satisfy a duality theorem. One appli-
cation for such a cwe is in determining the weight and distance structure of certain kinds
of concatenated codes. As an example it is sometimes of interest to obtain a binary code
from a q-ary code, q 2 m, by replacing each field symbol with its binary representation
in some basis ofFu over F2, where Fu is the finite field of q elements. The binary weight
enumerators of such binary image codes, obtained from certain representations ofReed-
Solomon codes, are considered by Kasami and Lin [2] and some of the references con-
tained therein. Such results can also be obtained from the more general approach using
cwe’s considered here. The problem addressed here is noted as research problem 11.2
in [4].

The next section reviews some results on Reed-Solomon codes and cwe’s that will
be ofuse in the sequel. The following three sections derive the cwe ofparticular realizations
ofa Reed-Solomon code of dimensions two, three, and four, respectively. By the duality
theorem for cwe’s, these can be also obtained for dimensions n 2, n 3, and n 4.
Only Reed-Solomon codes over fields of characteristic two are considered in this work,
although many of the results hold for the more general case [3]. Section 6 considers
applications of the results derived.

2. Preliminaries. Throughout, let q 2 and n q 1, and let a be a primitive
element of Fq. Denote by RSb(n, k) the cyclic Reed-Solomon code of length n and
dimension k with generator polynomial

g(x)=(x- )(x-+ .(x- ,+"-- ).

The dual of RSa(n, k), RS-(n, k), is RSn-b+l(n, n k). Let ERSa(q, k) be the
extended code obtained from RSb(n, k) by adding an overall parity check. Then
ERS-{( q, k) ERS,,_ a+l( q, q k). In like manner, the generator and parity check
matrices for these codes may be described. Let

0 1, Ol i, OI. 2i, Ol.
i(q- 2)].
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Then the parity check matrix for RSb(n, k), Hb, has as rows the vectors Ob, Ob +l,
On-k+b-I and the generator matrix Gb has as rows the vectors On-b+ l, On-l, 0o,

,Ok_b.
Using a notation similar to that of Kasami and Lin [2], let

V(f(x))=(f(1),f(a), ,f(aq-2))F

forf(x) a polynomial over Fq and

Ve(f(x))=(f(O),f(1), ,f(aq-2))F.

It is readily established that

RS n k { V( x / f x degreef< k }

and in particular that

RSl(n,k) { V(f( x)),degreef<k}, and ERSl(q,k) Ve(f( x)),degreef<k}.
That the extended code is of this form follows immediately from the fact that

q-2 -a
Z ol’ik-- "-’0.
i=0 -ck

Reed-Solomon codes are examples of maximum distance separable (MDS) codes for
which the minimum distance is d n k + 1. The (ordinary) weight enumerator for
such codes is uniquely determined by the code parameters and is given by

At=(q (-1)i l-d-i

i=

q ’l>=d"

The cwe ofa code enumerates code words according to the number oftimes each element
of the field appears in each code word. It will be convenient to use cwe for both the code
and individual code words. Denote the field elements by Fq { a j, j e B }, where B
{,, 0, 1, q 2 and by convention * 0. Also let F" denote Fq\ (0 } and
B* B\ { * }. For u (ul, un) e F, let w[ u] be the cwe of u defined as

w[ u] -,0 1-I V,
jB

where sj is the number of components of u equal to a, Z, s n. The cwe of a code c
is then

Wc.F,(Z*,ZO, ZI, ,Zq-2)-- Wcg(z) Z w[u].
u6 C,

Let x denote the character of Fq given by Xl() (- )0, where/30 is the zeroth com-
ponent of/3 Fq with respect to the polynomial basis generated by a. Then the
MacWilliams theorem for the cwe for a linear code [4] is

( )W(z,,zo, ,Zq_2)-- Ti W Z Xl(Ol*olS)Zs, E Xl(Olq-20S)Zs
sB sB

Unlike the ordinary weight enumerator, the cwe for Reed-Solomon codes depends on
the particular generator polynomial used. Some useful properties of code word cwe’s
follow from their definition. If w[ u] I-I9 cA zj, A c B then the cwe ofthe scalar multiple
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of u, aku, is obtained as

wt- ul II
j{k+A}

where the addition in { k + A } is modulo q and k + ,. For convenience, denote
w[aku] as w[u] (k). Note also that V(f(ahx)) is a cyclic shift by h positions of V(f(x))
and so

w[V( f(ahx))] w[V( f( x))].

Let T(fl) denote the trace of/3 Fq f2m T(3) E /2i, of Fq over F2,
and letBo {i, T(a;) 0} andB-o B\Bo, where Bol 2 m-1. Recall thatBo
is a union of cyclotomic cosets and that T(x + y) T(x) + T(y). Note also that the
quadratic x2 + alx + ao 0 has solutions over Fq if and only if T(ao/a) 0 and
that the cubic x3+ a2x2+ alx+ ao =0 has a unique solution if and only if
T({(ao + ala2)/(al -t- a22)3/2} -) 4 T(1)[1].

3. The complete weight enumerator for RS (n, 2) and ERS (q, 2). The ordinary
weight enumerator for RS (n, 2) is

A0 1, An_l=(q 1) 2, An=2(q 1)

and for ERS (q, 2) is

A0 1, Aq_l=q(q 1), Aq=(q 1).

The cwe’s ofthe code words of various weights are easily arrived at using the polynomial
description of RS (n, 2). For fixed ao, a Fq consider the values of the polynomial
ao + alx as x runs through Fg. If a 0 the corresponding code word contains a0 in
each coordinate position, and the total contribution to the cwe is

q-IZ
jeB

this is the cwe ofRSI (n, ). Ifa 4 0 then as x runs through Fg, a0 + ax runs through
all values of Fq except ao. If a0 o/i then the contributions of such terms to the cwe are
of the form

H ZJ’-"Y/Zi’ " I-[ Zj
jB,j4:i jB

and each such term appears (q times corresponding to the nonzero value of al. The
cwe ofRS (n, 2) is then

q-1WRSI(n,2)(Z) X Zj - (q- )"/ --.
jB iB Zi

The argument for ERS1 (q, 2 is simpler. For al 0 the q code words corresponding
to the values of ao Fo are constant and contribute the terms

q

i.B
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to the cwe. For a 4 0, as x runs through Fu the polynomial ao + ax runs through Fq.
The q(q terms of the cwe are then q(q )3’, and the cwe for ERS (q, 2) is

WERSI(q,2)(Z--) Z Zi
q
%- q(q-- )’y;

iB

thus the first term is WERSI(q, 1)(Z ).

4. The complete weight enumerator of RS (n, 3) and ERS (q, 3). The ordinary
weight enumerator for RS1 (r/, 3 is

A0 =1, A,_2=(q-1)(q-l)2
An-=3(q-1)2’ A’=q(q-1)2/2+3(q-1)

and for ERS1 q, 3

A0 =1, Aq_2=(q -1)(q_2q ) Aq_l =2q(q-1), Aq=(q -1)(q2.q+2)/2.

It is clear that RS (n, 3) contains RS (n, 2), and it is sufficient to consider code words
corresponding to polynomials of the form a2x

2 + alx %- ao, a2 4 O. It is possible to
identify the added code words (from RS1 r/, 2) to RS1 (r/, 3 )) in terms oftheir properties.
For example, the (q )(qq-2) words of weight q 2 correspond to the polynomials of
the form a(x + 19/1 )(X %- 0/2) 0/1 =/= 0/2. However, such observations do not appear to be
useful in determining the corresponding code word cwe’s.

From it is sufficient to consider the case of monic polynomials (a2 and
consider first the case of al @ 0. In this case, transform the variable by x ay so that
X2 %- al x %- a0 becomes aZl(y2 %- y %- (ao/al)) and it is sufficient to consider the polynomials
of the form y2 %- y + ao. Scalar multiples will be considered later. To determine the
number of times the symbol r/will appear in the code word corresponding to the poly-
nomial y2 %- y + ao, we require the number of solutions to y2 %- y + ao 7. This will
have two solutions in Fq if and only if T(ao) T(r/) and, if ao r/, the solutions are 0
and 1. Thus if we define

2 2/30 I-I zj and/ I-[ Zj-
j Bo j o

then

o/zii6Bo

9o/z iego"

To consider scalar multiples ofthe code words corresponding to these polynomials,
it is convenient to define translations of the sets Bo and Bo as Bk { k + Bo } and Bk
{ k + B--o }, where addition is modulo q and j + ,. Further define

2 k6B2 and C/k ]-I z,&= II
j- Bk Jk

The contributions to the cwe of the scalar multiples are then

3k/ Zi + k, e Bo
w[cgV(y2+y+ai)]=

k/Zi+, ieB--o"
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Each such contribution to the cwe appears (q times and hence of q(q )2 poly-
nomials under consideration their contribution to the cwe is

k Zi + k o Zi + k

For the case where al 0 it is clear that it is sufficient to consider polynomials of the
form a2(x + ao) 2. As x runs through F the polynomial assumes all values except
a2a and again, since squaring in fields of characteristic two is an automorphism, the
contribution to the cwe of these q(q polynomials is

The cwe ofRS (q, 3) is then

Sl(,,() W.s(,()+(q- l) N + +
k isoZi+k ieoZi+kJ j Zj

For ERS (q, 3) the same arguments are used, and the expressions simplify when
the summations are allowed to run over Fq rather than F. The resulting cwe is

(2) WeRS,(q,3)() Wees(o,()+((q- 1)q/2) (+) +q(q- 1).
k

5. The complete weight enumerator for ERSI(q, 4). The complete weight enu-
merator for the four-dimensional case is a little more involved and, for the sake of sim-
plicity, is found here for the extended code only. Some computation in Fq is required to
resolve this case. The ordinary weight enumerator for ERSI (n, 4) is given by

Aq-3=(q-1)( q Aq-2=3(q-1)( q
Aq-=q(q-1)(q2-q+6)/2’

2
q-

3

and again it is an easy matter to identify the contributions to the various weight classes
of the various types of polynomials. The cwe’s of code words corresponding to monic
polynomials x + a2x

2 + ax + ao of degree three are first found and four subcases are
considered. Consider first the subcase where a2 0 and al 0. By making the substitution
x a]/2z, this is equivalent, up to scalar multiples, to determining the cwe of z + z +
a0. Denote by u(_z) the cwe of V(z + z + ) and although some observations on the
form of these cwe’s may be made, it appears they must largely be determined by com-
putation. For example, it will be seen that only one such cwe from each conjugacy class
need be determined. Also note that the total contribution of such polynomials to the
cwe is

(q-l) u(z).
nFq

For the case a2 a 0 the polynomials are of the form x + a0 and let

I)(Z._) m[Ve(X -
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If rn is even then 312 and let I { 3i, 0, 1, (2 m 4)/3 }. Then

Vo(z) z. 1-I ,.
and if rn is odd

Vo(z)=,,,, v,(z).

The contribution to the cwe of terms of this form is

22 v(z).
XcFq

For the case when a2 # 0, by the substitution x azy, x + azx2 + alx + ao can be
expressed as a scalar multiple of a polynomial of the form y3 + y2 -4- ay + ao. Thus in
the case when a2 :/= 0 and a # 1, the further change of variable y z(al + )1/2 +
is made to give the polynomial, up to scalar multiple, z + z + a, a (ao + al)/
(al + )3/2. It is easily checked that as (ao, a) runs through the q(q allowable
values, the coefficient a runs through each value ofFu, q times. The contribution of
these q(q )2 polynomials is then

(q-1) 2 Z u,(z).
Fq

Finally, for the case where a2 =/: 0 and a 1, the polynomial y3 + y2 + y + a0
(y + + (a0 + ), which, by transformation of the variable z y + 1, gives z +
The contribution of the q(q such polynomials to the cwe is of the form

(q-) Z v(z).
XEFq

The contribution of the four cases is then

r(z)=q(q-1) u.(z_)+q v(z_).
F , F

Finally, the set of all scalar multiples of the polynomials considered is included as

(3) [r(z_)]()=q(q-1) , , [u,(z_)](2)+q , , [I),(Z)] (j)

jeB* VeFq jeB* X eFq jB*

and the cwe for ERS1 (q, 4) is then

(4) WERSI(q,4)(Z--) WERSI(q,3)(Z) -JI- Z [r(-z)] ()
jeB*

A property of the cwe of a code word that will be computationally useful is as
follows. If w[ u] I-[j eA Z), denote by

wlu](,) II Z2kj,
jEA

where again arithmetic is modulo q 1, 2k. and 2k0 0. Let f(x) =o ajx
and (x) -o a’x. Then w[V(fi(x))] w[V(f(x))]). This follows since if
f(a) a then (a2q) a 29. In particular, suppose coefficients a. off(x) are in
F2, j 1, 2, r and ao F2. Then the cwe’s of polynomials obtained by allow-

2ing ao to range over its conjugacy class { ao }, 1, 2, s are easily obtained as
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w[ V(f(x)) ](,.), 1, 2, s. Thus, as mentioned, for polynomials of this form only
one cwe from each conjugacy class need be determined.

6. Applications. Two applications of the cwe are discussed in this section and the
cwe of ERS1 (8, 4) found as a small example of the techniques of the previous section.

The problem discussed in [2] is to determine the binary weight enumerator of the
code obtained from the Reed-Solomon code by replacing each element of F2m by its
binary m-tuple with respect to some basis. Similar results can be obtained by the cwe
approach. Let element a have a binary weight w; with respect to the chosen basis. If
is a code over F, with cwe W and b is the binary code obtained in the above manner,
then the (binary) weight enumerator of b is given by

IY%(X) I/V(_z) {z/_-

The results of[2], using results more tuned to that specific problem, give more detailed
information on the weight structure of cg. With further analysis the cwe approach would
yield the same results.

As a second application of cwe’s, the problem of using Reed-Solomon codes with
M-ary phase shift keying is considered, where M q. For convenience we use complex
notation and associate the symbol 0 Fq to a c and map the symbol O to the phase

i+ 1, O, 1, q 2, e27ri/q. There are, of course, other ways of mapping the
symbols. The theoretical performance of such a system depends on the set of Euclidean
distances between code words, although to achieve this performance would require a so-
called soft decision decoding, which is at present unknown for such codes. The problem
is nonetheless of interest and may be approached using the cwe. If We(x) is the distance
enumerator of the Euclidean code obtained from by the above mapping, whose coef-
ficient of xa2 gives the number ofcode words at Euclidean distance squared d2 from any
given code word, then

W(x) W(z) z_- -.
To illustrate the techniques of the previous sections, the cwe of ERSI (8, 4) is de-

termined. Note first that since 3lq 7 then vx(z) (j)
3’, for all j e B. It is easily

verified that Bo ,, 1, 2, 4 } and B0 { 0, 3, 5, 6 } and

H II
j6 {k + B0} {J6/}0}

Equations 2 ), 3 ), and (4) give

WES(a,4(_Z) Zi + 5043’ + 28 (+)
iB

+ 56 u(z).
jeB* neFq

The cwe’s un() are shown in Table and the un(z)( are easily computed from these.
For example,

2 (2) 2u,() z,zzz4z5 and u() Z,ZoZ3Z4Z6,

Thus all q4 terms of the cwe of ERS1 (8, 4) are readily obtained. Note that

u-(z) u,(z)(2) and u,2(z) u,(z))(2)



COMPLETE WEIGHT ENUMERATORS 171

TABLE
Complete weight enumerators u,(z).

j, o a u,(z) W[Ve(X + x + r/)]

Z ,ZoZIZ2Z

ZoZ21ZZsZ6
2 ZoZzzZ3ZsZ
3 z,z,zzz
4 ZoZ3ZZ4ZZ6
5 Z,ZIZ2Z34Z
6 Z,ZIZ2Z4Z

and

u6(z) u(z)(2) and u(z) u(z)(2);
i.e., it is only necessary to compute one cwe from each conjugacy class of Fu. This
observation is particularly useful for larger fields.

7. Comments. The cwe’s of certain low dimensional Reed-Solomon codes have
been determined and, by duality, the corresponding high dimensional codes have also
been determined. It was pointed out in the previous section how such cwe’s might
be useful in certain applications and an example of the computation of the cwe of
ERS 8, 4) was given. For the four dimensional codes the arguments considered several
cases as the polynomial coefficients assumed certain values, and it seems unlikely that
similar arguments for higher dimensions will be of interest to pursue. Yet the cwe’s of
the Reed-Solomon codes show considerable structure, which raises the question as to
whether another approach might be more successful. Clearly, the cwe possesses symmetries
that might be exploited to obtain more information on their structure. It is possible that
the cwe’s of doubly and triply extended codes might be obtained with the techniques
described, but this was not pursued.
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NEW RESULTS ON SERVER PROBLEMS*
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Abstract. In the k-server problem, one must choose how k mobile servers will serve each of a sequence of
requests, making decisions in an online manner. An optimal deterministic online strategy is exhibited when the
requests fall on the real line. For the weighted-cache problem, in which the cost of moving to x from any other
point is w(x), the weight ofx, an optimal deterministic algorithm is also provided. The nonexistence ofcompetitive
algorithms for the asymmetric two-server problem and of memoryless algorithms for the weighted-cache problem
is proved. A fast algorithm for oflline computing of an optimal schedule is given, and it is shown that finding
an optimal oftline schedule is at least as hard as the assignment problem.

Key words, online algorithm, offline algorithm, server problem, competitive analysis
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1. Introduction. The k-server problem can be stated as follows. We are given a
metric space M, and k servers that move among the points of M, each occupying one
point ofM. Repeatedly, a request (a point x e M) appears. To serve x, each server moves
some distance, possibly zero, after which the point x must be occupied by one of our
servers. The cost incurred is the sum ofthe k distances moved. We must serve this request
by considering only the current and past requests: the decisions are made online. The
server problem encompasses many interesting problems as special cases, for example:
heuristics for linear search [14], paging [9], [13 ], font caching in printers [13 ], and
motion planning for 2-headed disks [4].

Let us call a sequence of k not necessarily distinct points of a metric space a con-
figuration. IfM is a metric space, we call an online strategy if’ ck-competitivefor M if
for every initial configuration R rl, r2, rk), there is a real a such that the following
property holds. Let a be an arbitrary request sequence for M and let OPTR(a) be the
optimal (oftline) cost to serve a, when initially the th server occupies ri. Then the total
cost incurred by if’ on a, when its ith server starts in ri, is at most

cOPTR(r) + a.

Here, the benchmark is the minimum cost needed to serve the request sequence, mini-
mized over all possible ways of serving this sequence. Thus for if’ to be c-competitive,
its cost must not exceed a more than c times the cost of the optimal offline algorithm.
We say 6’ is competitive for M if it is c-competitive for M for some ck. Strategy 6’ is
c-competitive or competitive if the respective definitions hold for all metric spaces. It is
known [10] that no c-competitive strategy exists if c < k. Also, no generality is lost in
assuming, if desired, that the initial locations ri are distinct.

Yet a more general model, that of task systems, was studied by Borodin, Linial,
and Saks [2], who gave an optimal online algorithm in their model. However, in their
approach the "competitive ratio" is allowed to depend on the cardinality of the metric
space. Our problems are less general but sometimes permit stronger results.

At the moment, for no k >= 3 is any competitive (deterministic) algorithm known
for all metric spaces. Several important results were obtained by Manasse, McGeoch,
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and Sleator 10 ], 11 ]. They presented a 2-competitive algorithm for the 2-server problem
and an (n )-competitive algorithm for the (n )-server problem on n-point metric
spaces. It was also Manasse, McGeoch, and Sleator 10 who showed that for any metric
space with k + or more points, no Ck-competitive strategy exists for that metric space
ifck < k. Recently, Irani and Rubinfeld 8 proved that a version ofa balancing algorithm
is 10-competitive for two servers.

One approach to the problem is to seek a randomized strategy for which the expected
value of the cost does not exceed a plus Ck times the optimal cost. The lower bound
mentioned above collapses in the randomized model. In fact, for the paging problem--
the allowable metric spaces are those with all unit distances--Fiat et al. [7] presented a
strategy for paging that is 2Hk-competitive, where Hk is the kth harmonic number. (Hk
is asymptotic to In k.) They also proved that for the paging problem no strategy can be
Ck-competitive unless Ck >= Hk. Thus, the Hk-competitive algorithm presented by McGeoch
and Sleator 12 is optimal.

In 2, we consider the case of k servers on a line. The simple algorithm we present
is k-competitive and hence optimal. This is the first competitive deterministic algorithm
for k servers in a metric space with unboundedly large distances. Our algorithm is, in
addition, memoryless in that the algorithm can be specified by a function f Mk /l

__
Mk. When in configuration (Pl, P2, Pk) with a request at Q, the servers move to
f(Pl, P2, Pk, Q) (p’l, p’2, p’), the ith moving from pg to p} (of course Q e
{ p’l, , p } ). Such an algorithm keeps no record ofthe past other than the configuration
itself. The importance ofmemoryless algorithms has been emphasized by Raghavan and
Snir [13]. (One should be aware of the possibility that in certain infinite metric spaces
one might be able to store the entire history of the computation in the location of one
or more servers.)

Section 3 proves that a simple balancing algorithm is k-competitive--and thus op-
timal-for the weighted-cache problem, in which associated with each point x is a positive
weight w(x) and the distance to x from any other point is w(x). Thus, we allow the
"metric" to be asymmetric and apply the definitions above. (We say an asymmetric
metric space is a space for which d(x, y) is nonnegative and d(x, y) 0 implies x y.
Distances must obey the triangle inequality, yet need not be symmetric.) This problem
was proposed by Manasse, McGeoch, and Sleator [11 ], and a randomized k-competitive
algorithm was given by Raghavan and Snir [13]. In the same section, we also present a
new memoryless algorithm for the unweighted case.

In 4, we first show that for the general asymmetric problem, there can be no
competitive algorithm, even for two servers. This stands in contrast to the conjecture
"that among all k-server problems, the ones that have the highest competitive factor are
the symmetric ones," made by Manasse, McGeoch, and Sleator in [11 ]. We then show
that there is no deterministic memoryless algorithm for the weighted-cache problem.

In Section 5, we consider oflline algorithms for the server problem. We give a O(kn2)
time algorithm to find an optimal schedule for k servers and n requests. Following this
result is a proof that when k n/2 this problem is at least as hard as the assignment
problem on n-node bipartite graphs. Last, we show that on the line (where the input size
is n), the time needed to find an optimal schedule in the algebraic computation tree
model is 2(n log n).

By virtue of the triangle inequality, an optimal strategy can be assumed never to
move more than one server while serving a request (see 10 ). However, with concurrent
motion ofthe servers, the algorithm for the line is memoryless, and the proofs are simpler.
When we simulate our algorithm with one that moves only one server at a time, this
new algorithm will need memory to store the virtual positions of our servers.
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Often, our goal will be to show that an online algorithm we construct is competitive.
To do this, we will conceptually create an adversary who, with his own k servers, must
serve the same sequence of requests as we serve, starting from the same configuration,
but who knowsnindeed, who choosesmthe entire request sequence in advance. If we
can prove that our cost is no more than a plus k times the adversary’s cost on the same
request sequence, despite the adversary’s foresight, then our online algorithm must be
k-competitive.

2. A memoryless algorithm for the line. In this section, we present an algorithm
for k servers on a line. The algorithm is simple, memoryless, and achieves the optimal
ratio: k. Each request is specified by a real number, the location on the line ofthe request.
Here is the algorithm.

Algorithm DOUBLE-COVERAGE. Where s denotes our server closest to the request
P, and d is the distance from s to P, serve the request with s. Then, if we have any
servers on the "side" of P opposite to s (e.g., to P’s left if s is to P’s fight), move the
closest one d units toward P. Thus, we actually move one or two servers in response to
a request, moving one if and only if all of our servers are on the same side of P.

We imagine that in response to a request, first the adversary serves the request, all
of our servers remaining stationary. After the adversary has served the request he stays
stationary while we serve the request. S* andA * denote the total cost we and the adversary
incur over the whole sequence of requests, respectively. We label our k servers Sl,

sk; the adversary’s k servers are labeled Xl, xk. We will also use si and xj to denote
real numbers giving the current locations of servers s; and xj on the real line. By relabeling
the servers as they move along the line, if necessary, we will always assume that Sl --<
s2 --< _-< s and x _-< x2 --< =< x.

LEMMA 1. Suppose that G is a nonnegative potentialfunction such that
While the adversary serves a request, G cannot increase by more than k times

the distance moved by the adversary, and
(2) When we serve a request, G decreases by at least the cost we incur in serving

the request.
Then S* <= kA * + Go, where Go is the initial value ofG.

The proof ofthis lemma, standard in the study of amortized time analysis, proceeds
by a simple summation over the whole sequence of requests. The details are omitted.

Our potential function is G + O, where

k

=k Ix-sl
i=1

and

O= X (s-s),
i<j

the potential function of[ 6 specialized to our problem. That this simple potential function
(as opposed to our more complicated formulation ofthe same potential function indeed
works for DOUBLE-COVERAGE was pointed out to us by Borodin [3 ].

THEOREM 1. S* <= kA* + Go, that is, DOUBLE-COVERAGE is k-competitive.
Proof. We will prove the theorem by showing that conditions (1) and (2) from

Lemma hold. Lemma then implies that S* <- kA * + G0. (G0 0 if all 2k servers
initially coincide.) We may assume that as a server moves, it does not pass any other
servers, neither ours nor the adversary’s. Otherwise, we can divide the motion of a server
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into phases, within each one of which the order of the servers remains unchanged. (Of
course, at the end of a phase if the moving server "overtakes" another server, we relabel
them, if necessary. Doing so leaves unchanged.)

Suppose that xi moves a distance d within a phase. Then it is clear that can
increase by at most kd, while 0 remains unchanged, and therefore condition holds.

Condition (2) deals only with the second half of the move, after the adversary has
served the request. There are two cases: either all of our k servers are on the same side
of the request P, or they are not. If all are on one side, say, the rightmthe other case is
similarmour closest server is S and, since the adversary has already served the request,
he has a server, say, xj, at P. Clearly s >_- xj >_- Xl. Moving Sl to the left d units decreases

by kd and increases 0 by (k )d, decreasing in total by d. Thus, condition (2)
holds in this case.

Now, the second case, in which we incur a cost of 2d. Suppose si is our nearest
server to P’s left, Si+l then being our nearest server to P’s right, and let the adversary
server on the request site be, say, x;.

First, we analyze the effect of the motion of our servers on . Only the ith and
(i + )st terms can change. If the adversary’s server x at the request site satisfies j _-<
i, then the ith term of xI, will decrease by kd while the + )st can increase by at most
kd. Ifj >= + 1, the (i + )st term decreases by kd while the ith can increase by at most
kd. In either case, xI, cannot increase.

Now, we study . The change in 0 due to the movement of our two servers is

d[-(k-i)+(i- 1)-(i)+(k-(i+ 1))] =-2d.

It follows that (2) holds.

3. Cache problems. We first present a k-competitive algorithm for the weighted-
cache problem, a version of the server problem in which each point x is assigned a
positive weight, w(x). Upon serving a request at x, a server is charged 0 or w(x), according
to whether it occupied x or did not occupy xjust before serving the request, respectively.
This situation is exactly the server problem on the asymmetric metric space in which
the distance to x from any other point is w(x). Initially, our ith server and the adversary’s
ith coincide at some point ri; we assume the r;’s are distinct.

Let S* and A * be the total cost incurred by us and by the adversary, respectively,
over the entire request sequence. We label our servers s, s2, "’-, sk arbitrarily and let
S always denote the current total of the costs charged to s. In this notation, our strategy
can be stated as follows.

Algorithm BALANCE. If we have a server at the requested point, we serve the request
with that server. Otherwise, we use any server sa for which Sa min S, Sk }.

We assume without loss of generality that once an occupied point becomes unoc-
cupied (by both us and the adversary) it remains soma request for it may be replaced
by a request for a new point of equal weight. We also assume that there are no requests
for points we currently occupymomitting such a request and the corresponding adversary
move leaves our cost unchanged and will, by the triangle inequality, never increase the
adversary’s cost. We assume, finally, that at the end of the game we and the adversary
occupy the same set of points, called the final points--subsequent requests for points
occupied by unopposed adversary servers would run up our charges and cost the adversary
nothing.

Let WNF denote the sum of the weights of the nonfinal points, and let WF denote
the sum ofthe weights ofthe final points. Note that A * WNF .qt_ WF since each requested
point is occupied by the adversary exactly once.
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Let T always denote the value of min $1, Sk } just before the most recent
service. We assume its initial value to be zero and let T* denote its final value. By IIs;ll
we denote the weight of the point currently occupied by si.

LEMMA3. Si- Ilsill <- T, for 1, k.
Proof. Suppose that we served the most recent request with sj, and choose arbi-

trarily. If s has not served any requests so far, then Si 0 and, hence, S; IIs;ll =< Z.
Otherwise, consider the time just before & moved most recently. At that time, S -_< Sj,
because BALANCE chose to use si to serve the request. Currently, S is exactly Ilsill
larger than it was then, and T is at least as large now as Sj was then. Thus, now, S
Ilsill--< T. I--1

LEMMA 4. T* <- WNF.
Proof. Zero initially, T cannot increase until all k of our servers have moved; in

fact, T cannot increase from zero until one has moved twice. It follows that if T increases
while sj occupies y, then at some point in the past sj served a request at y.

Consider the period oftime between time t, just after a server s most recently served
a request on a nonfinal point y, and time t’, just after s has vacated y in order to serve
some other request. At time t, T is equal to S’ w(y), where S’ is the value ofS at time
t. At time t’, just after s serves a new request, T S’. We conclude that T increases by
exactly w(y) during a visit of our server to a nonfinal point y.

We assume that the adversary always moves first to serve a request. Therefore, just
after the adversary’s move, there is a point that is occupied only by one of our servers.
The lemma is proven by allocating the increases in T to such points.

When Sa increases Tby serving a request, we do the following. We choose any point
y that is occupied, just before Sa serves the request, only by one of our servers, say sj,
and allocate to y the increase in T due to serving the request by Sa. (Perhaps Sa s.)
Previously, s- must have served a request at this nonfinal y. While s occupies y, T
increases by w(y), and thus the total increase of T allocated to y during this visit of sj- is
at most w(y) (it may be less, since some increases in Tmay be allocated to other points).
Since y will never again be requested after sj. leaves y, the total increase of T allocated to
y is at most w(y).

All increases of T can be allocated in this way to nonfinal points. Thus, the final
value T* of T is the sum of the increases allocated to nonfinal points, and this is at most
WNF by the previous paragraph. E3

We now prove that BALANCE is k-competitive. From 10 ], we infer that even for
the "unweighted" cache problem in which all weights are one (and hence the metric is
symmetric), there can be no ck-competitive algorithm unless c >= k. Thus if c < k no
online algorithm can be c-competitive for all instances of the weighted-cache problem.

THEOREM 5. S* <-_ kA * ifno two ofour servers coincide at the start.

Proof. By Lemma 3 we infer that at the end of the game
k k

(Si- T*) Ilsill- WF.
i=1 i=1

Using this inequality and Lemma 4 we derive

k k

S* Si= kT* -t- Si- T*
i=1 i=1

<= kWNF 1- WF k WNF -- WF)
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Note. Chlebus 5 proved independently, using a different technique, that BAL-
ANCE is k-competitive.

Next we consider the unweighted-cache problem, for which several k-competitive
algorithms are known: FIFO, LRU, and those of[ 9 and 13 ]. Most are not memoryless.
We present a new k-competitive memoryless algorithm. Our algorithm, unlike the mem-
oryless algorithm Flush-When-Full 9], keeps the cache full at all times.

For convenience, we view the metric space for the unweighted-cache problem as
the real interval I (0, by mapping the metric space into I arbitrarily. Initially, the k
servers occupy any k distinct points. Always, each of our k servers occupies a position
given by a real number in I (each such position is the location of some previous request
or an initial location). In each time step, a request (a real number v I) is specified by
the adversary. If we have a server at v, we move no servers and pay nothing. Otherwise,
we choose one of our k servers and move it to v, incurring unit cost. (No two of our
servers ever occupy the same point simultaneously. Without loss of generality, neither
do two of the adversary’s.)

We label our k servers s, s2, , Sk arbitrarily, and also use si to denote the location
of our ith server. We use Algorithm ROTATE.

Algorithm ROTATE. In response to a request at a point v (0, unoccupied by any
of our servers, if there is an si < v, choose a maximum such si; if no si < v exists, choose
a maximum si. Serve the request at v with server s;.

Intuitively, our servers move rightward "around" the interval. ROTATE clearly is
memoryless. We will show that ROTATE is k-competitive.

For 0 < a, b =< 1, we will use (a, b] to mean x la < x =< b } if a _-< b, and to mean
{xla<x_-< or0<x_-<b}ifa>b.

THEOREM 6. ROTATE is k-competitive.
Proof. Label the adversary’s k servers x, x2, xK arbitrarily, using x also to

denote the location of the adversary’s ith server. Let Ci,p denote the number of the ad-
versary’s servers in (si, Xp] and, where r is a permutation of { 1, 2, k }, let c(r)
Z = c,(). Our potential function is

min c(

the minimum being taken over all permutations r of 1, 2, k. In other words, is
the weight of the minimum weight perfect matching in the bipartite graph with edges
{ si, xp } of weight cip. We say that 7r realizes ,b if c(Tr).

We assume that in response to each request the adversary moves first. We prove
the theorem by showing that inequalities and (2) from Lemma hold.

Inequality can be proven as follows. Clearly, we may focus on the case in which
the adversary incurs unit cost, by moving xp (say) to the request site v. We imagine that
he moves xp "rightward" to v, wrapping around the end if necessary. can change only
when xp passes a point occupied only by one of our servers, a point occupied only by
one of the adversary’s servers, or a point occupied by both. When Xp passes a point
containing only one of our servers, increases by at most one. If xp passes a point
occupied only by one of the adversary servers, say Xq, remains unchanged (we may
interchange p and q in a permutation r realizing ). If Xp passes a point occupied by s
and Xq, and, say, r(i) p, r(j) q, then it is not hard to verify that if is the same as
r except that z(i) q, -(j) p, then c(z) _-< c(-) + 1. Thus, because we have only k
servers, as xp moves to v the total increase in is at most k.
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Before proving (2), let us look at permutations 7r realizing . Call two intervals
(s, xp], (s, xu] independent if neither is a subset of the other. If no two s’s are iden-
tical, and no two xp’s are identical, then there is always a permutation 7r realizing for
which pairs of distinct intervals (s;, x(;)] are independent. For if (s;, x(;)] is a subset
of (s, x,)], let r be the same permutation as 7r except that r(j) r(i) and -(i)
r(j); c(r) _-< c(r). Where the length of (u, v] is defined in the obvious way, the sum of
the squares of the lengths of (i, r(i)] is strictly less than the sum of the squares of the
lengths of (i, r(i)], so this process must terminate.

Now we prove (2) from Lemma 1. If the request site is occupied by one of our
servers, both sides are zero. Otherwise, we incur a cost of one. Suppose that the request
site is occupied by Xp, and ROTATE specifies that the request is to be served by si.
Choose a permutation r realizing for which pairs of distinct intervals are independent.

If r(i) p, as s moves rightward, c(’) decreases by at least one.
Thus we may assume that r(i) 4: p. Ifxp (s, x()], then, since s/. is the first server

of ours to the "left" of Xp, (s, x(;)] is a subset of (s-,(p), xp], a contradiction. Thus
xp (s, x(i)] and, therefore, as si moves rightward to serve the request, c(r) decreases
by at least one. U]

4. Nonexistence theorems. First we prove that in the asymmetric case in general
there can be no competitive algorithm, even if there are only two servers.

THEOREM 7. There is no competitive algorithm for the 2-server problem on asym-
metric metric spaces.

Proof. Where K is positive, consider a 3K-node digraph H/ on vertex set Xo, Y0,

z0, x, y, z, ..., x/_, y/_, z/_) with 4K arcs {(xi, zi), (Yi, zi), (zi, xi+),
(zi, Yi+l)]O =< _-< K- ). Define M/ to be the asymmetric metric space for which
d(x, y) is the length of the shortest x - y path in Hx. Then d(xi, yi) d(y, xg)
2K while d( zi xi d( zi yi 2K 1.

If an online algorithm is purportedly ck-competitive, choose K so that (2K- )/
4 >_- ck + and place all the servers initially at z0 in M:. Let a be such that S* =<
cA * + a for all request sequences whose servers start at z0.

The adversary’s request sequence consists of a sequence ofphases. At the beginning
of the ith phase (i >= ), the adversary has two servers on zi-1; the online algorithm’s
servers are anywhere. (Where necessary within this proof, we do arithmetic modulo K.)
The adversary starts by requesting x; and then y;, and uses two servers to serve the
requests. If after the two requests the online algorithm does not have two servers at xi
and Yi, the adversary simply alternately requests x; and yg, incurring no cost himself,
until the online algorithm puts his two servers there (or until the cost of the online
algorithm exceeds a more than c times the offline cost to date). Now the adversary
requests zi. If the online algorithm serves the request with the server at xi, the adversary
uses his server at y;, and vice versa. In the first case, the adversary then requests xi,

incurring no cost but costing the online algorithm at least 2K- 1. Next, the adversary
requests z and moves his second server to zi. (The second case is similar.) This completes
the th phase.

In one phase, the adversary incurs a cost of 4, while the algorithm incurs a cost of
at least 2K- 1. Since (2K- )/4 >= c + 1, if we run enough phases eventually S* >
cA* + a. [2

Our algorithm BALANCE for the weighted-cache problem is not memoryless. Rag-
havan and Snir 13 presented a randomized memoryless algorithm for the weighted-
cache problem. The results of 3 show that for the unweighted-cache problem, a mem-
oryless optimal algorithm does indeed exist. The theorem below shows that using either
randomization or memory is indeed necessary when arbitrary weights are allowed.
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THEOREM 8. There is no memoryless competitive algorithmfor the k-server weighted-
cache problem.

Proof. We will show that for each ck, there is an assignment of positive weights to
any finite set of n _-> k + points so that no c-competitive memoryless algorithm can
exist for the associated instance of the weighted-cache problem. Let the vertex set be
{ 1, 2, ., n }, n >_- k + 1. There are no more than n configurations. Let K be positive
and assign weight w(v) K to node v. The adversary chooses any strategy that always
places the next request on an unoccupied node. Eventually, one configuration C appears
a second time (after at most nk requests, in fact). The adversary now modifies his strategy:
from now on, he simply repeats the requests in the cycle between the first and second
occurrence of C. The memorylessness of the algorithm ensures that the cycle will be
repeated ad infinitum. Where rn is the highest-numbered node that is requested in the
cycle, each iteration through the cycle costs the algorithm at least Km. The adversary
simply uses two servers: one sits permanently on rn while the other serves all requests to
nodes other than m, thereby incurring a cost of at most K n for the cycle. Over an
extremely long request sequence, the costs incurred before reaching the cycle can be
ignored. Thus, in the limit, the ratio between the cost we incur to that incurred by the
adversary is at least Km/(K n) K/n. A suitable choice of K makes this ratio
exceed c. [3

Now we again consider the k-server problem on the line. The algorithm we presented
in 2 often moved two servers to serve a request. In fact, the following theorem states
that no memoryless competitive algorithm on the line always moves at most one server
in response to a request. Similar to the previous proof, it uses points K on the real line
in place of weights Ki. We omit the details.

THEOREM 9. There are no memoryless competitive algorithmsfor k servers on the
line that move only one server at a time.

5. Ottline lroblems. We study the problem of finding an optimal strategy to serve
a sequence of n requests with k servers, if the request sequence is given in advance. We
assume that the k servers initially occupy one point, the origin (but the algorithm can
easily be modified if they do not). When there are n requests, the inputs to our problem
are the superdiagonal entries of an (n + (n + matrix, whose (0, j) entry is the
distance from the origin to the location of request j, j 1, 2, n, and whose (i, j)
entry is the distance from the location of request to the location of request j, _<- <
j<=n.

The dynamic programming algorithm of Manasse, McGeoch, and Sleator [10] is
especially suited for the case in which the number of requests dramatically exceeds the
number rn of points in the metric space. Its running time is O(nm(’)) and space usage
at least (’) for a request sequence of length n in an m-point metric space.

THEOREM 10. There is a O(knZ)-time offiine algorithm to find an optimal sched-
ulefor k servers to serve a sequence ofn requests.

Proof. We reduce the k-server problem to the problem of finding a minimum cost
flow of maximum value in an acyclic network. If we have k servers Sl, s and n
requests r, rn, we build this (2 + k + 2n)-node acyclic network: the vertex set is

V= {s,s,s2, ,s,rl,r’,rz,r’2, ,rn, r’,t}.

Nodes s and are the source and sink, respectively. Each arc has capacity one. There is
an arc of cost 0 from s to each si, an arc of cost 0 from each rj to t, as well as an arc to
from each s;, of cost 0. From each si, there is an arc to rj of cost equal to the distance

from the origin to the location of rj. For < j there is an arc from r} to rj of cost equal
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to the distance between r to rj. Furthermore, from ri to r there is an arc of cost -K,
where K is an extremely large real.

The value of the maximum flow in this network is k. Because all capacities are
integral, and because the network is acyclic, we can use minimum-cost augmentation
15 to find an integral min-cost flow of value k in time O(kn2). An integral s --,- flow
ofvalue k can be decomposed into k arc-disjoint s -- paths, the ith one passing through
si. Because -K is so small, an integral min-cost flow of value k saturates all of the
(rj, rj) arcs, and hence corresponds to an optimal schedule for serving the requests,
the ith server serving exactly those requests contained in the s --,- path that passes
through si.

In the next theorem we prove that finding an optimal ottline strategy for metric
spaces is at least as hard as finding a minimum-weight perfect matching in a complete
bipartite graph. This is true even though the metric space distances must satisfy the
triangle inequality.

THEOREM 1. Ifthere is an algorithm that computes optimal offiine strategies for
k-server request sequences oflength 2k and runs in time g(k), then there is an algorithm
that finds minimum weight perfect matchings in 2k-node complete bipartite graphs in
time g(k) + O(k2).

Proof. If G is a complete 2k-node bipartite graph with k boys and k girls, with an
edge of weight w from boy to girl j, build a server problem on 2k + points s, Xl,

x2, xk, yl, y2, y. Initially, all k servers occupy s. The length of edge { xi, y
is K + w, where again K is extremely large. The edges { s, xi} are of length K,
while all remaining edges are of length 2K. For K sufficiently large, the triangle inequal-
ity holds.

Consider the request sequence x, x2, Xk, Yl, Y2, Y. IfKis large enough,
an ottline strategy that traverses even one edge of length 2K is suboptimal. Thus, the first
k requests, those to x, , x, must be served by k different servers. The same goes for
the last k requests. Thus, an optimal oftline algorithm is one that pairs up the boys and
girls so as to minimize the length of the edges traversed, thereby solving the assignment
problem.

Where n 2k, our algorithm runs in O(n 3) time, the best time known for the
assignment problem.

If the metric space is the line, where specifying n request locations requires only n
reals, is there a faster algorithm than the one above? Possibly there is. But there is no
linear-time algorithm to find an optimal ottline strategy on the line.

THEOREM 12. In the algebraic computation tree model, any algorithm that finds
an optimal offiine strategyfor n requests on the line takes f( n log n) time.

Proof. Let k n/2 (for even n) and assume that all k servers are initially at the
origin. Given reals a, a2, a, determining if ai e X { 3, 3, 3 } for all is
known to require f(n log n) time in the algebraic computation tree model [1]. Consider
the request sequence 3 k, 3-, 3, al, a2, "", a, of length n. We claim that the
cost of an optimal oftline strategy for this request sequence is N 3 if and only if
{ a, ..., a }

_
X. If the latter holds, there is a schedule of cost N: serve the first k

requests with k distinct servers, and then incur a cost of 0 for the last k requests. If the
first k requests are not served by different servers, then the schedule’s cost exceeds N. If
the first k requests are served by k different servers, the optimal cost can be N only if
{ a, ak }

_
X. Thus, the optimal cost is N if and only if { a, ak } X. V]
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TOWARDS A LARGE SET OF STEINER QUADRUPLE SYSTEMS*

TUVI ETZION- AND ALAN HARTMAN

Abstract. Let D(v) be the number of pairwise disjoint Steiner quadruple systems. A simple counting
argument shows that D(v) =< v 3. In this paper it is proved that D(2’n) >= (2 )n, k > 2, if there exists
a set of 3n pairwise disjoint Steiner quadruple systems of order 4n with a certain structure. This implies that
D(v) >_- v o(v) for infinitely many values of v. New lower bounds on D(v) for many values of v that are not
divisible by 4 are also given, and it is proved that D(v) >= 2 for all v 2 or 4(mod 6), v >= 8.

Key words. Steiner quadruple system, orthogonal array, one-factorization, disjoint Steiner systems

AMS(MOS) subject classifications. 51El0, 05B30, 05B15

1. Introduction. A Steiner quadruple system (SQS) is a pair (Q, q) where Q is a
finite set ofpoints and q is a collection of 4-element subsets of Q called blocks such that
every 3-element subset ofQ is contained in exactly one block of q. The number ofpoints
in Q is the order ofthe SQS, and it is well known that an SQS of order v, denoted SQS(v),
has by () blocks. Hanani [5] proved that Steiner quadruple systems of order v exist
if and only if v 2 or 4 (mod 6). Two SQS (Q, q and (Q, q2) are disjoint if q f3
q2 . A coloring of an SQS is a partition of the set of points into color classes such
that no block is properly contained in any color class. An SQS is k-chromatic if it can
be k-colored, but no proper coloring having fewer than k color classes exists. A set ofp
pairwise disjoint SQSs (PDQs) is mutually 2-chromatic if the same partition of Q is a 2-
coloring of all the PDQs. If(Q, q) is a 2-chromatic SQS(2v), with 2-coloring .4, B, then
by Doyen and Vandensavel [3], AI [BI v, and the number of blocks nl, /72, /’/3
that meet A in 1, 2, and 3 points, respectively, is

nl=n3=
3

n2= 2"

Hence, the maximum size of a set of disjoint mutually 2-chromatic SQS(2v) is v since
the number of 4-subsets intersecting A in 3 points is ()v.

Let D(v) denote the maximum number of PDQs. Since () (v 3)by, we have
that D(v) _-< v 3. A set of v 3 PDQs of order v is called a large set. An application
of sets of PDQs is in the construction of constant weight codes with distance 4 ].

It is well known that D(4) 1, D(8) 2, and Kramer and Mesner [11] proved
that D(10) 5. Phelps 17 proved that D(2.5 ) -> 5 , Phelps and Rosa 19 proved that
D(2.5 a. 13 b. 17 c) >_- 5 a. 13 . 17 c, for all a, b, c -> 0, a + b + c > 0, and Lindner [12]
proved that D(2v) >= v for v 2 or 4 (mod 6), v >_- 8. Recently, Phelps [18] has shown
that D(22) >_- 11. All the PDQs of these four constructions are mutually 2-chromatic.
Lindner [13] proved that D(4v) >- 3v for v 2 or 4 (mod 6), v >_- 8 by using his
v PDQs of order 2v 12 ].

In 2 we use a construction with a similar structure to the one of Lindner [13 to
obtain D(4v) >_- 3p, where v or 5(mod 6) and a set ofp mutually 2-chromatic PDQs of
order 2v exists. Ifp v then our set of 3p PDQs is maximal.

In 3 we use the PDQs of Lindner [13 ], our PDQs of 2, and a set of 2
Boolean SQSs of order 2 to obtain D(2v) >_- (2 )v for v 2 or 4(mod 6), v >_- 8,
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for v 5a 13b. 17c, for all a, b, c >= 0, a + b + c > 0, and also for v 1. This result
implies, for example, D(5.2 t) >= 5.2 5, and this is almost best possible, since if there
exist 5.2 4 PDQs of order 5.2t, the unused quadruples must form an additional disjoint
system, and thus a large set exists. No large set of PDQs has been constructed yet.

In 4 we give various recursive bounds on D(v) in order to improve the state of
knowledge when v is not divisible by 4. We also prove the long standing conjecture, due
to Lindner and Rosa 14 ], that D(v) -> 2 for all v 2 or 4 (mod 6) with v => 8.

2. The construction for orders 4v, v odd. An orthogonal array OA(t, k, n) is
an n X k matrix M, with entries from the set {0, 1, ..., n 1}, such that the
submatrix generated by any columns contains each ordered t-tuple exactly once as
a row. If M(i, 0)=j0, M(i, 1)-j,.-.,M(i,k- 1)=jk_, we can also write
(jo,j, ,jk-) 6Mor {(j0, 0), (j, 1), ..., (jk-,k- 1)} 6M.

Two orthogonal arrays M and 342 are disjoint if they have no row in common.
A set 340, M, ,Mn- of n disjoint OA(t, k, n) is said to have property X if the

first + columns of the arrays cover each ordered (t + )-tuple exactly once. Note,
that an orthogonal array OA (t + 1, k + 1, n) implies the existence of a set with property
X, but the contrary does not follow.

LEMMA 1. For n or 5 (mod 6) there exists an OA (3, 5, n ).
Proof. Raghavarao [20] proved the existence of OA (3, 5, p) for all primes p such

that p => 5. The proof then follows from the direct product construction for orthogonal
arrays, since the smallest prime factor of n is at least 5.

LEMMA 2. If there exists an OA( 3, 5, n) then there exists a set of n disjoint
OA 3, 5, n) with property X.

Proof. Given an OA (3, 5, n), Mo, the rows of Mr, 0 =< r =< n are defined by
(a + r, b, c, d, e), where (a, b, c, d, e) 340 and a + r is taken modulo n. It is obvious
that each Mr, 0 =< r =< n is an OA 3, 5, n). Property X follows from the construction.

We now construct a set ofPDQs of order 4v using as input, a set of mutually 2-
chromatic PDQs of order 2v, an orthogonal array, a near one-factorization of Kv, and a
fixed partition of a set of size 4. Let v or 5 (mod 6).

Let Dk, 0 =< k =< p 1, be the block sets ofp mutually 2-chromatic PDQs of order
2v, whose point set is Zv Z2 and whose color classes are Z { }, 0, 1.
Let M be an OA (3, 5, v).
Let F { F0, F, ,F_ 1} be a near-one-factorization of K such that in Fi
vertex is isolated.
Let 7r { (i, j), (s, t) } be a fixed partition of Z4 into two ordered pairs.

The point set of our quadruple systems is Zo Z4 and we construct the block sets
Sk(M, F, r) with 0 =< k =< p as the union of the blocks of Types A, B, and C de-
fined below.

Type A.

where

where

[(a, i), (b, i), (c,j), (d,j)], [(a, s), (b,s), (c,t), (d, t)],

[(a,O),(b,O),(c, ),(d, )] Dk,

[(a, i), b,j), c,j), d,j) [(a,s),(b,t),(c,t),(d,t)],

[(a,0), (b, ),(c, ),(d, )] Dk,

[(a, i), (b,i), (c,i), (d,j) ], [(a,s), (b,s), (c,s), (d, t)],

where [(a,O),(b,O),(c,O),(d, )]DK.
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There are 2b2v blocks of this type, which consist of two isomorphic copies of Dkmone
on the point set Zv i, j } and the other with point set Zv { s, }.

Type B.

[(a,i),(b,j),(e,s),(f,s)], [(a,i),(b,j),(g,t),(h,t)],

where {e,f}6Fc, {g,h}Fd, {(a,i),(b,j),(c,s),(d,t),(k,4)}M,

[(a,s),(b,t),(e,i),(f,i)], [(a,s),(b,t),(g,j),(h,j)l,

where {e,f}6Fc, {g,h}6Fd, {(c,i),(d,j),(a,s),(b,t),(k,4))M.

There are 4v2(v )/2 blocks of Type B, and each of the blocks of Type B intersect
three of the sets Z { x } with x Z4.

Type C.

[(a, i), b,j), (c,s), (d, t)],

where { (a, i), (b,j), (c,s), (d,t), (k, 4) } M.

There are v 2 blocks of Type C, and each of the blocks of Type C intersect all four of the
sets Z { x } with x 6 Z4.

Each Sk(M, F, r), 0 _-< k _-< p 1, has 2b2 + 4v2(v )/2 + v2 b4 blocks.
To show that each Sk(M, F, 7r) is indeed an SQS we note that any 3-subset T of

Zv { 0, 1, 2, 3 } is contained in a unique block by the following arguments:
If T c Zv i, j } or T c Zv { s, } then T is contained in a unique block of
Type A.

2) If T is of the form { (x, i), (y, i), (z, s) }, then { x, y ) is contained in a unique
factor F and there is a unique row ofM containing (c, i), (z, s), (k, 4)--and
thus T is in a unique block of Type B.

3) If T is of the form {(x, i), (y, j), (z, s)} then, either (x, i), (y, j), (z, s),
(k, 4) is contained in a row of Mmin which case T is in a block of Type C.
Otherwise, the row containing (x, i), (y,j), (k, 4) contains (w, s) with w 4: z.
In this case a unique pair in Fw contains zwand thus T is in a unique block of
Type B.

All the other triples T are covered by the symmetries of the construction and anal-
ogous arguments.

The fact that all the p SQSs are disjoint follows from:
The disjointness of the Dk, for blocks contained in Z { i, j } or Z { s, }.

2) The disjointness of the OA (2, 4, v) induced by the rows of M containing the
element (k, 4), for blocks of Types B and C.

Now let 7r0 {(0, 1), (2, 3)}, 7r, {(0, 2), (1, 3)}, and 7r2 {(0, 3), (1, 2)}.
Let M0, M, M2 be three OA (3, 5, v) from a set of v OA (3, 5, v) with property X.
We construct the following block sets of 3p SQSs, Sk(Mo, F, ro), Sk(M, F, 7r), and
Sk(M2, F, 7r2), with 0 _-< k < p. We denote this set of SQSs by B((Dk), (Mi), F).

We claim that this is a set of PDQs, and to prove this it only remains to show that
Sk(Mi, F, 7ri) fq Sm(M, F, 7rj) , for any 4: j. But this holds since the only possible
blocks in common are those of Type C, and these are disjoint by property X. Hence, we
have the following theorem.

THEOREM 1. Ifthere exists a set ofp mutually 2-chromatic PDQs oforder 2v then
D(4v) >_- 3p.

Phelps and Rosa 19 proved that there exists a set ofn mutually 2-chromatic PDQs of
order 2n, for n 5 a. 13 6.17 c, a, b, c >_- 0, and a + b + c > 0. Phelps [18] has recently
proved the same result for n 11. Hence, we have the following corollary.
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COROLLARY 1. D(4.5ao 13bo 17c) >_- 3.5a. 13b. 17c, for all a, b, c >= 0 and a + b +
c > O. Furthermore, D(44) >_- 33.

Before moving on to our next construction we list some of the properties of the set
B((Dk), (Mi), F) of PDQs.

No block in any of the systems is entirely contained in any of the sets Zv { },
e Z4, so these sets are a 4-coloring of each of the systems.

The blocks in Sk(M0, F, r0) that are entirely contained in Zv { 0, } form the
block sets ofp mutually 2-chromatic PDQs oforder 2v with 2-coloring Z { 0 },
Z { }. Likewise, those blocks induced on the set Zv { 2, 3 } also form a set
of mutually 2-chromatic PDQs. Furthermore, there are no other bichromatic
blocks in any of the S(M0, F, 7r0).
Analogous statements can be made about the sets of block sets S(M, F, rl)
with color classes 0, 2 and 1, 3, and also the sets Sg(Me, F, r2) with color classes
0, 3 and 1, 2.
For fixed k and all there is an isomorphism between the quadruple system D
and the subsystems of order 2v described above. Thus if (a0, a) e 7ri then
the induced SQS on Z a0, a } is isomorphic to the subdesign induced on
Z { 0, }. Furthermore, the isomorphism is given by (x, a0) -- (x, 0) and
(x, a) -- (x, ).
The block sets Sk(M, F, r ), and S(M2, F, r2), with 0 _-< k < p form a set of
2p mutually 2-chromatic PDQs of order 4v with two coloring Zv {0, ),
Z {2,3}.
Ifp v then our 3v PDQs are maximal (nonextendable).

3. The construction for orders 2 kv, k >= 3. Our construction for (2 )v PDQs of
order 2v uses a set of Boolean Steiner quadruple systems, which are defined below. An
order of Z2 is induced by identifying x Z2 with the integer < 2 whose binary rep-
resentation is x.

We define a set of 2 k -1 SQSs all with point set Z2 and block sets Bi with
Z2 { 0 }. These will be called the Boolean Steiner quadruple systems. The block set
Bi, Z (0 } is defined to be the union of the blocks of types (B.1) and (B.2)
specified below:

(B.1) [x,y,z,w],

where

(B.2)

where

x+y+z+w=i and I{x,y,z,w}l=4,

[x,y,z,w],

x+y=z+w=i and I{x,y,z,w}l=4.

To show that (Z2, Bi) is an SQS, let T { q, r, s } be a 3-subset of Z2, and let q +
r+s+i.

If { q, r, s } then [q, r, s, t] is the unique block of type (B. containing T.
Furthermore, no block of type (B.2) contains T, since if any 2-subset of T has
sum this implies that the third member equals t, a contradiction.
If T, say q, then we have r + s i. We also observe that q + T, since
q + q is impossible, and q + r implies q s contradicting the cardinality
of T. Hence, [q, r, s, q + i] is the unique block of type (B.2) containing T, and
it is easy to see that no block of type (B. contains T.
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The number of blocks of type (B.2) is 2 since the number of pairs of distinct
members of Z2k which sum to is 2 k- . Hence, the number of blocks of type (B. is

2k-Ib2-( 2 ).
Note that each block of (B.2) has zero sum. Also note that Bi f"l B contains the

quadruple q, r, s, t] if and only if q + r + s + 0, and

{ i,j} = { q+ r,q+ s,q+ t}.
Hence, each zero sum 4-subset of Z2 is contained in precisely three ofthe Boolean SQSs,
and each quadruple with nonzero sum is contained in a unique Boolean system.

The other main ingredient in our construction for (2 k )v PDQs of order 2v is
a set of 3v PDQs of order 4v with a series of additional properties. These properties are
satisfied by the set B((Dj), (Mi), F) constructed in Corollary 1, and also by Lindner’s
set of PDQs constructed in [13].

Let Do, Z3, j Zp, be the block sets of 3p PDQs with point set Zv Z4o We
will refer to the subsets Zv { x } of the point set as color classes. We will say that the
set D0 has Property Y, if the following properties hold.

Property Y. 1. None of the D0 contains a monochromatic quadruple.
Property Y.2. Each set D0 contains two 2-chromatic subdesigns of order 2v, one

with colors 0 and 1, and the other with colors 2 and 3. Furthermore, no other bichromatic
quadruples are contained in D0a.

Each set D contains two 2-chromatic subdesigns of order 2v, one with colors 0
and 2, and the other with colors and 3. Furthermore, no other bichromatic quadruples
are contained in Dj..

Each set Dza contains two 2-chromatic subdesigns of order 2v, one with colors 0
and 3, and the other with colors and 2. Furthermore, no other bichromatic quadruples
are contained in Dza.

Property Y.3. Let c(0, 1) c(2, 3) 0, c(0, 2) c(1, 3) 1, and c(0, 3)
c( 1, 2) 2. For each j e Zp and all m, n Z4 with m < n, the mapping that sends
(x, 0) -+ (x, m) and (x, 1) -+ (x, n) is an isomorphism between the bichromatic
quadruples in D0 with colors 0 and 1, and the bichromatic quadruples in Dc(m,n)j with
colors m and n. In other words,

[(x,O),(y,O),(z,O),(t, )]Dojiff[(x,m),(y,m),(z,m),(t,n)]Dc(.,.),

[(x, 0), (y, 0), (z, ), (t, )] D0j iff [(x, m), (y,m), (z, n), (t,n)]Dcm,)j,

[(x,0), (y, ),(z, ),(t, 1)]Dojiff[(x,m),(y,n),(z,n),(t,n)]eDcm,)j.

Ifp v then the sets of bichromatic quadruples in Doj with colors 0 and must form a
set of v mutually 2-chromatic PDQs of order 2v. Thus 3p 3v is the maximum possible
size of a set satisfying Prope.rty Y.

We now define a set of (2 k )p SQSs with point set Zv Z2k. Let Dij be a set of
3p PDQs of order 4v on the point set Z Z4 with Property Y, and let Bi be the block
set of the ith Boolean SQS of order 2 k. We define the block set S
to be the union of the blocks of Types A and B defined below.

Type A.

[(x,q),(y,r),(z,s),(w,t)],

where

x+y+z+w=j(modv) and q+r+s+t=i, I{q,r,s,t}l=4.
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2k-1There are v a(b2 2 )) blocks of this type, i.e.,/)3 blocks for each block of type (B.
in Bi.

Type B. Let [q, r, s, t] be a block of type (B.2) in Bi with q < r < s < t, and define
h(r) O, h(s) l, and h(t) 2. Since we have a block of type (B.2), we must have
q+ ie (r, s, t}. Now define g(0) q,g(1) r,g(2) s, andg(3) t. Foreach
block [q, r, s, t] of type (B.2) in Bi, and for each block [(x, a), (y, b), (z, c), (w, d)]
in Dh(q + t)j construct the block

[(x,g(a)), (y,g(b)), (z,g(c)), w,g(d))].
2k-IThere are 2 )(b4v 262v) + 2 k- lb2v blocks of Type B in Sij since the number of

quadruples in Dh(q+ i)j is b4v, but the 2-chromatic subsystems on Zv { x, x + ), x
Z2, (having b2v blocks) only occur once, because of Property Y.3.

A little algebraic manipulation shows that each Sij has b2kv blocks.
Note that the blocks of Type B are the blocks of SQSs of order 4v on the points

Z {q, r, s, t}, where [q, r, s, t] is a block in (B.2) of the (q + r)th Boolean
Steiner quadruple system. As noted above, [q, r, s, t] is also a block of the (q + s)th
and (q + t)th system, but in these three systems the values taken by h(r), h(s), and
h(t) are distinct members of Z3.

To show that each S0 is indeed an SQS we note that any 3-subset T=
{(x, q), (y, r), (z,s)} of Z Z2 is contained in a unique block by the follow-
ing arguments:

1) Ifl{q,r,s,q+r+s+i}l =4then{q,r,s}iscontainedinaunique(B.1)
block ofthe ith Boolean SQS and the block [(x, q), (y, r), (z, s), (w, t)], where
x + y + z + w j(mod/)) and q + r + s + is the unique block of Type A
in So., which contains T. Furthermore, no block of Type B contains T since no
pair of members of { q, r, s } sums to i.

2) Ifl{q,r,s}l =3andq+r+s+i{q,r,s},sayq+r+s+i=s(whichim-
plies that q + r i) then { q, r, s } is contained in a unique (B.2) block ofthe ith
Boolean SQS, namely [q, r, s, s + i]. Let be the minimum element of this
block. Now there is a unique block in Dh(t+ i)j that contains the 3-subset
{ (x, g-l(q)), (y, g-l(r)), (z, g-(s))} and this generates a unique block of
Type B in So that contains T. Furthermore, no block ofType A contains Tsince
I{q,r,s,q+ r+ s+ i}l <4.

3) If I{q, r, s}l 2, say r s, and q + r 4: i, then there isaunique (B.2)
block of the ith Boolean SQS, namely [q, q + i, r, r + i], that contains the
pair { q, r}. Let be the minimum element of this block. Now there is a
unique block in Dh(t + i)j that contains the 3-subset { (x, g-1 (q)), (y, g-l(r)),
(z, g-(r))} and this generates a unique block of Type B in Si, which contains
T. Furthermore, no block of Type A contains T since { q, r, s } < 3.

4) If I{ q, r, s }1 2, say r s, and q + r i, then there are 2k- (B.2) blocks
of the ith Boolean SQS that contain the pair { q, r}. However, each of these
blocks generates only a single subdesign of order 2v on Z { q, r ) by property
Y.3. This subdesign contains a unique block whose pre-image in D0 under one
of the isomorphisms contains the 3-subset {(x, 0), (y, 1), (z, 1)} (in the case
where q < r) or { (x, ), (y, 0), (z, 0) (in the case where q > r). This generates
a unique block of Type B in So, which contains T. Furthermore, no block of
Type A contains T since { q, r, s } < 3.

5) If q, r, s } 1, then the argument is similar to the previous case, considering
the (B.2) blocks of the ith Boolean SQS that contain the pair { q, q + ).
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We argue the disjointness of distinct Sos as follows:
Two distinct Sij can only intersect in blocks of the same type, since if
(x, q), (y, r), (z, s), (w, t) is a block of Type B with { q, r, s, } 4 then
q + r + s + 0 and no block of Type A has this property. Furthermore, all
blocks of Type A have four distinct second coordinates.

2) The disjointness of { x, y, z, w }, defined by x + y + z + w j(mod v), for
different j’s, and the disjointness of { q, r, s, }, defined by q + r + s + i,
for different i’s guarantees the disjointness of the blocks of Type A.

3) The sets of blocks of Type B are disjoint since, by construction, no block is
monochromatic. If u [(x, q), (y, r), (z, s), (w, t)] is a 2-chromatic block of
Type B and say, q 4: r, then u can only be a member of S;j, where q + r.
This follows from the fact that all 2-chromatic blocks in any ofthe S0 have color
classes that sum to i. The uniqueness of the subscript j is then implied by the
disjointness of the Dog, j Zp. Property Y.2 ensures that the only blocks of this
form come from the induced subsystems of order 2v.

If { q, r, s, } > 2 with say, { q, r, s }[ 3, then u can only be a member
of So, where q + r or q + s or r + s. Again the uniqueness of the system So
containing u is guaranteed by the disjointness of the Dn, n Z3, j Zp.

Hence, we have the following theorem.
THEOREM 2. If there exists a set of 3p PDQs of order 4v with Property Y then

D(2kv) >- (2 k )pfor all k >= 2.
Since the 3v PDQs constructed in the previous section, and also those of Lindner

[13], satisfy property Y, we have the following corollary.
COROLLARY 2. D(2V)->_ (2- 1)vforv--2or4(mod 6), v>= 8,forv 5a. 13b. 17 ,

a, b, c >= O, and a + b + c > O, for v 11, andfor all k >= 2.
Finally, we note that if the set of 3v PDQs of order 4v is maximal then the set of

(2 k )v PDQs of order 2v is also maximal.

4. Other recursive constructions. In this section we show that some ofthe recursive
constructions for SQS can be utilized to give lower bounds on D(v). The bounds we
obtain are not very good, but aside from the constructions of Phelps [17], [18 ], and
Phelps and Rosa [19 no other constructions are known that give nontrivial bounds on
D(v) when v is not divisible by 4.

The first construction we give is a version of the tripling construction in [7]. A
quadruple system of order v with a hole of order s, denoted by SQS(v:s), is a triple
(X, S, q), where X is a set of size v, S is a subset ofX of size s, and q is a set of 4-sub-
sets of X, called blocks, such that every 3-subset T c X with IT N S] < 3 is con-
tained in a unique block, and no 3-subset T c S is contained in any block. Two systems
(X, S, ql) and (X, S, q2) are disjoint if q f3 q2 . Let D(v:s) denote the number
of pairwise disjoint quadruple systems of order v with a hole of order s. (Note that
D(v:s) D(v) since a 2-subset S contains no 3-subsets.)

Let v 6n + 2s, let ql, q2, qD(v) be a set of PDQs oforder v, and let rl, r2, ,
rD(v:s) be a set of pairwise disjoint systems of order v with a hole of size s.

For x e Zn { 0, 1, n }, we define the notation Ix[ min (x, n x). Let
F, F2, F4n + be a one-factorization of the graph with vertex set Z6n + and edge
set containing all pairs x, y } such that x y (mod 2) or x y[ >_- 2n + 1. (This graph
has a one-factorization by a result of Stern and Lenz [21], as do all other graphs that we
factorize in this section.) Finally, let a(i, j) be a Latin square of order 4n + s with
symbol set {1, 2, 4n + s- 1}, and let S {0, 1, ,OVs-}.
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We now construct a set ofmin (D(v), D(v:s), (2v s 3)/3)PDQs of order
3v 2s with point set S t3 (Z6n+s Z3). (Note that (2v s 3)/3 4n + s 1.)
The block set of the jth SQS is constructed as follows.

Type a. Construct the blocks of qj on the point set S t3 (Z6n + { 0 } ).
Type lb. Construct the blocks of rj on the point sets S to (Z6n+s { i}) for each

i= 1,2.
Type 2. For each 0, 1, ..., s 1, and each a, b, c Z6n+s such that a + b +

c 6n + + j (mod 6n + s), construct the block

[i,(a,O),(b, 1),(c,2)].

Type 3. For each 0, 1, 2 and each a, b, c Z6n +s such that a + b + c 2ni +
j (mod 6n + s) and each k 0, 1, n 1, construct the block

[(a+k,i),(a+2n- 1-k,i),(b,i+ 1),(c,i+2)].

Type 4. For each i=0,1,2 and each k= 1,2,...,4n+s-1 and each
{ a, b } Fk and each { c, d F,k) construct the block

[(a,i),(b,i),(c,i+ ),(d,i+ 1)].

To prove that we have indeed constructed a set of PDQs of order 3v 2s we note
that the systems constructed can only intersect in blocks of the same type. Furthermore,
as we verify that each system has a unique block containing each triple, we verify that
this block is different for distinct values ofj. This will establish the disjointness of the
systems. We remark that the number of disjoint sets of blocks of Type 4 is limited by
the number of rows in a Latin square of side 4n + s 1.

We now verify that the jth system has a unique block containing each 3-subset, T,
of its point set.

If T c S tO (Z6n + { 0 } then T is contained in a unique block of Type a
in q.

2) If T c S t3 (Z6 / { } with or 2, and T 5 S, then T is contained in a
unique block of Type b in r.

3) If T { i, (a, k), (b, k + } then T is contained in a unique block of Type
2 whose fourth point is (6n + + j a b, k + 2).

4) If T= {(a, 0), (b, 1), (c, 2)) then
a) If a + b + c 6n + j + x with 0 =< x =< s 1, then T is contained in a unique

block of Type 2 whose fourth point is x.
b) Ifa+b+c4:6n+j+xwith0=<x=<s- 1, then T is contained in a

unique block of Type 3 whose fourth point is (d, i) where is given by the
interval [j + 2n i, j + 2ni + 2n 1] that contains a + b + c. Now we
compute d as follows. Say 0 and a + b + c j + k (0 -< k < n) then
d a + 2n 2k. If a + b + c j + 2n k then d a + 2k +

2n. A similar argument works for 1, 2.
5) If T {(a, i), (b, i), (c, + 1)) then

a) If [b a 2k + for some 0 =< k < n then Tis contained in a unique
block of Type 3 whose fourth point is (j + 2hi- c- a + k, + 2), where
b-a 2k+ 1.

b) If b a 4: 2k + for some 0 =< k < n then T is contained in a unique
block of Type 4 whose fourth point (d, + is computed by noting that
{ a, b is in a unique one-factor, say Fm, and d is the second point of the
unique edge containing c in the factor
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6) If T { (a, i), (b, i), (c, then the argument is similar to the previous
case.

This proves the following theorem.
THEOREM 3. Ifs 2 or 4 (mod 6) and v =- 2s mod 6) then

D(3v-2s)>=min (D(v),D(v:s),(2v-s-3)/3).

When s 2 this gives the inequality D( 3v 4) >= min (D(v), (2v 5 / 3 for all
v 4 (mod 6).

Using systems with holes in place of the blocks of Type a yields the inequality
D(3v 2s:s) >= min (D(v:s), (2v s 3)/3). Omitting the blocks of Type la gives
the same lower bound for D(3v 2s:v).

We now show that there exists a pair of PDQs of order 38, each of which contains
three subsystems of order 14 that intersect in two common points. This construction is
vital to our proof of the Lindner and Rosa conjecture.

To simplify the discussion we introduce the notation G(n, L) to denote the graph
with vertex set Z and edges x, y for all x y[ L.

Example 1. We construct two disjoint SQS(38) with point set {o, } tA
(Z2 Z3). The block set of the jth SQS(38 (j 0, is constructed as follows:

Type 1. Let q0 and q be two disjoint SQS(14). (It is known [1] that D(14) >_- 4.)
Construct the blocks of q on the point sets { Co, ov } tO (Z2 for each Z3.

Type 2. Let X(0) (0, 3) and let X 3, 6). For each 0, and each a, b,
c Z2 such that a + b + c -= x (mod 12), and x is the ith coordinate ofX(j), construct
the block

[g,(a,0),(b, 1),(c,2)].

Type 3. Let P(i, 0)= {{6 + i, 9 + i}} and P(i, 1)= {{8 + i, 11 + i}} for/=
0, 1, 2. For each 0, 1, 2 and each a, b, c Z2 such that a + b + c 0 (mod 12),
and x, y } P(i, j), construct the block

[(a+x,i),(a+y,i),(b,i+ 1),(c, i+2)].

Type 4. We first define two one-factorizations F of the graphs G( 12, { 1, 5, 6
(for j 0) and G( 12, 2, 4, 6}) (for j 1). Let F0, F be the one-factorization of
G( 12, { } ), let F, F be the one-factorization of G( 12, { 5 } ), and let F4 be the edge
set of G( 12, 6 } ). Let Fr, FI, F be the one-factorization of G( 12, { 4, 6 } ), defined
byE] {{3e+i, 3e+i+4}, {3n+i+2,3n+i+8} :e=0, 1,2,3, n=0, 1},
and let F, F be either of the two one-factorizations of G( 12, { 2 } ).

For each 0, 1, 2 and each k 0, 1,..., 4 and each {a, b} F and each
{ c, d 6 F,/ z (addition mod 5 in the subscript) construct the block

[(a,i),(b,i),(c,i+ 1),(d,i+ 1)].

Type 5. LetH0= {{1,5}, {2,4}}andH {{2,7}, {4,5}}.Foreachi=0,
1, 2 and each a 6 Z2 and each e 0, 1, 2, 3 and each { x, y construct the block

[(a,i+ 1),(a+3e, i+2),(x-2a-3e, i),(y-2a-3e, i)].

Type 6. Let D0= {2,4}andD {1, 5 }. For each 0, 1,2andeacharZ2
and each e 0, 1, 2, 3 and each d D construct the block

[(a,i),(a+d,i),(a+3e, i+ 1),(a+d+3e, i+ 1)].

Verification that the systems constructed are both SQS( 38)s is similar to the previous
construction, and full details can be found in [8]. The disjointness of the systems is a
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little more complicated since there is the possibility of conflicts between blocks of Types
4 and 6. These conflicts are avoided by our careful construction ofthe one-factorizations
and their ordering in the Type 4 quadruples.

We have obtained a generalization of this example using the tripling construction
of 8 and obtained a proof of the following theorem.

THEOREM 4. If S 2 or 4 (mod 6) and v s mod 6) then D( 3v 2s) _>-
min (D(v), D(v:s), 2).

This theorem is not necessary for our proof of the Lindner and Rosa conjecture,
and since the proof is messy, we omit it. Theorem 4 can probably be strengthened to
give the inequality D(3v 2s) >= min (D(v), D(v:s),f(v, s)) for v s (mod 6), and
some function satisfying (v s)/6 <-f(v, s) <- (v s)/3. However, the proof of this
inequality would be extremely tedious.

Colbourn and Hartman 2 have used the construction ofTheorem 4 (with v 10,
s 4, and omitting the blocks of Type a) to construct a pair of SQS(22:10) designs
that intersect in precisely two blocks. Hartman and Yehudai [10 were able to modify
this construction to produce a pair of disjoint SQS(22:10)s. The importance of this con-
struction is that Colbourn and Hartman proved that if D(22:10) >- 2 then D(v) >= 2 for
all v 10 (mod 12) with v >= 46. Thus, we have the following theorem.

THEOREM 5 (Colbourn, Hartman, and Yehudai). D(v) >= 2for all v 10 (mod 12)
with v >= 46.

We turn now to the quadrupling construction (construction 3.5 of[5 ]), and we
will show that D(4v 6) >= min (D(v), (v 2)/2). Throughout this section we let v
2f+2 and we will construct min(D(v),f) PDQs with point set {c0,
(Z2f Z4). A major ingredient of the construction is a partition of the edge set of K2f
into 2fparts Go, G, Gf_ and Ho, H, Hf_ with the property that each Hi
is a one-factor, and Gi tA { 2i, 2i + 1} } is a one-factor for all 0 =< < f. These parti-
tions were constructed by Hanani for all f>- in 5]. The other ingredient is a standard
one-factorization Fo, F, F2f-2 of K2f. Let q, q2, qz(v) be a set of PDQs of
order v. The block set of the jth SQS is constructed as follows:

Type 1. Construct the blocks of qj. on the point sets { c0, } tA (Z2f { } for
each 6 Z4.

Type 2. The other blocks containing c0 and are the following:

{ [o, (a, 0), (b, ), (c,2)] a + b+ c-= 2j(mod 2f)(a,b,c)=(O,O,O)(mod 2) },

{[o,(a,O),(b, 1),(c,2)]:a+b+c=-2j+ l(mod2f)(a,b,c)=(1,1,1)(mod2)},

{ [0,(a, 0), (b, ),(c, 3)] a + b+c=-2j+ 2(mod 2f)(a,b,c)=( 1,0, )(mod 2)},

{[co,(a,O),(b, 1),(c,3)]:a+b+c=-2j+ l(mod2f)(a,b,c)=(O,l,O)(mod2)},

{ [o,(a,O),(b,2),(c, 3)]:a+ b+ c--- 2j(mod 2f)(a,b,c)=(O, 1, )(mod 2) },

{[co,(a,O),(b,2),(c,3)]:a+b+c=-2j+ l(mod2f)(a,b,c)=(1,O,O)(mod2)},

{ [o0,(a, 1),(b,2),(c,3)]:a+ b+c-2j+ 2(mod 2f)(a,b,c)=( 1,0, )(mod 2)},

{[o,(a, 1),(b,2),(c,3)]:a+b+c=--2j+ l(mod2f)(a,b,c)=(O,l,O)(mod2)},
{ [, (a, 0), (b, 1),(c,2)] a + b+ c--- 2j(mod 2f)(a,b,c)=-( 1, 1,0)(mod 2)},

{[,(a,O),(b, 1),(c,2)]:a+b+c2j+ l(mod2f)(a,b,c)=(O,O, 1)(mod2)},

{[,(a,0),(b, 1),(c, 3)]:a+b+c=-2j+2(mod 2f)(a,b,c)-(O, 1, 1)(mod 2)},
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{[,(a,O),(b, 1),(c,3)]:a+b+c--2j+ l(mod2f)(a,b,c)=-(1,O,O)(mod2)},

{ [l,(a,O),(b,2),(c, 3)]:a+ b+ c= 2j(mod 2f)(a,b,c)=-(O,O,O)(mod 2) ),

{[l,(a,O),(b,2),(c, 3)]:a+b+c--2j+ l(mod2f)(a,b,c)=-(1,1,1)(mod2)},

{ [l, (a, 1),(b,2),(c, 3)]:a+ b+ c--2j+ 2(mod 2f)(a,b,c)=-( 1, 1,0) (mod 2)},

{[l(a, 1),(b,2),(c, 3)]:a+b+c2j+ l(mod2f)(a,b,c)=-(O,O, 1)(mod2)}.
Type 3. Construct the following blocks using the Hanani factorization:

{ [(a, 0), (b, ),(x,2),(y,2)]:a=-b(mod 2)a+ b+ 2c= 2j(mod 2f) {x,y}Gc),

{[(a,O),(b, 1),(x, 3),(y, 3)]:ab(mod2)a+b+2c--2j+ l(mod2f){x,y}Gc},

{ [(a,2),(b,3),(x,O),(y,O)] a= b(mod 2)a+ b+ 2c= 2j(mod 2f) {x,y}Gc},

{[(a,2),(b,3),(x, 1),(y, 1)]:ab(mod2)a+b+2c=-2j+ l(mod2f){x,y)rGc},

{[(a,O),(b, 1),(x,2),(y,2)]:ab(mod2)a+b+2c=-2j+ l(mod2f){x,y}H},

{ [(a, 0), (b, ),(x,3),(y, 3)]:a=-b(mod 2)a+ b+ 2c--- 2j(mod 2f) {x,y)Hc},

{[(a,2),(b,3),(x,O),(y,O)]:ab(mod2)a+b+2c=-2j+ l(mod2f){x,y}H},

{ [(a,2),(b,3),(x, 1), (y, 1)] :a=b(mod 2)a+ b+ 2c= 2j(mod 2f){x,y)Hc).

Type 4. Let c(i,j) be a Latin square of order 2f-1 over the symbol set
{ 0, 1, 2f- 2 }, and construct the following blocks using the one-factorization:

[(a,O),(b,O),(x, 1),(y, 1)]: a,b)rFi{x,y}F,(i,j)O<=i<2f 1}

{[(a,2),(b,2),(x,3),(y,3)]: {a,b}rFi{x,y}rF,(i,j)O<=i<2f 1).
The full details of verification that the j 0th system is actually an SQS are contained
in Hanani’s paper, and the verification for j > 0 is almost identical. The disjointness of
the systems is guaranteed by the dependence ofthe constructions on the parameterj and
can be easily verified. To assist the reader we give the verification argument for a few
representative cases and note that the symmetries ofthe construction make the argument
for the remaining cases a simple exercise.

If T is a 3-subset of { oe0, oel U (Z2f X { } for some e Z4 then T is contained in
a unique block of Type 1.

If T { oe0, (a, 0), (b, )} then according to the parities of a and b there is a
unique block of Type 2 containing T.

If T { (a, 0), (b, ), (c, 2) }, then
1) Ifab=i(mod2)then

a) If a + b + c 2j (mod 2f) then the fourth point of the block of Type 2
containing T is oi.

b) Ifa + b + c-- 2j + (mod 2f)then the fourth point of the block of Type
2 containing T is (30 i.

C) Ira + b + c 2j or 2j + (mod 2f) then the fourth point, (d, 2), of the
block of Type 3 containing T is computed as follows: Let x be the unique
solution to the equation a + b + x 2j (mod 2f). Now x is even, and there
is a unique edge c, d} in Gx/: that contains c since, by assumption c :P x
orx+ 1.
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2 Ifa b (mod 2 then the fourth point, (d, 2), ofthe block ofType 3 containing
T is given by the unique edge { c, d} in Hx/2 that contains c, where x is the
unique solution to the equation a + b + x 2j + (mod 2f).

If T { (a, 0), (b, 0), (c, 2) } then the edge { a, b } is contained either in Gx or Hx
for some x, and the fourth point (d, 3), of the block of Type 3 containing T is given by
the solution to2x+ c+ d=2j(mod2f),(if{a,b} eGx) or2x+ c+d2j+
(mod 2f), (if { a, b } e Hx).

If T { (a, 0), (b, 0), (c, } then the edge { a, b } is contained in a unique one-
factor Fx and the fourth point (d, of the block of Type 4 containing T is given by the
unique edge { c, d} in Ftx,j) that contains c.

We have thus indicated the proof of the following theorem.
THEOREM 6. Ifv =-- 2 or 4 (mod 6) then D(4v 6) >= min (D(v), (v 2)/2).
Theorem 6 can certainly be generalized to give the inequality D(4v 3s) >=

min (D(v), D(v:s), (v- s)/2)but, again, the proof is tedious.
We now apply the singular direct product construction for quadruple systems

(Proposition 8 of [6]) to obtain other recursive bounds on D(v) as follows.
THEOREM 7. Ifn or 3 (mod 6) and v 4 (mod 6) then D(n(v 2) + 2) >=

min (D(v), (2v 5)/3).
Proof. Let (Zn t3 { }, q) be an SQS oforder n + 1. We construct thejth quadruple

system on the point set { 0, } t3 (Zv-2 Zn) as follows: For each point x e Zn
construct the blocks ofthejth quadruple system in a set of PDQs of order v on the point
set {0, ) t3 (Zv-2 {x}). For each block [,x, y, z] e qthat contains use the
construction of Theorem 3 on the point set 0, 1 ) t3 (Z_ 2 { x, y, z ) ), omitting
the blocks of Type 1. For each block [x, y, z, t] e q that does not contain construct
the blocks:

{[(a,x),(b,y),(c,z),(d,t)]:a+b+c+d=-j(mod v-2)).

Theorem 7 implies, for example, that D(142) >= 11 and D(302) >_- 11 using v 22 and
n 7 and 15, respectively.

A similar proof also gives the following generalization of Construction 3.6 of 5 ].
THEOREM 8. Ifn or 3 (mod 6) then D( 12n + 2) -> 2.
The proof of Theorem 8 is identical to the proof of the previous theorem, using the

systems of order 38 constructed in Example in place if the systems constructed in
Theorem 3.

We are now in a position to prove the Lindner and Rosa conjecture.
THEOREM 9. D(V) >- 2 for all v 2 or 4 (mod 6), v => 8.
Proof. If v 4 or 8 (mod 12) and v -> 16 then Lindner [12] proved that D(v) >=

v/2; furthermore, it is well known that D(8) 2. If v 10 (mod 12) and v >= 46, the
result follows from Theorem 5; the remaining values v { 10, 22, 34 ) are covered by
11 ], 18 ], and 19 ]. If v 2 (mod 24) then 8 =< (v + 6)/4 ---- 2 (mod 6) and the result

follows from Theorem 6 and the induction hypothesis. If v --- 14 or 38 (mod 72) then
v 12n + 2 for some n or 3 (mod 6) and the result follows from Theorem 8. Finally,
if v 62 (mod 72) then 22 =< (v + 4)/3 4 (mod 6) and the result follows from
Theorem 3 with s 2, and the induction hypothesis.

One final result for improving the known bounds on D(v) uses the notion of an
H(m, g, k, t) design. An H(m, g, k, t) design is a triple (X, G, B), where X is a set of
points whose cardinality is mg, and G { G, G2, Gm) is a partition ofX into rn
sets of cardinality g; the members of G are called groups. A transverse of G is a subset
ofXthat meets each group in at most one point. The set B contains k-element transverses
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of G, called blocks, with the property that each t-element transverse of G is contained
in precisely one block.

When g then an H(m, 1, k, t) is just a Steiner system S(t, k, m) and when
k m then an H(k, g, k, t) is equivalent to an OA (t, k, g).

The technique for enlarging the group size of an H-design gives sets of (block)
disjoint designs as follows.

LEMMA 3. If there exists an H( m, g, 4, 3) then there exist n disjoint H(m, ng,
4, 3) designs.

Proof. If (X, G, B) is an H(m, g, 4, 3) design then form the new designs on the
point set X Zn, with groups Gi Zn and, for each block { x, y, z, } e B, form the n
blocks [(x, a), (y, b), (z, c), (t, d)], where a + b + c + d j (mod n). Lettingj range
over Zn gives n disjoint designs.

This lemma is used in the proof of the following theorem.
THEOREM 10. If there exists an H(m, g, 4, 3) and ng 2 or 4 (mod 6) then

D(nmg) >= min (D(ng), n).
Proof. Let B, Bz, B, be the block sets of n disjoint H(m, ng, 4, 3) designs,

let q, q2, qD(ng) be the block sets ofPDQs of order ng, and let F, F2, ,F,g_
be a one-factorization of Kg. Finally, let a(j, k) be a Latin square of side ng- 1. (In
fact, it is sufficient to have an (ng- D(ng) Latin rectangle.)

The block set of the j-th SQS consists of Bj, and a copy of qj on each of the groups
of the H(m, ng, 4, 3). A final group of blocks is given by constructing a copy of the
one-factorization on each of the groups, and for each pair of distinct groups Gx and Gy
(x < y) forming the blocks { a, b, c, d}, where { a, b } is a member of Fk on Gx and
{ c, d} is a member of F(j,k) on Gy.

We can apply Theorem 10 to give new bounds on D(v) if, for example, we have
an H(m, 2, 4, 3 with m -= or 5 (mod 6). Hartman, Mills, and Mullin 9 have shown

D(v)>

0 5 []

14 4 [1]

16 8 [12]

2O 15

22 11 [18]

26 13 [19]

28 18 [4]

32 24 [13]

34 17 [19]

TABLE
The best known loer boundsfor D(v).

Reference v D(v)>

trivial 38 2

folklore 40 35

44 33

46 2

50 25

Thm. 52 39

56 42

58 7

62 11

64 56

68 51

Reference v D(v)>

Example 70 5

Thm. 2 74 9

Thm. 76 40

Thm. 5 80 75

[17] 82 10

Thm. 86 2

[13] 88 77

Thm. 6 92 48

Thin. 3 94 2

Thm. 2 98 12

Thm. 100 75

Reference

Thm. 6

[4]

Thm. 2

Thm. 6

Thm. 8

Thm. 2

[4]

Thm. 5

Thm. 6

Thm.

Thm. 10
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that there exists an H(m, 2, 4, 3) for all m or 7 (mod 18). So we have D(70) >= 5
using m 7, g 2, and n 5 in Theorem 10.

Mills 16 has also constructed the designs H( 11, 2, 4, 3) and H( 13, 2, 4, 3 ). Using
the techniques of 9 and 15 together with an H( 13, 2, 4, 3) one can show the existence
of H(m, 2, 4, 3) for all m (mod 6). Thus Theorem 10 is applicable to all orders
v 2nm with m (mod 6) and n > 1. The cases where m 5(mod 6) are more
complicated, since no H( 5, 2, 4, 3) exists.

Conclusions. Two major open problems, originally posed by Lindner and Rosa 14
in 1978, have been tackled here. The first problem is the construction of a large set
of PDQs ofsome order v. We have shown that one can get v 5 PDQs of order v 5.2
n >= 1. We have also shown that D(v) >= e)v for infinitely many v and any e > 0.
Unfortunately, the existence of a large set still remains an open problem.

The second problem is to show that D(v) >= 2 for all admissible values of v >= 8.
We have solved this problem, and in many cases we have given even better lower bounds
on D(v). The state ofthe art for v =< 100 is given in Table 1.
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MAXIMAL INDEPENDENT SUBSETS IN STEINER SYSTEMS
AND IN PLANAR SETS*

ZOLTAN FOREDI"

Abstract. A set of points is independent if there are no three on a line. It is proved that f( /n log n <
a(n) < o(n), where a(n) denotes the maximum a such that every planar set of n points with no four on a line
contains an independent subset of size a.

Key words, planar subsets, Steiner systems, linear hypergraphs, polarized set mappings

AMS(MOS) subject classifications. 51A20, 05B40, 05C55

1. Independent planar sets. A set of points on the Euclidean plane is called inde-
pendent if there are no three on a line among them. Denote the size of the largest inde-
pendent subset of the set S by a(S), and let a(n) min (c(S) IS[ n and S does
not contain more than three points on a line }. These sets S are briefly called 3-independent.

Erd6s E proposed in several places the problem to determine or to give bounds
for c(n). An old result ofErd6s and Hajnal [EH] (or in other words, the greedy algorithm)
implies that c(S) >= [ 2n/for every n-element 3-independent set S. Obviously, the
sequence a(n )/n is monotone decreasing, lim c(n)/n exists. Erd6s remarked that every
known construction S contains at least IS[/3 independent points. The aim of this note
is to improve both estimates using deep combinatorial theorems.

THEOREM 1.1. There is a positive constant c such that c /n log n < a( n holdsfor
all n. On the other hand lim a(n)/n 0 whenever n tends to infinity.

1.1. A construction giving a(n) o(n). Let v, v:, vt be distinct unit vectors
linearly independent over the rationals with the property that if the directions of two
integer linear combinations are the same, then the two vectors are essentially the
same, i.e.,

(P) avi=(_,bivi) and ai, biNimpliesQ.

Note that the linear independence of the system v ) implies that a b.. Define S as
the set of 3 integer linear combinations of { vi )t._- with coefficients 0, 1, or 2. Property
(P) implies that there are no four points of S on a line, and the density version of the
Hales-Jewett theorem, recently proved by Ftirstenberg and Katznelson [FK], implies
that a(St) o(3 t) whenever tends to infinity.

For completeness we recall the theorem applied above. For every positive e there
exists a t(e) such that if I c 0, 1, 2 , [T[ > t(e), and ]I[ > e3 t, then we can find
three sequences sie I (i 0, 1, 2) and a partition of the coordinate set T, T C U V
such that (si)v in all coordinates v V, and (So)c (Sl)e (S2)c holds for c e C.

2. Independent sets in Steiner triple systems. A hypergraph, H, is a pair (V, ),
where is a family of subsets of V. The elements of V are called vertices, the E are
called hyperedges. A hypergraph is called linear or (almost disjoint) if E N E’[ <-
holds for all distinct E, E’ . A cycle of length k is a sequence of distinct vertices and
edges x, El, X2, E2, Xk, Ek (Xi V, Ei o) such that
by definition). (V, ) has girth at least g if it has no cycles of length 2, 3, g- 1.

Received by the editors December 2, 1988" accepted for publication December 18, 1989.- Mathematical Institute of the Hungarian Academy of Sciences, 1364 Budapest, P. O. B. 127, Hungary.
This research was partially supported by the Hungarian National Science Foundation grant 1812.
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Namely, the girth is at least 3 if and only if the hypergraph is linear. For the x 6 V we
set o[x] { E" x E g }. The degree, deg (H, x) or briefly deg (x), is the cardinality
of o[x]. The average degree d is the mean value of the degrees, i.e.,

d=--T E deg(x).
xV

A set I Vis independent if/contains no hyperedges E e 8. a(H) denotes the maximum
cardinality of an independent set. The restriction of (V, o) to a subset W, denoted by
H IW, is given by (Vf3 W, 81W), where 8]W= {Ee 8" E W}.

A linear hypergraph S having 3-element hyperedges is called a partial Steiner triple
system. S is a Steiner system, S(IVI, 3, 2), if every pair of its vertices is contained in a
(unique) three-tuple. The following result is due to Komlrs, Pintz, and Szemerrdi KPSz ].
There exists a positive constant c3 such that ifS is a partial Steiner family of girth at least
5 over n vertices, with average degree d =< d < n(d > c4), then

(2.1) off S) > c3n

As a corollary of (2.1) Phelps and Rrdl [PR] obtained a solution of a problem of
Erdrs and Hajnal ([EH66], see also, e.g., [E69, Prob. 19]), the true order of magnitude
of the size of an independent set in a partial Steiner triple system. Namely, they proved
that for every partial Steiner triple system S (V, o) with V n there exists a subset
I c V of size

(2.2) [II >= c5/n log n

containing no edges from 8. Here c5 is an absolute constant not depending on n. The
proof of (2.2) utilizes the probabilistic method.

2.1. Large indelendent subsets of a llanar set. Here we prove the lower bound in
1.1 ). Suppose that S is 3-independent planar set. Define O as the family of triples of
S whose 3 points lie on a line. Obviously, A fq B =< holds for all distinct A, B
i.e., O is a partial Stiener triple system. Theorem 2.2 says that every partial Steiner
system O on S contains a set I c S, II > c5/n log n such that A I for all A
Then the points of I are independent.

2.2. A remark on lolarized set mal)pings. We can think that the above application
of the Komlrs, Pintz, Szemerrdi theorem also answers the following question of Erdrs
and Hajnal ([EH58], see also [E69 Prob. 20]). Let Vbe the set of the first n positive
integers. Letf be a function from the pairs of V to V such that f(P) P. A set I c V is
said to be independent if for any I, j I, f(i, j) I. Denote by g(n) the minimum
of the largest independent set where the minimum is taken over all functions f(i, j).
Erdrs and Hajnal proved that

C6nl/3 <g(n)<c7]/n log n.

Here the lower bound is obtained by the greedy algorithm, and the upper bound
is the mean value of g(f) whenever f(i,j) is chosen independently and uniformly
from V\ { i,j}.

Although the system of triples { (i, j, f(i, j))" i, j e V looks very much alike a
Steiner family, the next theorem shows that the true order of the magnitude of g(n) is
not /n log n. Hence this yields another example for the necessity of the constraint of
the large girth in (2.1).
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THEOREM 2.3.

2fn<g(n) < 2 fn.
9

Proof. The lower bound is a special case of a theorem of Spencer [S], which says
that there exists an absolute constant c8 such that every 3-hypergraph H over n vertices
with average degree d contains an independent set of size at least

n
(2.4) a(H) > c t-
This inequality is a weaker but more general version of (2.1).

The upper bound is given by the following example f. Let V tO (A V be a
partition of V, where a fn], and V; {(i, 1), (i, 2), (i, b)}, where/n]

ba >- ba- >-- >- b. For < j, x 4: y, y _-< b let

f((i,x),(j,y))=(j,x),

and otherwise define f arbitrarily. Let I be an f-independent set and let us denote
the projection of V,. f) I by Ig, i.e., I; Z_ { x" (i, x) I}. Then I; f)/ 4: , [/[ > is
impossible, implying [I[ _-<

(i)( (i)3. Problems. More generally, for 2 _-< < k let a n) min { a (S) IS] n,
S f l[ =< k for all lines }, where a ()(S) denotes the size of the largest/-independent

subset. Define/3(g)(n) as the smallest integer s such that every partial Steiner k-family
over n elements has an/-independent set of size s. Clearly

The above proof, with a simple generalization of Spencer’s theorem [S] (i.e., for
every k-hypergraph has an/-independent set of size at least O(n//-)) and the general
Ftirstenberg’s theorem, give that for all fixed k we have

(2)(rt) _<_/(3)(rt) _<... (-’)(n)<__a(-)(n)=o(n),
ft( n 1) < t(ki rl

( /n log n ) </3(2) (n).
A theorem of Ajtai, Koml6s, Pintz, Spencer, and Szemer6di [AKPSSz] implies that the
second inequality is not sharp, i.e., lim/3(i)(n)n-- )/; , and probably their methods
give that

f(n (i- )/i(log n)/i)<-3(i)(n). (?)

We can conjecture that the true order of magnitude of a(n) is much closer to the
upper bounds because it is very difficult to realize a Steiner triple system on the plane
(although there are 3-independent n-sets with (rt 2 / 6) O(n) collinear triples. See BGS
or an elementary construction in [FP].).

It also seems interesting to investigate the higher dimensional versions ofthis problem.

Acknowledgment. The author is indebted to Noga Alon for his valuable remarks.
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LYAPUNOV FUNCTIONALS FOR AUTOMATA NETWORKS DEFINED
BY CYCLICALLY MONOTONE FUNCTIONS*

ERIC GOLES" AND SERVET MARTINEZ"

Abstract. For automata networks with dynamics given by x(t + f(Ax(t) b), where A is symmetric
and fis cyclically monotone, it is proved that there exists a Lyapunov functional (H(x(t)))t_l that increases
with along the orbit. This allows one to study the finite limit cycles (which are of length one or two), the
transient behavior in the finite case, and also to write down explicit integral functionals. The existence of
(H(x(t))) is important for a physical approach to the study of these automata networks. The condition that f
be cyclically monotone in is equivalent to f increasing and is usually used in applications to computer
sciences.

Key words, automata networks, Lyapunov functionals, cyclically monotone functions, transient behavior,
periods

AMS(MOS) subject classifications. 68Q80, 68R99

1. Introduction. Automata networks were originally introduced by von Neumann
12 and McCulloch 7 for modeling self-reproducing systems and neural activity. Sub-

sequently, they have been used as models in various fields, including computer sciences
2 ], 5 ], 8 and physics ], 13 ]. In this context some interesting applications have
been developed recently in pattern recognition, associative memories, and the spin glass
model of condensed matter (for recent reviews see ).

Since an automata network is a discrete dynamical system (in time and space), it
is very difficult to give characterizations of its dynamics, and so mathematical results are
scarce, and usually they have been obtained in very particular cases (regular arrays,
extremely simple local rules, etc.) by nongeneralizable combinatorial arguments.

The class of networks we will study is defined, roughly speaking, by symmetric
cellular spaces and local functions that are cyclically monotone. More precisely, its evo-
lution is given by x( + f(Ax(t) b), with x(t) O, b , A a symmetric matrix,
fcyclically monotone, and an integer. This kind ofnetwork has applications in problems
discussed above. Its periodic behavior has been studied in [9] and [10] by a rather
combinatorial algebraic approach.

Here we will take a physical approach to the problem. We will prove the existence
of Lyapunov functionals (H(x(t)))t_ for the above class of networks (Theorem ).
From a mathematical point ofview the proofofthe existence ofthe functional (H(x(t)))
supplied in this work is an extension of the same result we have found in [3] and [4]
for "positive" local function f(which means (f(x) -f(y), x) >= 0 for all x, y). This
extension allows us to study a wide class of dynamical systems; it means in the real case
that instead of the sign type functionsf(x) h(sign (x)), where h(-1 =< h(0) _-< h(
(which are the "positive" functions in ), we can now deal with any increasing function

f (which are the cyclically monotone functions in ; see Lemma 2). That is, we are able
to explain the dynamics of a wide class of systems, which include some of those defined
on a continuous state space. For instance, f(x) tanh (x) for x I-a, a], tanh (a) if

Received by the editors February 10, 1987; accepted for publication (in revised form) June 27, 1990.
This research was partially financed by Fondo Nacional de Ciencias 554-88, 553-88, and by grants TWAS/
8748 and TWAS/8773.

f Departamento de Ingenieria Matemfitica, Facultad de Ciencias Fisicas y Matemfiticas, Universidad de
Chile, Casilla 170/3, correo 3, Santiago, Chile.
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x < a, -tanh (a) if x < -a, which is used in applications concerning smoothing tech-
niques [4], [6].

In Theorems 2-4 we characterize the limit cycle lengths T when the local function
fis strictly cyclically monotone, and we prove T -< 2. When A is positive definite we
show there are only fixed points, T 1. IfA is negative definite andf(-b) 0, we prove
T 2, except for the only fixed point x 0. In Corollaries 3-5, we establish these results
for real networks where the strictness condition on fhas been weakened.

When the state space Q --f(n) is finite, we deduce in Corollary 6 a bound for the
transient length from the existence of (H(x(t))). Furthermore, for algorithms that use
this class of networks [2], [5 ]-[ 8] the existence of increasing functionals allows us to
study convergence properties.

We must remark that the existence of Lyapunov functionals is relevant from the
physical point of view. Moreover, when we write our functional for continuous local
function fwe get results analogous to those obtained in [6] (see Corollary 2).

2. Definitions and preliminary results.
2.1. The cyclically monotone property. The potential. In this section we define the

class of local functions that will be used in the automata network. Characterizations and
examples will be given.

Let X be a real vector space with scalar product ,): X X -- and let f: X -X. We say fis cyclically monotone (C.M.) if and only if

n--I

(1) (ui-ui+,,f(ui))>=O, Vn>2, V(Uo,...,un_,u,=uo)rX+.
i=0

If fis C.M., then it is monotone, that is:

(2) (f(u)-f(v),u-v)>=O Vu,vrX.

To see this, it is sufficient to take n 2 and the sequence (u, v, u).
Furthermore, we will say that f is strictly cyclically monotone (S.C.M.) if and

only if it is C.M. and strictly monotone; this last means that it is monotone and
(f(u) f(v), u v ) 0 if and only iff(u) f(v).

From Rockafellar [11] we have that f is C.M. if and only if there exists a proper
convex function g X -- such that fis a subgradient of g; i.e.,

(3) g( u)>= g(v)+ (f(v), u-v) Vu, vrX.

In such a case we say that g is a potential off, and we denote the pair ofsubgradients
and (one of) its potential by (f, g).

Another tool from convex analysis that we will use is the polar of a function. If
g: X -- , we define its polar function by g* X -- U {-, + } such that:

(4) g*(v) sup (( u, v)-g( u)).
urY

Now ifg is a potential of fwe have:

(v,f(v) > g(v) >= (u,f(v) > g(u), so (v,f(v) ) g(v) sup (u,f(v) > g(u)
u.X

and, therefore,

g*(f(v))+g(v)=
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For more details see [11].

2.2. The real case. Now in the real case we can characterize the C.M. and the
S.C.M. functions.

LEMMA 1. A function f" -- is cyclically monotone ifand only if it is strictly
cyclically monotone, and this property holds ifand only iff is not decreasing.

Proof. Let us show the equivalence between C.M. and nondecreasing functions.
The C.M. condition is and the nondecreasing property in is (2). If in general we
have (1) (2), we must only prove (2) (1), and we will do it by induction over
n -> 2. The case n 2 is verified because it is equivalent to (2). Suppose is verified
for n’ =< n; let us show it for n + 1.

If the sequence (Uo, u) is completely ordered, i.e., Uo >= u >_- >_- u or
Uo=<U"" =<u.,weget

E (Ui-- Ui+ ,)f(ui)>=f(u,,) (Ui-- Ui+ 1)-’- 0,
i=0 i=0

and the result follows.
If there exists 0 =< k -_< n such that uk-1 >= Uk -< Uk+l (we note u_ un) with at

least one strict inequality, we obtain

blk-1 uk)f( Uk- + blk-- blk + )f(blk) =" blk- blk +1 )f( b/k-1 );

hence, Z f--o (Ui ui+ )f(ui) > ZfYd (ti i+ l)f(ti) wherei ui if < k 1, i
u; + if k _-< =< n 1. By the induction hypothesis the last sum is nonnegative, and the
result holds.

The S.C.M. property condition follows because (f(u) -f(v))(v u) 0 implies
f(u) f(v).

In the real case the potential can be specified. Let f be a C.M. f6nction in .
Let 6f(u) -f(u+) -f(u-) be the jump of fat u. As f is increasing the set D(f)
{ u" 6f(u) > 0 } is countable. Let us suppose fis fight continuous and the set ofjump
coordinates D(f) is discrete. For a fixed c e N and D(f) we write

6 j(X) E 6f(U) if X >= c,J(x) 6f(b/) if X < C,

which is an increasing pure jump function such thatj)(c) 0 (if fis an increasing pure
jump function we getf(x) f(c) + j)(x)). To explicitly obtain the potential associated
to J, let us define D+(f)= {un:n>0) andD-(f)= {u:n<0)tobethesetof
ordered jump coordinates greater than c and smaller than c, respectively. If x > c, let
n(x) sup {n > 0 u < x); ifx < c we write n(x) inf{n < 0 u, > x}(n(x) 0
if the sets are void). Now the potential associated toJ is

(7)

gd(X) E (bln+ Un)(f(bln)-[-(X-- bln(x)))f(bln(x)) ifn(x)_--> 1,
<= n(x)

g(x) lUn-l--Unl6f(Un)+ IX--Un(X)Irf(Ux)) if n(x) --< l,
n(x)

ga(x)=O ifn(x) 0.

Now take

(8) f(x) =f( x) -jS(x),
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which is an increasing continuous function such thatf(a) f(a) (if fis an increasing
continuous function we get f f). The potential associated tof is

(9) go(x) f(u)du.

Then we get the known decomposition

10 f=f +J, and its potential is g gc + ga.

The polar function satisfies

g* (f(v)) (v,f(v)) g(v) (vf(v) g(v)) + (vfa(v) ga(v)).

We now give an explicit form for the polar function when fisa strictly increasing con-
tinuous function. In this case its inverse function f-1 is defined. The polar function
satisfies: g* (f(v)) vf(v) ff(u) du. From the equality

(f(u)-f(a)ldu=(v-al(f(v)-f(a))-of(,)(f-l(l-ald(
we deduce

(11)

f(v)

g*(f(v))=,f()f l()d+ cf(a),

g*(x) -1 ()d + ozf(o).

or

3. Automata networks. Let A be a linear operator in the real vector space X with
inner product (,), b 6 X, and f: X -- X. We take the space state Q f(X) and let the
dynamics on Q be defined by

(12) x(t+ 1)=f(Ax(t)-b).

This automaton is denoted by 1 (Q, f, A, b).
Recall that a functional H: Q is said to be a Lyapunovfunctional if and only

if (H(x(t) ))t
_

increases with >= 1.
THEOREM 1. Let 1 Q, f, A, b) be an automaton where A is symmetric andf

cyclically monotone. Let g be a potential offand g*, the polar associated to g. Then

(13) H(x)= -g*(x)+ g(Ax- b)- (b,x)
is a Lyapunov functional; in fact, (H(x(t)))t>=l increases with >= 1. Now let

(14) I(x,x’) -(x, Ax’) + g(Ax- b) + g(Ax’- b).

Then (I(x(t + ), x(t)))t
_
o increases with >- O, and we have the equality

(15) H(x(t+ 1)) =(x(t+ 1),x(t)).

Proof. Note that the increasing property of (H(x(t)))t >-_1 will follow from the in-
creasing property of (/-?(x( + ), x(t) )

_
0 and 15 ).

Let us denote by A/ I(x(t + ), x(t)) I(x(t), x(t )) for >= 1. Since A
is symmetric we have

Att=-(x(t),Ax(t+ 1)-Ax(t- 1))+g(Ax(t+ 1)-b)-g(Ax(t- 1)- b).
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Let us define u, Ax(t) b, then

A,t= (f u,_ ), u, + 1-- Ut-- > -It- g( ut + 1) g( ut--1)"

Since g is a potential of fwe conclude At >_-- 0.
Now from definition ofg* we have

g(Ax(t)-b)=-g*(x(t+ ))+(x(t+ 1),Ax(t))-(x(t+ 1),b),
so B(x( + ), x(t)) H(x( + )). if]

For the main applications we will deal with product spaces. Let

S_.=X {__x=(Xl, ,Xr)’Xi_X,i-- l, ,r}

be endowed with the inner product [_x, x--] Y, = (xi, X}>. Let A__ (Ao <= i, j <= r)
be a matrix acting on _X such that (A__x)i = Aox_j. We assume that the operator d

T= Ai Now let f"is symmetric (with respect to [, ]), which occurs if and only if A 0
X -- X be cyclically monotone for 1, r. Then it is easy to prove thatfdefined
by (f(x_))i fi(xi) is also cyclically monotone. If gi" X - is a potential associated to
f, the function g" _X -- R defined by g(_x) ,r.= gi(xi) is a potential associated tofand
g* (v_) = g-7* (vi) is the polar associated to g. Ifeveryf. is strictly cyclically mono{one,
then f.

Now, for the automaton a/ (Q, f, d, _b_b), where Q f(_X), __b _X, we have the
following corollary.

COROLLARY 1. Let al Q, f, d, b) satisfy the above properties. Then

(16) H(x)=,Z, --g?(xi)+gi Z Aijxj-bi -(bi,xi)
.j=

is a Lyapunov functional. Furthermore,

(17) H__’(_x,x’)=,Z, Z -(xi,A6xj)+gi Z A6xj-bi +gi , Aijxj-bi
j=l j=l j=l

has the property that I}(x(t+ 1),x’(t))t_o is increasing and H(t+ 1)=
t}(x(t + ), x(t)).

Now let us apply this result for X R.
COROLLARY 2. Let

___
Q, f, A, b) be such that A ao <= i, j <= r) is

symmetric and (f 1, ..., r) is a sequence of strictly increasing continuous real
functions. Then

(18) H(x)=,1= t,,)fi (g;)d+ f(u)du-bixi-oeif(oti)

is a Lyapunovfunctional; that is (/-/(x(t)))t_ is increasing with >= 1, where (Oti)= are
fixed.

Proof. This follows from Corollary and (6) and (7).
Recall that 18 is an expression similar to that obtained in 6 ]. Now for the length

of the limit cycles we deduce the following result.
THEOREM 2. Let al Q, f, A, b) be such that A is symmetric and f strictly

cyclically monotone. Then the length T ofany limit cycle satisfies T <= 2.
Proof. Let (x(0), x( T be a limit cycle; that is x(T) x(0) and x(t) 4

x(t’) for 0 =< < t’ < T. As ((x(t + ), x(t))),_ 0 is increasing and x(t + t’)
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x( + t’(mod (T) we deduce/-)(x( + ), x(t) constant. Then with above notation

At+ lt= g(u(t + 2))--g(u(t))--(f(u(t)),u(t+ 2)-- u(t)) 0.

By the strict condition u(t + 2)= u(t). Hencef(u(t + 2))=f(u(t)), that is, x(t + 3)=
x(t + ), and the result follows.

For many applications [1 ], [2 ], [6] we must consider the automaton given by
X r, A (aij" -< i, j -< r) a symmetric matrix, f (f, fr) where f" g -- Qi
is a real cyclically monotone function.

COROLLARY 3. Let (Q, f, A__, b ), wheref= (f ) is a set ofincreasing
realfunctions. Then any limit cycle has length T 2.

Proof. From Lemma anyf is strictly cyclically monotone, sof. Theorem 2 implies
the result.

There exist some cases in which we can determine exactly the length of the cycles.
THEOREM 3. Let 1 Q, f, A, b) be such that A is a symmetric positive definite

operator andfis strictly cyclically monotone. Then any limit cycle is a fixed point, that
is, T= 1.

Proof. Let (x(0), x( )) be the limit cycle (we know T =< 2). Let

3 (x(O)-x( 1),A(x(O)-x(1)))
(x(0), (Ax(O)- b)-(Ax( )- b)) + (x( ), (Ax( )- b)-(Ax(O)- b)

We have

(x(t),(Ax(t)-b)-(Ax(t- 1)-b))
=(f(Ax(t- )-b),(Ax(t)-b)-(Ax(t- 1)-b)) <=g(Ax(t)-b)-g(Ax(t 1)-b).

Then 3’ -< 0. Being A positive defined, we obtain x( x(0).
Note that we have only used the cyclically monotone property off, the positive

definite property of A, and that any limit cycle is of length T _-< 2. So we obtain the
following corollary.

COROLLARY 4. Let 1 Q, f, A, b), wheref= (f, fr), be a set of nonde-
creasing realfunctions. IfA is symbtric positive definite, any limit cycle is afixedpoint.

THEOREM 4. Let 1 Q, f, A, b) be such that A is a symmetric negative definite
operator andfis strictly cyclically monotone withf(-b) O. Then x 0 is the onlyfixed
point and any other limit cycle is oflength T 2.

Proof. Let (x(0), x( )) be a limit cycle. As g is a potential off,

g(-b) g(Ax(O)- b) (f( Ax(O) b),-b- (Ax(O)- b) ) >= O.

Let x(O) be a fixed point, f(Ax(O) b) x(O), then

g(-b) >= g(Ax(O)- b)- (x(O),Ax(O)).
Sincef(-b) 0 and g is its potential, g(-b) is a global minimum ofg (see 11 ). As A
is negative definite, (x(O), Ax(O)) >= O. Then we must necessarily have x(O) O,
which is a fixed point.

We also deduce Corollary 5 from the above proof.
COROLLARY 5. Let Q, f, _, b_), wheref- (fl, "", fr), be a set ofnonde-

creasing real functions. IrA is negative definite andf(-bi) 0 for 1, r, then
the onlyfixed point is x_ 0 and any other limit cycle is oflength 2.

In estimating the transient length we will assume that the local C.M. function f
takes only a finite number of values; that is, the state space of the automaton Q -f(X)
is finite. In the real case this means that fis a jump function.
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COROLLARY 6. Let 1 Q, f, A, b) be a finite automaton. Let

A1/m min (/(x(2), x( ))-- (x( ), x(0))).
x(O)Q,x(O)4: x(2)

Then the transient length L ofany trajectory is bounded by

(19) L=O ifA’Im=O
max (u, v) min ( u, v)

Z < u,vO_ u,veQ

m,i ifA,lm>O.

Proof. If A/m 0, obviously L 0. Let us suppose A/m > 0. Let x(0), x( ),
x(L), x(L + ), x(L) be a trajectory with the limit cycle (x(L), x(L + )). Since Q is
finite we have

min t(u,v)+tAIglm<=I(x(t+ 1),X(t))_--< max I(u,v),Vt<=L.
u,vrQ u,vrQ

Hence, we obtain the bound of expression (19).
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TIGHT BOUNDS ON MINIMUM BROADCAST NETWORKS*

MICHELANGELO GRIGNI? AND DAVID PELEG:

Abstract. A broadcast graph is an n-vertex communication network that supports a broadcast from any
one vertex to all other vertices in optimal time flg n], given that each message transmission takes one time unit
and a vertex participates in at most one transmission per time step. This paper establishes tight bounds for
B(n), the minimum number of edges of a broadcast graph, and D(n), the minimum maxdegree of a broadcast
graph. Let L(n)denote the number of consecutive leading l’s in the binary representation of integer n 1. It
is shown that B(n) O(L(n). n) and D(n) O(lglgn + L(n)), and for every n we give a construction
simultaneously within a constant factor ofboth lower bounds. For all n, graphs with O(n) edges and O(lg lg n)
maxdegree requiring at most fig n] / time units to broadcast are constructed. These broadcast protocols may
be implemented with local control and O(lg lg n) bits overhead per message.

Key words, broadcasting, graphs, networks, Fibonacci numbers

AMS(MOS) subject classifications. 94C 15, 68M 0

1. Introduction. This paper deals with graphs suitable for performing broadcasts
efficiently. We represent a communication network by a connected graph G, where the
vertices of G represent processors and the edges represent bidirectional communication
channels. We assume communication has the following constraints:

Messages may be sent directly only between neighbors in the graph.
2) Each message transmission takes one unit of time.
3) A vertex may participate in at most one message transfer at a time.

That is, if u sends a message to v, neither u nor v may send or receive another message
on that step. A broadcast protocol for G allows any originator vertex to send a message
to all other vertices in the network. This broadcast model is studied in several papers
[BHLP1]-[FHMP], [HHL], [HL], [L], [MH], [P], [RLI-[Wa].

Given G and vertex v e G let b(v, G) be the minimum time needed to broadcast
from v. Let b(G) maxv b(v, G), the broadcast radius ofG. Since the number ofvertices
knowing the message may at most double on each step, b(G) >= fig n] for any n-vertex
graph G (lg denotes log2). A broadcast graph is an n-vertex graph G with b(G) =[lg n].

We consider three cost measures for broadcast graphs and their protocols. The first,
which is often the most significant cost measure in network design, is the number of
edges. Let B(n) denote the minimum number of edges of any n-vertex broadcast graph.
A minimum broadcast graph is a broadcast graph with B(n) edges; a number ofprevious
papers have dealt with determining values of B(n) and finding minimum or near-min-
imum broadcast graphs. The values of B(n) were determined precisely for n < 19
[FHMP], [MH], [Wa]. For general n it was shown that B(n) O(n lg n) [F1] and
that B(n) ft(n) (more precisely, n is a stated lower bound in [F1], [L], and
B(n) >= n for n > 3 is implied by the discussion in [F2]). For n a power of two, B(n)
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/2 n lg n FHMP], realizable by the hypercube graph. However, for n not a power of
2 the behavior of B(n) was not precisely determined.

The second cost measure that we consider is the maximum degree of broadcast
graphs. This measure is not as well studied as the previous one in the context ofbroadcast
graphs, but it is no less important due to current limitations in networking technology.
For vertex v 6 G let d(v)denote its degree, so the maxdegree of G is/(G) maxv d(v).
Let D(n) be the minimum maxdegree ofany n-vertex broadcast graph. Several previous
papers concentrated on broadcasting on bounded-degree graphs [BHLP 1], [LP].

The final cost measure that we consider is the message overhead needed to implement
the broadcast protocol under local control. We assume the broadcast messages may carry
along extra control bits, and we bound the maximum number of extra bits needed on
any message sent in the protocol. We assume that processors know the size of the graph
and their own identity in the graph, as well as local information such as the identities of
their neighbors. We assume also that processors know on which edge an incoming message
arrives; in some situations this is all the information the processor needs. We use a
synchronous model where all messages take unit time, although we do not assume pro-
cessors have access to a global clock.

For an integer n > let L(n) denote the number of leading l’s in the binary rep-
resentation of n 1; for example L(14) L( 11012 + 2. Then =< L(n) <= [lg n].

L(n) is monotone increasing in the range 2- < n =< 2 for any >= 1. For n in such
range we have L(n) -[lg (2 n/ )]. Note that L(n) grows slowly in this interval;
in particular, it equals over the first half of the interval (2 t- < n _-< 2 t- + 2 t-2), 2
over the next quarter of the interval and so on. More generally, for all n, >= 1,

I{i:l <i<=n,L(i)>l}]
<2 -t,

n

so L(n) is bounded by a constant for "most" values of n.
We show B(n) O(L(n).n) and D(n) O(lglgn + L(n)), and we construct

graphs meeting both bounds simultaneously. Since L(n) o(lg lg n) for most n, this
implies that most minimum broadcast graphs must be irregular, since they have O(L(n)
(constant) average degree but 2(lg lg n) maxdegree.

Furthermore, we give protocols that may be implemented with O(lg lg n) bit over-
head per message in the synchronous model. In the asynchronous model, where there is
no guarantee on message transmission time, the same graphs need O(lg n) bits overhead
per message to avoid message collisions. These asynchronous protocols are tree-shaped:
there are exactly n messages sent, one to each processor besides the originator.

In view of the practical significance of keeping B(n) and D(n) as small as possible,
it may sometimes be desirable to allow a slight increase in broadcast time in order to
allow a decrease in these cost parameters. This has led to the following relaxation of the
problem [F1], [L]. A relaxed broadcast graph G has b(G) _-< [lg n] + 1. Let B’(n) and
D’(n) denote the minimum number of edges and maxdegree required for an n-vertex
relaxed broadcast graph. In F it is noted that B’(n) may be significantly less than B(n)
when n is equal to or slightly less than a power of 2. They demonstrate this fact by
considering n 16 (where the minimum time requirement is four steps, while the relaxed
requirement is five steps) for which B(n) 32 and B’(n) 19. We construct relaxed
broadcast graphs with O(n) edges and O(lg lg n) maxdegree, both within a constant
factor of optimal. (Again a priori these must be irregular graphs.)

Although we have made our definitions for undirected graphs, our constructions
use directed graphs, where messages may only travel in the direction of the edge. This
leads to the analogous definitions of broadcast digraphs, their minimum edge number
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B(n), and their minimum relaxed edge number B’(n). Clearly, B(n) <= B(n) <= 2. B(n)
and B’(n) _-< B’(n) _-< 2. B’(n), so edge counting results in either model are equivalent
up to a factor of 2. In the directed model we will let dour (v) and Aout refer to outdegree
while_ din(V) and Ain refer to indegree. Let d dour + din and A(G) maxv d(v), then
D(n) is the minimum of A(G) over all n-vertex broadcast digraphs G, D(n) <= D(n) <-
2. D(n). Similarly, define D’(n) as the minimum maxdegree of relaxed broadcast di-
graphs.

The paper is organized as follows. In 2 we derive lower bounds. In 3 and 4 we
construct preliminary graphs, serving as building blocks for our main constructions given
in 5. Section 6 discusses a generalization of the model allowing "conference calls."
Finally, in 7 we offer some related problems and open questions.

2. Broadcast tree lower bounds. For a vertex v in graph (or digraph) G, a broadcast
tree T is a time-labeled directed subgraph describing a broadcast originated by v, by the
following rules:

T is spanning in G rooted at v, directed toward the leaves.
2) Each vertex u is labeled with an integer t(u), where t(v) 0.
3) Whenever u is a parent of w in T, t(u) < t(w).
4) Whenever u and w are siblings in T, t(u) 4: t(w).

Given such a T, interpret label t(u) as the step when u receives the message originated
by v; the conditions guarantee that the parent of u has the message and is free to send it
to u on step t(u). Define t(T) maxu t(u); we say T is a k-step broadcast tree when
k t(T). A collection of such trees, one rooted at each v e G, defines a broadcast
protocol for G.

For example, let Hr be the r-dimensional hypercube, with vertices given the usual
binary numbering 0, 2 r_ 1. Broadcast from 0 by sending along the sth dimension
on step s, for _-< s _-< r: each vertex v that knows the message sends it to v + 2 1. The
edges used by this protocol define the Boolean broadcast tree Tr [F1]. (See Fig. 1.)

Not every broadcast protocol is described by a broadcast tree, since a protocol may
send more than one message to some vertex. Nevertheless, given a k-step broadcast from
v, there exists a k-step broadcast tree from v, consisting of those edges on which each
vertex first receives the message. Hence, b(v, G) <= k if and only if there is a k-step
broadcast tree T rooted at v. Any such tree protocol may be controlled with at most
O(lg n) bits overhead per message (the identity of the originator), although the local
program length may be long. A parent in T might as well tell all its children the message
as quickly as possible, so we may also require the additional rule:

5) The children of any u e T have consecutive labels t(u) + 1, t(u) + 2, ....
Refer to those vertices v in T with t(v) s as generation s of T. If we do not require
that T span G, then say T is a partial broadcast tree in G; i.e., it only broadcasts to those
vertices that it spans.

0 2 2 3 3 3 3 4 4 4 4 4 4 4 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FIG. 1. The Boolean broadcast tree T4 describing a 4-step broadcastfrom 0 in the hypercube H4. Thefirst
row ofnumbers is the time labeling t(. )" the second row is the usual binary numbering.
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LEMMA 2.1. In a (partial) broadcast tree T, the subtree rooted at a vertex u has
size at most 2 tT)- tu).

Proof. The subtree can at most double on each step after u gets the message.
THEOREM 2.2. Let G be an n-vertex broadcast graph. Then every vertex v G has

degree d( v >= L n ).
Proof. Let k =[lg n], let T be a k-step broadcast tree from v, let 6 -< d(v) be the

degree of v in T, and let Vl, v be the children of v in T, labeled t(Vs) s. Then
the subtree rooted at Vs has size at most 2 k- s. Since these subtrees contain all vertices
except v, n < 2k-i 2k(1 2-), SO 6 > k lg (2i= -(n- 1))>=L(n).

Note the last inequality is not tight; for example, when n 14 we have L(n) 2,
but the proof really shows that the degree is at least three. For directed G the same
argument shows dour (v) >= L(n) for all v; by averaging, there must also be a vertex v0
with din(V0) >= L(n); hence, d(vo) >= 2. L(n).

COROLLARY 2.3. For all n >= 1, we have B(n) >= 1/2L(n).n, (n) >= L(n).n,
D(n) >= L(n), and D(n) >= 2. L(n).

Constructions in 5 show the above bounds on B(n) and B(n) are tight up to a
constant factor. We need a further argument to get tight lower bounds for D(n)
and D(n).

For a given outdegree bound d and time bound t, we inductively construct Ta,t, the
largest broadcast tree with t(T) =< and Aout(T) =< d. The root v should have as many
children as possible, so dout(V) min (d, t). Each child u of v must be the root of a
maximum size subtree, so the tree rooted at u must be Ta,t-tu); this recursive construction
uniquely defines Ta,t.

Let ba(t) be the number of vertices in Ta,, and let J(s) be the size of generation s
in Td, SO bd( s=0 J(s). Since the parents of generation s are the vertices of the
previous d generations, we have recurrences for s, > 0:

(1) b(t):l+ b(t-i),
<i<=d

(2) J(s)= J(s-i),
l<=i<_d

where bu(0 j(0) for the originator and b(s) J(s) 0 for s < 0. The recurrence
(2) defines the dth-order Fibonacci sequence [K, 5.4.2]. If d >= then the tree T,t is
simply the Boolean broadcast tree Tt.

The generating polynomial x x- + + x + has one large real root near
2 dominating the growth rate ofJ(t) and b(t) (all other roots lie in the unit circle)"

d
2 2 -a 2 -2a O(d22 -3a) as d .

For our purposes it suffices that 2 21- a < < 2 2-a for all d >= 2.
LEMMA 2.4. For >= 1, d >= 2, let be defined as above. Then

Xt- <_fd(t) <=(2/k)d- - l,
)t_) - _b(t)(2/))_ - 1.

-1 -1

Proof. Fix d. For _-< _-< d we haveJ(t) 2 t-l, which lies in the claimed range.
Now for > d use induction on and the fact that X satisfies the generating polynomial.
The bounds on bd(t) follow from summing the bounds on J(t).
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THEOREM 2.5. Let T be an n-vertex k-step broadcast tree with d Aout(T). Then

klge )-1.d>lg
k+l-lgn

Proof. Since Td,k is the largest possible such tree, n <= bd(k). Estimated (2/)d-l/
(-- 1)=<2(seeTablel),son<=bd(k)<=2(k- 1)+ <2,andlgn< +klgX.
Now estimate lg < 2 -(d / 1) lg e and solve for d. [5]

In particular, we consider trees arising in broadcast graphs and relaxed broadcast
graphs.

COROLLARY 2.6. Let T be an n-vertex broadcast tree and t(T)<= c+ lgn.
Then Aout(T) > lg lg n 0.5 lg (c + ). In particular ift(T) <= [lg n] then Aout(T) >
lg lg n 1.5, and ift(T) <= [lg n] + then Aout(T) > lg lg n 2.1.

COROLLARY 2.7. D(n) and D(n) are f( L(n) + lglg n); D’(n) and D’(n) are
2(lg lg n).

We have shown that any n-vertex [lg nq-step broadcast tree T has A(T)>=
max (L(n), lg lg n 1.5). We now show that this lower bound is tight up to a leading
factor of 2 and a small additive constant.

LEMMA 2.8. Given d, 1, with d >- + lg t, bd( > 2 -t) 2 t.
Proof. Estimate bd(t) >= t > 2 2 -d)t > 2 t2 -a) 2 t2 t- d >= 2 2-by the condition on d. [

COROLLARY 2.9. For n <= 2 , let d L(n) + lg lg n] + 1. Then n <= ba(t).

3. Boolean constructions. This section and the following one describe some initial
constructions, which will be combined in 5 to yield the desired results. Specifically, this
section concerns constructions based on variations of the hypercube.

Given n and a S c 7/n _/nT/, the difference digraph ;n[S] is defined with vertex
set ’n and edge set { -- + s 6 7/, s S } (these are also known as directed star
polygons). 7/n[S] has SI n edges. For example, define the Boolean difference digraph as
BD(n) 7/n[ { 2 0 =< < gig n] }]. BD(n) has broadcast properties similar to the
hypercube, but it is defined even for n not a power of two.

THEOREM 3.1. BD(n) is a broadcast digraph, with a 1-bit overhead protocol.
Proof. By translational symmetry we may assume that 0 is the originator. Let k

[lg nq. On step s, =< s =< k, every vertex that knows the message and knows +
2-s < n sends the message to + 2-s (note that we have reversed the bit order used
in the H protocol described at the beginning ofthe previous section). This protocol will
reach every processor exactly once.

Note that the processors know the time step by observing on which edge the message
arrives (so this works asynchronously as well). To decide whether + 2k-s < n, the

TABLE
X, (2/x)d-I/(X 1), andfd(t) for 2 <= d <= 6, 0 <= <= 6.

1.6180
1.8393
1.9276
1.9659
1.9836

(2/x)d-l
X-1 j(O) j(1) j(2) j(3)

2.0000 2 3
1.4088 2 4
1.2043 2 4
1.1089 2 4
1.0595 2 4

j(5)

5 8
7 13
8 15
8 16
8 16

(6)

13
24
29
31
32
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processors pass along an extra bit. When processor sends a message to j + 2
the extra yes/no bit tells j whether j + 2s- >= n. If "no," then j knows that its subtree
will not be truncated anywhere, and so it sends "no" bits to all its children. Otherwise,
j computes n’ n mod 2s- and recursively originates the BD(n’) protocol (this recursion
adds no overhead to the messages; we only require that each processor knows the value
of n). An originator knows n and should send a "yes" message to the first child such
that 2 s-1 < n, and a "no" message to every child after that.

We observe that the resulting broadcast is tree-shaped, and hence this protocol will
also work in the asynchronous model, ff]

Let Hr denote the directed r-dimensional hypercube (i.e., Hr has a pair of directed
edges wherever the undirected hypercube has an edge). From Hr we construct a related
digraph Hr, with 2 r+t vertices: at each v Hr root a copy of the Boolean broadcast tree
T. Refer to the original Hr vertices as "root" vertices and the new 2 r(2 vertices as
"tree" vertices. Any root of Hr, may originate an (r + t)-step broadcast: for the first
steps broadcast across Hr to all the roots, and then for the remaining steps broadcast
up all the trees. This protocol requires no overhead bits, since the dimensions are always
used in a fixed order. Now modify Hr, by adding a back-edge from every tree vertex back
to the root of its tree; call the resulting digraph H’r,t. Then H’r, is a relaxed broadcast
digraph. Root vertices originate a broadcast as before; tree vertices take one step to notify
their root, and then let the root take care of the broadcast from there. In this case the
protocol does not trace out a tree of messages, since the originator will receive a copy of
the message; nevertheless, the protocol is still valid in the asynchronous model because
the first message of the originator cannot collide with any future messages.

Just using H’r,t we may construct a sparse (O(n)-edge) relaxed broadcast digraph.
Given n let k [lg n], =[lg k], and r k- t. Then n’r,t has 2 vertices; throw out
2 n leaves (this will not disrupt the protocol). The resulting digraph has n vertices,
(r 2)2 + 2n < 3n directed edges and maxdegree A 2r + + 2 < 4k O(lg n).

4. Fibonacci constructions. In this section we construct partial broadcast digraphs
FIB 1, FIB2, FIB3; all rely on one idea, an "addressing" scheme based on the generalized
Fibonacci numbers of 2. Construction FIB1 is the simplest illustration of the idea.
Construction FIB2 takes care of some wraparound problems, allowing any node to be
an originator. Construction FIB3 allows the originator to send fewer messages; this graph
will be the "backbone" for the final broadcast graph constructions in 5. These con-
structions have parameters d, t, and (corresponding roughly to maxdegree, broadcast
time, and L(n)).

For string a al... at 6 { 0, }t, let (a)a denote ti= ai fa( i). Let a, c {0, 1}
denote the strings that do not have the substring 0al, and let .’a,t c a,t be those with
at (’a,0 and a,0 both contain the empty string). We have the following numbering
theorem; it is a "dense" version of the dth-order Fibonacci number system K, Exercise
5.4.2.10].

LEMMA 4.1. For d >= 2, [rd, fd(t), d,t bd(t), and the map a

from d,t to { O, bd( t) 1} is bijective.
Proof. Give each vertex u of Td, a t-bit address a corresponding to the path from

the root to u, where as if and only if the path includes a vertex of generation s >=
(see Fig. 2). Inductively, the addresses in generation s are a =/30 t-s, where
.’d,s, bd(S--1)=< (Ot)d<bd(S). Finally, note d,t is the disjoint union d,t
tots =0 rd,O

Given d -< t, we construct a digraph FIB d, (see Fig. 3) based on this addressing
scheme. FIB ld, has vertex set ;btt) 7/t; we let x 7"/bd(t index columns and s 7] index
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0 2 2 3 3 3 4 4 4 4 4 5 5 5 5 5 5 5 5
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

FIG. 2. Broadcast tree T2,5 with generation labels and the numbering ofLemma 4.1. Bold edges show
13 2 + 3 + 8 (01101 2.

rows. It has the following single class of edges (we start a list of classes here, because we
will add more soon).

Class 1. For all x, =< s =< t, and =< =< min (d, s), connect (x -J(s), s i)
to (x, s).
FIB d,t has bd(t)" vertices, less than bd(t)" dt directed edges, and maxdegree 2 d.

THEOREM 4.2. For every vertex x, O) e FIB d,t there is a t-step partial broadcast
tree Tld,t(x) rooted at (x, O) such that:

(i) Z ld,t(x) contains exactly one vertex in each column y.
(ii) Generation s of Tld,t(x) lies entirely in row s.
(iii) Tld,t(x) is isomorphic to Td,t.

(iv) The protocolfor Tld,t(x) needs no bit overhead on messages.
Proof. Let Tld,t(x) correspond to the following protocol: on step s, each vertex

(y, r) that has received the message within the last d steps (s d =< r < s) sends it to
(y +j(s), s) (see Fig. 3). Then we are simply reconstructing Td,t: vertex u in generation
s of Td, is reconstructed as (s, x + (a)d) in Tld,t(X) where a is the address of u. Hence,
we generate all a e a,t, and touch every column exactly once. Note the vertices do not

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

5

FIG. 3. The digraph FIB12,5 with subtree T12,5(0). All edges are directed downward; thefirst and last rows
are identified.
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need to know any dynamic information such as a or x to run this protocol (the vertices
may even be oblivious to which edge delivers an incoming message). [2]

FIB d, is still a long way from a broadcast digraph; our next construction allows
any vertex to originate a partial broadcast, with only slightly higher costs. Construct a
second digraph FIB2d, by augmenting FIB d, with three further edge classes (Fig. 4
illustrates how the four classes connect the rows of FIB2d,t).

Class 2. For all x, d =< r < t, _-< s _-< d, connect (x -J(s), r) to (x, s).
Class 3. For all x and =< s =< 1, add an edge from (x, s) to (x, s + ).
Class 4. For all x and _-< s < d, add an edge from (x, s) to (x, s + d + ).

We refer to edges of Classes and 2 as "Fibonacci" edges, because sending a message
along such an edge always involves a jump ofJ(s) columns, where s e { 1, is the
row in which the jump ends. We refer to edges of Classes 3 and 4 as "Zero" edges since
they begin and end in the same column.

THEOREM 4.3. For every vertex (x, r) FIB2d, there is a t-step partial broadcast
tree T2d,(x, r) rooted at (x, r) such that:

(i) T2d,t(x, r) contains at least one vertex in each column y.
(ii) Generation s of T2d,t(x, r) lies entirely in row r + s.
(iii) Aout(T2d,t(X, r)) <= 2d.
(iv) With lg + lg d + O( bits overhead per message we may implement this

protocol and furthermore appoint a unique "leader" vertex of T2d,t(x, r) in
each column.

Proof. By translational symmetry among the columns we may assume that x 0.
If r 0 we use the protocol from FIB d,t; otherwise, =< r < t. Again we construct the
tree by describing a protocol. In the previous protocol we constructed all addresses a e
d,t by jumping along Fibonacci edges; in this protocol we will construct all addresses
a -r/, where "y e #Od, and/3 #Od,t-r. In particular, this includes all a d,t. The
protocol proceeds in two phases: in phase I (the first r steps) we construct/3 while
leaving -r O r, and in phase II (the last r steps) we wrap around and construct ,. In
phase I we use Zero edges to pass completed or/3 addresses down their columns to where
they will eventually wrap around; phase II is essentially identical to the FIB d,t protocol.
We maintain the invariant that all messages sent on step z arrive in row s z + r mod t,
so each generation is confined to a single row.

In the following discussion let (y, s) refer to a vertex receiving the message on time
step z, _-< s, - _-< t. We call messages "Fibonacci" or "Zero" depending on the type of
edge they traverse. Let messages carry the following additional information fields:

The current time step z and the row r of the originator. Since the receiver is in
row s r + z mod t, only one of these fields really needs to be sent.
A routing address a { 0, }t telling the receiver (y, s) what path the message
has followed so far on its way here from the originator (x, r). Bit ai tells whether
the message made a Fibonacci jump to row i; hence, y x + (a)d. We maintain
a -g/3 for some 7 e d,r, - d,t-r.

t=0 t=0 t=0 t=0

t-2 t-2 t-2 t-2

t-3 t-3 t-3 X,

Class Class 2 Class 3 Class 4

FIG. 4. The classes ofedges between rows of FIB22,8. Edges here represent collections ofedges between the
corresponding rows Fibonacci edgesfor Classes and 2, Zero edgesfor Classes 3 and 4 ).
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We will show later that the protocol does not need to carry along all bits of a, but only
lg d + O( bits; so, the total message overhead will be lg + lg d + O( bits.

To start the protocol we pretend that on step - 0 the originator (x, r) receives a
Fibonacci message with address a 3" 0 t. We describe the protocol by the actions of
any vertex (y, s) after receiving a message on step z. There are several cases.

I. If the received message is a phase I message (precisely, - 0 or r < s _-< t), the
protocol is still working on fl while 3’ O r. The received message could be of
either type.
Zero: If the received message is type Zero, then we are simply passing this 0r

down the column without changing fl further. There are two cases:
mIf s < t, then just send the same Zero message on to the next row of

this column, using an edge of Class 3.
mIf s t, then phase II will begin on the next step, so the receiver (y, t)

must start sending Fibonacci messages to modify 3". It sends them con-
secutively to rows l, min (d, r), using edges of Class 1.

Fibonacci: If the received message is type Fibonacci, we are actively building, although 3" is still O r. We have two goals: continue modifying
by sending Fibonacci messages to higher rows, and also let this current
a 0r wrap around the column to fill in its low-order bits. There
are two cases:
mIf s < d, then the next d + steps (rows) are also phase I.

Send Fibonacci messages to rows s + l, s + d, using edges
of Class 1. Finally, send a Zero message to row s + d + using
an edge of Class 4.

mIf s >- d, then (y, s) must both finish phase I and start phase
II. For the remaining s phase I steps, (y, s) sends Fibonacci
messages to rows s + l, using edges of Class 1. On the next
min (d, r) phase II steps (y, s) sends Fibonacci messages to rows
l, min (d, r) using edges of Class 2.

II. In phase II we fill in 3"; only Fibonacci messages may be received in this phase.
(y, s) reacts by sending Fibonacci messages to rows s + l, s + 2, for the
next min (d, - r- s) steps using edges of Class 1. This is essentially the
protocol of FIB d,t.

Recall that all messages sent on step - arrive in row s r + mod t. The following
claims characterizing the messages sent on each step may be proven inductively.

I. On step - in phase I there is one Fibonacci message sent for each a orot- s,
where/3 -’d,. There is one Zero message sent for each a oro(d+l)+t-s,
where/3 d,- (d+ ).

II. On step - in phase II only Fibonacci messages are sent, one for each a 3"0 s,
where 3" ,d,s and/3 d,t-r-

Every a d,rd,t_r appears exactly once as the address of a Fibonacci message
(an a may appear several times as a Zero message address), so in particular each a e
a, appears exactly once as the address of a Fibonacci message (we count the dummy
message sent to the originator). Then there is a natural "leader" in each column" the
vertex receiving an address a e d,t in a Fibonacci message. To show that the protocol
defines a tree, we first check that there are no collisions on any step, i.e., all addresses a
sent on a step map to distinct (a)d modulo bd(t).

I. In phase I, all addresses ofmessages ofeither type are ofthe form a 0 r/, where- d,t-r. Since rot-s - d,t, the values ( rtot-sd are all distinct modulo
bd(t) by Lemma 4.1. Since (a)d ( lrOt-S)d-- ( rot-r)d, the (a)d must also
be distinct.
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II. In phase II, since all addresses of messages sent to row s are of the form 3"0 s/
for 3" d,s, [3 d,t-r. The shifted addresses 3" r-s/3 are all in d,t; hence, the
(a)d are distinct by a similar argument.

To finish showing that the protocol defines a tree, we check that there are no vertices
appearing in two generations. This could only happen if generation collides with gen-
eration 0 (the originator) in row r. But all the addresses received by generation are in
"d,rd,t-r, and, hence, not congruent to 0.

Now we consider the bit overhead to implement this protocol. The entire protocol
is oblivious to x, which just translates the tree vertices in 7/b(). During the protocol no
use is ever made of the bits of a; all the vertices need to know is the time z (which must
be given to them in the message overhead) and what kind of edge delivers the message
(which we have assumed they know for free). At the end of the protocol each vertex
(y, s) T2d,t(x, r) needs to know whether their a d,t to decide if it is the leader of
column y. Since 3" e d,r and/3 e gd,t-r, the only way a could fail to be in d,t is if the
substring 0dl appears on the boundary between 3" and/3. To decide, (y, s) needs to know:

whether 3’ has a in its last d bits and where it is,
how many consecutive O’s begin/3 (either < d or all of/3).

The first may be determined just from the identity ofthe sender (local information );
the second may be maintained with lg d + O( additional bits overhead per message.
With lg more bits to maintain the clock, we use the claimed number of bits. Since the
resulting partial broadcasts are tree,shaped, this protocol works asynchronously as
well. [3

For our third construction FIB3 our goal is to reduce the number of messages sent
by the originator. We introduce a new parameter =< d that corresponds to the L(n)
function of 2. We modify FIB2 to work when the originator sends only l mes-
sages. Define

bd( l, t) + bd(
i=1

In particular, bd(O, t) 1. Then bd(l, t) is the size ofthe maximum t-step broadcast tree
Td,t, whose root has degree and all other vertices have outdegree at most d. We make
the following simple estimate.

LEMMA 4.4. ha(l, t) >= 2-t)bd(t) + 1.
Proof. Since bd(t i) >= 2 -iba(t),

bd( l, t) >= , 2 -ibd(t) 2 -)bd(t). [3
i=1

0 13 14 20

(b)"

0"1 13 14 20

FIG. 5. (a) Class 5 edgesfrom nodeO in some row r of FIB3 (d= 3, 2, 5). (b) Corresponding class
5’ edgesfrom S(O, r) in FIB4. Node is responsiblefor columns 1-13, node 14 for columns 14-20.
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We construct digraph FIB3d,l,t on vertex set bd(l,t) X 7 We use the same edge class
definitions 1, 3, and 4 used for constructing FIB2d, (but now x in the definitions ranges
over a different number of columns). We enlarge Class 2 and define a new Class 5 of
"Root" edges going horizontally across rows (see Fig. 5 (a)):

Class 2’. For all x, l d _-< r < t, _-< s -< d, connect (x j(s), r) to (x, s).
Class 5. For all (x, r), _-< _-< l, connect (x, r) to (x + ba(i 1, t), r).
THEOREM 4.5. For every vertex (x, r) FIB3a,l,t there is a t-step partial broadcast

tree T3a,z,t(x, r) rooted at (x, r) such that:
T3a,,t(x, r) contains at least one vertex in each column y.

(ii) The root (x, r) has children, all connected by Root edges. The subtree rooted
at the ith child spans columns x + ba( 1, t) through x + ba( i, t) 1.

(iii) All vertices besides the root have degree at most 2 d.
(iv) With lg + lg d + lg + O( bits overheadper message we may implement this

protocolandfurthermore appoint a unique "leader" vertex ofT3a,t,t( x, r) in each
column.

Proof. We have arranged the edges so that for any originator (y, r) and any such
that -< =< l, we may run the broadcast protocol for FIB2d,t_/in rows 0, ..., i.
The only new trick is that if -< r < t, then we use the FIB ld,t- protocol, i.e., (y, r)
sends Fibonacci messages to rows 1, d, using Class 2’ edges. This generates a
copy of T2d,t-i(y, r) spanning and confined to columns y,..., y + ba(t-i)-
of FIB3d,,t. We call this the FIB2d,t_i subprotocol started by (y, r).

To start the main FIB3d,l, protocol from the root (x,r), the root on step
-< =< l) sends a message to its ith child (x + bd(i 1, t), r) telling it to start running

the FIB2d,/_ subprotocol. We have spaced the Root edges so that the child subtrees span
disjoint consecutive blocks of columns; hence, the subprotocols never collide. Together
with the root, they span every column ofFIB3d,t,t. To control the ith subprotocol we
need to send along the value of with those messages, so that they know which rows to
skip when they wrap around. This introduces lg l additional message overhead bits to
those already needed to control the FIB2d,t_ subprotocols. To select column leaders,
we simply select the leaders from each subprotocol together with the root (x, r).

We remark that this FIB3 protocol in fact never uses the Fibonacci edges to row t,
and so there is a slightly better construction where FIB3 has only rows. We have
chosen to avoid this modification for simplicity of presentation.

5. Main constructions. Using the constructions of the previous two sections, we
are now ready to construct broadcast digraphs and relaxed broadcast digraphs within
constant factors of the lower bounds of 2. Note that for broadcast graphs, if L(n) is
within a constant factor of lg n, say L(n) >- [lg n]/3, then we may use the Boolean
difference digraph BD(n), which has n [lg n] _-< 3. B(n) edges and maxdegree 2 [lg n] =<
3-D(n); i.e., both are within constant factors of the lower bounds.

Otherwise (when L(n) is O(lg n), or when we want relaxed broadcast graphs) we
rely on the constructions of 4. We want to augment FIB3 with additional vertices so
that most vertices have degree O(l) but are still able to originate a broadcast. The general
idea is to put each vertex (x, r) of FIB3 in charge of a small set of vertices S(x, r), such
that every vertex in the set may originate a broadcast in the same way as (x, r), and
(x, r) can broadcast a received message back to all of S(x, r). Thus, most of the vertices
in S(x, r) may have lower degree than their leader (x, r). This idea is detailed below.

We construct digraph FIB4d,t,tl,t2 (with parameters <- <= d <= tl/2, lg tl =< t2) by
augmenting FIB3d,,t,. We also add new vertices in this construction; we refer to the
original vertices of FIB3d,,t as FIB3-vertices.
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Define - =[lg t]. For each column x ofFIB3a,l,tl construct a copy H(x) of H,t2-
(from 3). Identify the t FIB3-vertices of column x with t distinct roots of H(x); the
other 2 t2 t vertices of H(x) are new to the digraph FIB4. Repeating this for every
column x defines all the new vertices of FIB4.

Partition the vertices of H(x) into t subsets S(x, s) of size at most [2t2/t] <=
2t-/ 1, so that (x, s) S(x, s). Thus we have partitioned all the vertices of FIB4 into
approximately equal size sets represented by the FIB3-vertices. Now add the following
class of Root edges, extending the previous definition of Class 5 (see Fig. 5 (b)):

Class 5’. For all FIB3-vertices (x, r) and all _-< _-< l, connect each v S(x, r) to
(x + ba(i 1, t), r). Also if v 4: (x, r), connect v to (x, r).

We now bound the number of edges and the maxdegree of FIB4.
LEMMA 5.1. Given <= l <= d <= t/2, " [lg t] =< t2, then FIB4t,a,tl,tz has exactly

?l 2 t2 "ba(l, t) vertices, less than n(l + 2) + ba(l, t).2t(d + - + directed edges,
and maxdegree less than 3(d + l + t2 + 2) + (l + )2t2/t.

Proof. There are ba(l, t columns y and 2 t2 vertices in each H(y), hence the number
of vertices. To count edges and maxdegree, there are six kinds of edges: those in classes
1, 2’, 3, 4, and 5’, and those in the H(y) subgraphs. First we count edges. Every vertex
has at most / outedges of Class 5’, and at most one incoming tree-edge from H(y),
hence the leading term of n(l + 2). Now we count the remaining edges contributed per
column, and then multiply by b,(l, t ), the number of columns. In column y, Class
contributes < dtl edges, Class 2’ contributes d(l + d) <- dt edges, Classes 3 and 4 contrib-
ute < t edges each, and the digraph H(y) has 2 < 2tz root edges besides the tree edges
already counted above. Altogether, this gives the claimed bound on edges.

To bound maxdegree we simply add the maxdegrees of the six cases. Class has
maxdegree 2d (note we must count both in and out degree), Class 2’ has maxdegree
1 + d, Classes 3 and 4 have maxdegree 2 each, class 5’ has maxdegree [2t2/tl](l + +
l < (l + 1)(2 + 2t2/t) (attained at the FIB3-vertices), and each H(y) subgraph has
maxdegree t2 + z < 3t2. Adding these gives the claimed bound on maxdegree.

THEOREM 5.2. For every vertex v FIB4a,l,tl,t: there is a (t + t2)-step broadcast
protocol startingfrom v. Furthermore,

(i) After t steps ofthe protocol, for each column y there is a root vertex in H(y)
that knows the message.

(ii) The maximum number ofmessages sent by any vertex is 2d + t2.
(iii) We may implement this protocol with lg l + lg + lg d + O( bits overhead

per message in the synchronous model.
Proof. Let (x, s) be the FIB3-vertex such that v S(x, s). The protocol proceeds

in two phases; the first phase of t steps is essentially like the FIB3 protocol, with v taking
the role of(x, s). For steps -< =< l, v sends the message along a Root edge (Class 5’)
to (x + J(i 1, t), s + i). Just as in the FIB3 protocol, these children of v initiate a
local FIB2d,t_i protocol. Hence after tl steps, all of these subprotocols finish simulta-
neously and appoint a FIB3-vertex leader in every column except column x (since these
leaders are FIB3-vertices they are also roots of their respective H(y)’s). Column x itself
is a special case; if v (x, s), then v itself is the leader of column x. Otherwise, v
sends the message to (x, s) on step + 1; there is time to do this since we have assumed
l<t.

At the start of the second phase, the FIB3 protocol has established a unique root
leader in each FIB3-column y. This leader is a root in the corresponding H(y), so simply
follow the H(y) t2-step protocol to notify every vertex of FIB4. Hence, every vertex
knows the message in t + t2 steps.



BROADCAST NETWORKS 219

Note that the leader of column x receives the message on step + and may as
well start broadcasting up H(x) on step + 2. Since v will then receive a copy of its own
message, we cannot claim that the H(x) protocol is tree shaped; nevertheless, it will work
asynchronously, because the message that v receives is a descendant of v’s last outgoing
message. The message overhead is essentially the same as for the FIB3d,l,t protocol, since
the second phase introduces no new costs. [3

This FIB4 protocol will not work in the asynchronous model. Phase will appoint
a unique leader in a given column y, but it may also make temporary use ofother vertices
from that column (as in the FIB2 protocol). In phase 2 the leader broadcasts to all of
H(y), including these "temporary" vertices used in the phase 1. Hence in the asynchro-
nous model one of the temporary vertices may simultaneously receive two messages,
one from phase and the other from phase 2. Just from the general arguments of 2
we know there is an asynchronous tree-shaped protocol, but with O(lg n) bits overhead.

Note that if 12 is strictly greater than (i.e., H(y) is not just a hypercube) then at
least half the vertices in FIB4 are deletable; these are the leaves ofthe Tt2- subtrees used
to build each H(y). Removing some or all of these vertices will not disrupt the protocol,
since they are always the last to receive the message in any broadcast. Deleting vertices
preserves the leading term n(l + 2) in the statement of Lemma 5.1, since each vertex
contributed at most l + 2 edges to that term.

Given n, we now show that by setting the FIB4 parameters appropriately and possibly
deleting some vertices, we get broadcast digraphs and relaxed broadcast digraphs of size
n with degree and edge costs within constant factors of their lower bounds. The choices
for l, d, and tl + 12 are more or less fixed for us; our main freedom is in partitioning
into tl and 12. As 12 increases, the number ofedges decreases and the maxdegree increases,

but both are reasonably small for 12 around lg dr l. The following two theorems make
this precise.

THEOREM 5.3. Given n such that L(n) < (1/3)lg n, let [lg n]. Choose
L(n) + 2, d =[lg lg n] + 1, t2 [lg dt/l] + 1, t t2. Then FIB4d,l,tl,t2 (possibly after
deleting some leaves) is a t-step n-vertex broadcast digraph with O(L(n). n) edges and
O(L(n) + lg lg n) maxdegree.

Proof. First we show FIB4 has at least n vertices. By the definition ofL(n) we know
n -< 21( 2 -L")+ )). Thus n =< 21( 2 - t) < 21( 2-l) 2. By Lemma 4.4 we have
ba(l, t) >= (1 2-t)ba(t), and by Lemma 2.8 we have ba(t) >= (1 2-1)21; hence,
ba(l, t) >= n. For any k =< we may estimate 2 kba(l, k) >= ba(l, t), so in particular
(k 12) FIB4 has at least n vertices.

We estimate t < t, z =< [lglgn], 2dt/l <= 2 t2 < 4dr 12 < 2[lglgn], and
ba(l, t) <- 2 q 21/212 < 2t(l/2dt) < nl/dt. Now we apply Lemma 5.1. The number of
edges is <n(l + 2) + ba(l, t).2t(d + - + 1) < n(l + 2) + (nl/dt).2t.2d 5nL(n) +
12n O(nL(n)). Similarly, the maxdegree is <3(d + + 12 + 2) + (l + 1)2t2/t <
3 3 d) + + (4dt/ l) / l. Since / 11 =< for sufficiently large n) and + / =< , the
maxdegree is at most 17d O(L(n) + lg lg n).

Finally, we need 212 > 2t so that there are enough deletable leaf vertices to get
exactly n vertices. This is guaranteed by our choice of 12. [3

COROLLARY 5.4. B(n), (n) O(L(n).n), andD(n), (n) O(L(n) + lg lg n).
We comment that an alternative construction (presented in a previous version of

this paper [Pe ]) yields a better bound of(L(n) + 2)n on the number of edges. However,
that construction has linear indegree.

THEOREM 5.5. Given n such that L(n) < (1/3) lgn, let [lgn] + 1. Choose I
2, d Jig lg n], t2 I-lg dt], t t2. Then FIB4a,t,t,t (possibly after deleting some
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leaves) is a t-step n-vertex relaxed broadcast digraph with O(n) edges and O(lglg n)
maxdegree

Proof. Again we start by showing FIB4 has at least n vertices. We know n <
2t-<(1-2-t)22 t. Arguing as in the last proof we have n<ba(t)(1-2 -t)<
ba(l, t) < 2 t2 ba(l, t ); hence, the graph is large enough.

We estimate tl < t, - _-< [lg lg n], dt <= 2 t2 < 2dt, t2 < 2 [lg lg n], and bd(l, t) <=
2 t, 2 t 2 <= 2 /dt < 4n/dt. Again we apply Lemma 5.1. The number of edges is
<21 n O(n) and the maxdegree is < 17 d + 12 O(lg lg n).

We need 2 t2 >= 4t to insure there are enough deletable vertices; this is guaranteed
by our choice of t2 for n sufficiently large. [2]

COROLLARY 5.6. B’(n), ’(n) O(n), and D’(n), ’(n) O(lg lg n).
By Theorem 5.2 we know that the graphs ofTheorems 5.3 and 5.5 have synchronous

protocols with O(lg lg n) bit overhead, while we need O(lg n) bits to get tree-shaped
asynchronous protocols. We have no corresponding lower bounds on bit complexity.

6. c-Broadcast graphs. A wide variety of models for broadcast (and communication
networks in general) are considered in the literature. Examples of such models are radio
broadcast networks (cf. [GVF]) and line broadcasts (cf. [F2 ]). One particular variant
of the model considered here is a model that allows vertices to communicate simulta-
neously with all their neighbors in one time unit. This model, which is quite common
in the field of synchronous distributed and parallel computing (cf. [A], [BD], [Fi] among
others), is a natural one to consider when the system supplies hardware mechanisms
enabling such an operation, or in cases where message transmission time is negligible
compared to the time required for processing within the vertices between consecutive
rounds. In such a model, broadcast can be achieved in time D in every network of
diameter D; hence, in the complete network broadcast requires only one time unit.

The dichotomy between the above two extreme models suggests a natural inter-
mediate model which provides for "conference calls" of limited size, i.e., in which a
vertex is allowed to send a message simultaneously to up to c neighbors at a time, for
some constant c >- 1. We refer to broadcast in this model as c-broadcast. In this section
we extend the basic results known for c to every c >= 1. (A related generalization is
studied in [RL]; there, the communication network is represented by a (c + )-uniform
hypergraph, and each conference call involves the vertices of some hyperedge.)

Similar to the definitions of the standard (1-broadcast) model, let bc( u, G) denote
the minimum time required to broadcast from the vertex u in the graph G in the c-
broadcast model, and let bc(G) max { be(u, G)lu V(G) }. The obvious lower bound
on the time needed for c-broadcast is

LEMMA 6.1. bc(G) >= [logc+ n] for every n-vertex network G.
Consequently, a c-broadcast graph (respectively, relaxed c-broadcast graph) is an

n-vertex communication network G such that be(G) [logc+ n] (respectively, bc(G)
[logc+ n] + ), and Bc(n) (respectively, B’c(n)) denotes the minimum number of edges
of any n-vertex c-broadcast graph (respectively, relaxed c-broadcast graph).

We first extend the n 2 k result of [FHMP] to the c-broadcast model.
THEOREM 6.2. Bc(n) cnk2 for every n (c + k, k >= 1.
The results ofthe previous sections can be extended as well. Denote the exact number

of consecutive leading c’s in the (c + )-ary representation of n by Lc(n).
Extending the lower bound of Theorem 2.2, and using upper bound constructions

from [Pe ], we have the following.
THEOREM 6.3. For all n >= 1, c/2(Lc(n) 1)n < Bc(n) < [c(Lc(n) + 1) + 1]n,

i.e., Bc(n) O(c. Lc(n).n).
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THEOREM 6.4. B(n) < 2n for every n >= and c >= 1.
We may define the analogous maximal c-broadcast tree where each vertex sends

messages at most d times (and hence has outdegree at most cd); the generation sizes are
given by the sequence f(s) c. id= f(S i) with growth rate k (c + c
(c + )d. We may then extend Theorem 2.5.

THEOREM 6.5. For every n >= l, De(n) 2(Lc( n + logc + log n) and D’( n
ft(logc + log n ).

The numbering scheme and first construction of 4 carry through analogously.
Further pursuit of the methods of 5 may yield a construction proving the previous
theorem tight as well; we have not pursued this further.

7. Open problems. A number of other interesting problems suggest themselves for
further study. A significant area of problems concerns the design of broadcast schemes
for given networks (as opposed to networks designed specifically for the purpose of
broadcast). It is known that both determining the broadcast time b(v, G) ofan arbitrary
vertex v in an arbitrary graph G [SCH] and recognizing a broadcast graph [FHMP]
are NP-complete. Consequently, heuristic approaches for the problem of determining a
near-optimal broadcast strategy in an arbitrary network were studied in [SW], and exact
solutions were provided for special families ofgraphs, such as trees [P], [SCH] and grids
FH ]. This line of research seems especially important, as in most cases the designer of
a broadcast scheme faces an existing network with a fixed topology. Natural classes of
graphs to be considered are families such as regular, planar, and bounded-degree graphs.

A related problem is that of distributing distinct pieces of information from several
originators in the network simultaneously. In its ultimate form, this problem turns into
the well-known gossip problem (cf. the bibliography of [HHL]). This problem involves
n items of information, each initially held in one ofthe vertices, and the question is what
resources (messages, time, edges, etc.) are required to let everyone know everything. This
problem assumes a model in which a single message can carry an unlimited amount of
information (or at least O(n) bits). More realistic assumptions allow a message to carry
no more than O(log n) bits of information, which makes the intermediate levels of the
problem (i.e., with a limited number of originators) interesting in their own fight.

Another interesting issue from a theoretical point of view is that ofbroadcasting on
random graphs. The radius of random graphs has been well studied, but it may be worth
looking at the broadcast radius b(G) of random graphs. Pure random graphs will not
make good broadcast graphs just out of degree constraints, but random graphs may still
be useful components (e.g., use random edges instead of Fibonacci edges). More im-
portantly, these random graphs may be fault tolerant. One may consider using a random
protocol as well.

Acknowledgments. We thank Tom Leighton for his encouragement, Art Liestman
for commenting on a previous version of the paper, and Alex Schiffer for helpful dis-
cussions.
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NONCROSSING SUBGRAPHS IN TOPOLOGICAL LAYOUTS*

JAN KRATOCHVL, ANNA LUBIW:[:, AND JAROSLAV NEETIIL

Abstract. The computational complexity of the following type of problems is studied.
Given a topological layout (i.e., a drawing in the plane) of a graph, does it contain a noncrossing subgraph

ofa given type? It is conjectured that such problems are always NP-hard (provided planar subgraphs are looked
for) regardless of the complexity of their nonplanar versions. This conjecture is verified for several cases in a
very strong sense. In particular, it is shown that deciding the existence of a noncrossing path connecting two
given vertices in a given topological layout of a 3-regular subgraph, as well as deciding the existence of a
noncrossing cycle in such a layout, are NP-complete problems. It is also proved that deciding the existence of
a noncrossing k-factor in a topological layout of a (k + )-regular graph is NP-complete for k 2, 3, 4, 5. For
k l, this question is NP-complete in layouts of 3-regular graphs, while it is polynomial solvable for layouts
of graphs with maximum degree two.

Key words, topological graphs, planar layout, algorithmic complexity

AMS(MOS) subject classifications. 05C 10, 05C99

1. Introduction. We consider finite undirected graphs without loops or multiple
edges. (In a few particular cases when multiple edges are allowed, it will be specified
explicitly that we are talking about multigraphs.) The vertex set and edge set of a graph
G are denoted by V(G) and E(G), respectively, and we write G (V(G), E(G)). An
edge connecting vertices u and v is denoted by uv.

Let G be a (multi)graph considered together with a drawing (layout) in the plane
(arcs corresponding to edges may cross but do not pass through vertices). Then we call
G a topological graph. Let Pbe a graph property. Consider the following decision problem.

NONCROSSING P-SUBGRAPH.
Instance: A topological graph G.
Question: Does there exist a subgraph G’ of G with the property P such that

the drawing of G’ inherited from G is noncrossing?
We relate problem to the following companion problem.

P-SUBGRAPH.
(2) Instance: A graph G.

Question: Does there exist a subgraph G’ of G with the property P?
The problem may sometimes be trivial and it can be solved in polynomial time

for any property ofbounded character (such as "to contain a fixed subgraph" ). However,
if the property P is not of bounded character, it has been conjectured in [N] that is
always an NP-hard problem, even ifthe companion problem (2) is polynomially solvable.
We will say that P is a topo-hard property if is an NP-hard problem.

In this paper we support this conjecture by several examples of properties for which
problem (2) is easily solvable: connectivity, and maximum matching and k-factors. Per-
haps the most striking example is the existence of a noncrossing path between two given
vertices ofa given layout. It is slightly surprising that all our properties remain topo-hard
even if the input is reduced to very simple classes of graphs. It seems that it is difficult
in general to find problems dealing with topological graphs that are polynomially solvable
(cf. [KvL]).
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In most of the cases it suffices to describe a topological graph simply by stating
which pairs of edges are crossing. This leads to a definition of abstract topological graphs
in the next section. It is then natural to ask whether a given graph can be drawn in the
plane respecting a given intersection pattern of edges. This is an abstract form of many
problems in topological graph theory and VLSI circuits. In 3, this problem is related
to the recognition problem of string graphs (intersection graphs of curves in the plane,
cf. [Si, KGK]).

In 4, we prove NP-completeness of a modified planar 3-sat problem, which is a
crucial starting point for the results on the noncrossingpath and noncrossing cycle problems
in 5. Section 4 concludes the block of introductory sections where all auxiliary results
are presented.

Sections 5-8 are devoted to examples of topo-hard properties. Besides noncrossing
path and noncrossing cycle, another two problems of the same flavour (noncrossing
spanning tree and noncrossing connectedness) are mentioned in 5. An optimization
problem of finding a maximum noncrossing matching is considered in 6. Problems
concerning k-factors are considered in 7 and 8. Section 7 contains a polynomial al-
gorithm for noncrossing 1-factor in layouts of graphs with maximum degree 2, while
8 is devoted to NP-completeness results (which are proved in a unified form).

2. Topological and abstract topological graphs. A topological graph (T-graph)
G (V, E) will sometimes be referred to as G (Vr, Er) to indicate its drawing
explicitly. An appropriate discretization of the drawing is a part of the data of a T-graph
and it will be mostly irrelevant for our purpose.

An abstract topological graph (AT-graph) is a graph G (V, E) together with a set
of I (), i.e., and AT-graph is a triple G (V, E, I) (() is the set of all two-element
subsets of E).

For every T-graph Gr (Vv, E), we denote by I(Gv) the set of all pairs of edges
that are crossing in Gr, i.e., I(Gr) { el, 6’2 } ]er 1 e2

r 4: } (here er is the arc
representing an edge e, and these arcs are considered open). To a T-graph Gr, we associate
an AT-graph G (V, E, I(Gr)) and we speak about the AT-graph corresponding to Gr.

We can expect that not every AT-graph corresponds to a T-graph. We say that an
AT-graph G V, E, I) is realizable if V, E) has a drawing Gr Vr, Er) with I(Gr)
I, i.e.,, if G corresponds to a T-graph Gr. For example, the T-graph in Fig. realizes the
AT-graph ({ a, b, c, d}, { ab, ad, bc, bd, cd}, { { ab, cd}, { bc, bd} }). On the other
hand, an AT-graph (V, E, ) is never realizable if the graph (V, E) is nonplanar. Of
course, we can construct other examples of nonrealizable AT-graphs, e.g., { a, b, c, d },
{ ab, ac, ad, bc, bd, cd }, { { ad, bc }, bd, ac }, { cd, ab } } is a nonrealizable AT-graph
on four vertices (cf. Fig. 2), while every AT-graph on three vertices is realizable (we
leave a proof of this fact to the reader).

It is thus natural to consider the following decision problem.

REALIZABILITY OF AT-GRAPHS.
(3) Instance: An AT-graph G (V, E, I).

Question: Is G realizable?

It has been shown recently by Kratochvll that (3) is an NP-hard problem [K2 ].
Lubiw suggested the following approach to the question of realizability ofAT-graphs.

Considering realizability of an AT-graph G (V, E, I), I is the set ofprescribed pairs of
crossing edges. It seems more applicable to consider I to be the set of allowed pairs of
crossing edges. This justifies the following definition. An AT-graph G (V, E, I) is weak
realizable if there exists a T-graph Gr (Vr, Ev) such that I(Gr) c I. Note that if
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(V, E) is planar then every AT-graph (V, E, I) is weak realizable, but may not be realizable
(cf. Fig. 2). Consequently, we may consider the following decision problem.

WEAK REALIZABILITY OF AT-GRAPHS.
(4) Instance: An AT-graph G (V, E, I).

Question: Is G weak realizable?

Although problem (4) seems to be closer to planarity than (3), it is also NP-hard
[K2]. Just in the opposite, we know that (3) is polynomially reducible to (4), but we
do not know such a reduction from (4) to (3). Note also that we are calling these
problems NP-hard because they are not yet proved to be in the class NP. There is even
an evidence that they might not belong to NP at all: It is proved in KM that for every
n, there exists a realizable AT-graph Gn with O(n 2) vertices such that in every weak
realization of Gn there are two edges that share 2 common crossing points.

3. String graphs. A graph G (V, E) is called a string graph if it is isomorphic to
the intersection graph of a system of curves in the plane, i.e., if there are curves c(v),
v e V such that u v E if and only if c(u) f-) c(v) 4: for any two distinct u, v V.
Such a system of curves is called a string representation of G (and the curves are called
strings). See also Si ], EET ], K ], K2 ], KGK].

Note that we may define string graphs in various ways, e.g., as intersection graphs
of connected subgraphs in planar graphs, intersection graphs of arc-connected sets,
or connected regions in the plane. All these definitions yield the same class of graphs
[KGKI, [Sil.

String graphs present one of a few "natural" classes of graphs for which the NP-
hardness of their recognition has been long open. Only recently it has been established
by the first named author that the following problem is NP-hard K2 ].

STRING GRAPHS RECOGNITION.
(5) Instance: A graph G.

Question: Is G a string graph?
String graphs are closed under edge contractions and under the taking of induced

subgraphs, and hence the class of string graphs is closed in the induced minor order. The
complexity of induced minor closed classes of graphs has been studied in [MNT ]. The
concept of induced minors differs drastically from minors studied by Robertson and
Seymour [RS ]. The class of all finite graphs fails to be well quasi-ordered by the induced
minor order, and there are induced minor closed classes ofgraphs for which the recognition
problem is even undecidable MNT ]. The class of string graphs is also the first "natural"
induced minor closed class of graphs for which the recognition problem is known to be
NP-hard.

Note also that string graphs recognition is actually a subproblem of realizability of
AT-graphs. For, given a graph G (1,’, E), we may consider an AT-graph H (W, F, I)
with W= {au, bulu V},F= {aubulu V},andI= {{aubu, avbv}luvE}.Then
every string representation ofG is a realization ofH(with vertices of Wbeing the endpoints
of the strings), and vice versa. Moreover, we have the following theorem.

THEOREM 3.1. Theproblems realizability ofAT-graphs and string graphs recognition
are polynomially equivalent.

We will use the following easy result.
LEMMA 3.2 KGK]. Let G be a string graph. Then G has a string representation

with thefollowing properties:
Every point ofthe plane is contained in at most two strings;

(ii) Every pair of distinct strings shares a finite number of common intersecting
points;
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(iii) Every string that represents a vertex ofdegree <- 2 intersects any other string
in at most one point.

ProofofTheorem 3.1. Since (5) is a subproblem of 3 ), it suffices to show a reduction
of (3) to (5). Let H (V, E, I) be an AT-graph. Define a graph G (W, F) by

W= VtAEtA{(v,e)lveE},

F= { {v,(v,e)}, {(v,e),e}lveeeE}UI.
IfH corresponds to a topological graph Hr then we can easily transform Hv into a

string representation of G. For every vertex v e V, we choose a neighbourhood fly of v e
Vr so that fly contains no crossing points of the edges from ET. Then inside 2, we
replace the vertex v by a short segment and parts of the edges e by strings (v, e), as it
is indicated in schematic Figs. 3 (a), (b).

Conversely, if G is a string graph then it has a string representation satisfying (i)-
(iii) of Lemma 3.2. In particular, the string representing a vertex (v, e) W shares just
one intersecting point with the string v, and one intersecting point with the string e W.
Thus the situation looks locally like that depicted in Fig. 3 (b). (Note that we may assume,
without loss of generality, that every string e starts at its intersecting point with (v, e),
since otherwise we can replace it as indicated in Fig. 3(c), (d).) Then contracting the
strings v and (v, e) for v e E into a point v, we obtain a T-graph H- with intersection
pattern I(Hr) I. Vq

It follows that string graphs recognition also might not belong to NP. Again there
are string graphs that require exponential numbers of intersecting points in any of their
string representations. We conclude this section with several technical notions and results
that will be used in the sequel.

V

FIG. 3
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DEFINITION 3.3. A graph G is called an outerstring graph if it has a string repre-
sentation with all strings lying inside a halfplane and intersecting the borderline each in
exactly one point (different strings in different points). Such a representation is called
an outerstring representation of G.

DEFINITION 3.4. A graph G is called a strong outerstring graph if, for every ordering
Vl, v2, "’, vn of its vertices, there exists an outerstring representation of G with the
strings intersecting the borderline in the ordering Vl, v2, vn.

Note that instead of requiting the strings to lie inside a halfplane, we could require
them to lie inside a disc and intersect the boundary ofthe disc each in one point. Obviously,
this yields the same class of graphs (cf. [K1]).

LEMMA 3.5. Let G, G2, be strong outerstring graphs. Then the graph G + G2 is
strong outerstring as well. (Here G + G2 is the Zykov sum ofG and G2, i.e., the graph
obtained from the disjoint union of G and G2 by adding all the edges between G
and G2.)

Proof. Denote G G + G2, n V(G)[, n2 V(G2)[, and n n + H2.

Let v: { 1, 2, n } --_ V(G) be an ordering of V(G). Denote by vi), 1, 2, the
linear orderings vti): 1, 2, ni } V(G) inherited from v (i.e., for u, u’ e V(G),
(vi))-(u) < (v{i))-(u’) if and only ifv-(u) < v-(u’)).

Fix a halfplane r with a borderline b, call b vertical. For 1, 2, fix outerstring
representations Ri of Gi respecting the orderings vti) and with strings lying in r. Let the
representations be placed so that all the strings ofR lie above all the strings of R2.

Consider a line b’ parallel to b and lying outside r. Construct an outerstring rep-
resentation of G that respects the ordering v as follows:

1. The strings ofR are extended by horizontal segments to reach the new border-
line b’;

2. The strings of R2 are extended by "V-shaped" piecewise linear curves to reach
the line b’ so that all of them intersect all the horizontal extensions of the strings of R;

3. Steps and 2 are done so that the endpoints of the extensions on b’ respect the
ordering v (cf. Fig. 4).

Let us remark that Lemma 3.5 follows also from a characterization of strong out-
erstring graphs given in [K1].

COROLLARY 3.6. Every complete multipartite graph (i.e., so called Turdn graph)
is strong outerstring.

4. A modified planar 3-sat problem. In the next section, we will use the following
modification of the planar satisfiability problem:

PLANAR CYCLE 3-SAT.
(6) Instance: A formula b with a set of clauses C over a set of variables X satisfying

that
(i) every clause contains at most three literals;

(ii) there exists an ordering cl, c2, Cm of the clauses such that
the graph

G’ =(Xt_JC, {xclxcCorcC} t3 {CiCi+lli 1,2, m}) is planar
(here Cm + c ).

Question: Is satisfiable?
Without the cycle { cic+ 11 1, 2, m } in (ii), (6) would be the planar 3-sat

problem that was proved to be NP-complete in [L] (cf. also [GJ]). Lichtenstein also
proves that a cycle passing through all the vertices XofG can be added without destroying
planarity. We use a similar argument to prove the following proposition.

PROPOSITION 4.1. The planar cycle 3-sat problem is NP-complete.



NONCROSSING LAYOUTS 229

FIG. 4

G2
/

Proof. We prove 3-sat oc planar cycle 3-sat. Consider a formula F with a set of 3-
clauses C over a set of variables X. Draw the graph

GF=(XUC, {xclxeceCoryeceC})

as shown in Fig. 5 (a) (the clause vertices are lined up at the left, and the variable vertices
at the bottom). Every edge-crossing is replaced by a crossover box depicted in Fig. 5 (b)
and a graph (corresponding to a formula, say q) depicted schematically in Fig. 5 (c) is
thus obtained. (In figures, variable vertices are depicted as circles, and clause vertices as
squares. The signs + and by an edge xc indicate that x e c or e c, respectively). The
crossover box is constructed so that in every satisfying truth assignment, al a2 and
bl b2 hold (and satisfying truth assignments exist for all values of al a2 and bl = b2).
Hence F is satisfiable if and only if 4 is. So far we have followed Lichtenstein [L ], and
the reader may check the details there.

It remains to show that we can add a cycle passing through all clause vertices of
without destroying planarity. This is done as shown in Fig. 6 (a) (note that we are adding
fake crossover boxes to make pairs ofneighbouring columns ofboxes ofthe same height).
Three ways the boxes are passed through by the cycle are depicted in Fig. 6 (b). U]

5. Noncrossing paths and cycles. In this section we prove the NP-completeness of
noncrossing path, noncrossing cycle, and some related problems. Recall that in view of

), we are considering the following problems.

NONCROSSING PATH.
Instance: A T-graph GT and vertices u, v V(GT).
Question: Does Gv contain a noncrossing path connecting u and v?
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()

FIG. 5(a)

/ /

FIG. 5(b)

NONCROSSING CYCLE.
Instance: A T-graph GT.
Question: Does Gr contain a noncrossing cycle?

Here we have Theorem 5.1.
THEOREM 5.1. The noncrossing path and noncrossing cycle problems are NP-

complete.
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FIG. 5(c)

Proof of Theorem 5.1. 1. Noncrossing path. Let 4 be a formula with an order c,
c2, "’", Cm of the clauses such that the graph G is planar. We define an AT-graph H
(V, E, I) as follows:

V-- {1,2, Cm } [,.J { tl t2, c }

E= { cci+ 11 1,2, ,m- } tO { [ci,C]x[ XCzCi or .czci, <= m }.

(Warning: this is considered as a multigraph; for every variable x with x ci or )2 c;
we have an edge [ci, C]x.)

I= { { ci, c], c;, c] } xe c and 4 c }

J { { [Ci, C]x,[i,]y} [(xecior 2i) and (ycior Y-i) }.

Thus the underlying graph (V, E) has the shape depicted in Fig. 7. We claim that in H,
there exists a path from c to c that does not contain two edges forming a pair from I
if and only if b is satisfiable. If P is such a path, then for every there exists a unique x
such that Ci, C]x C:?. P. We put

TRUE if Ci, C]x P andxe ci for some i,
X

t FALSE if Ci, C]xeP andYe ci for some i;

truth values of other variables are chosen arbitrarily. It follows that every clause is satisfied
and this definition is correct, since if x ci and e cj then ci, C]x and cj, C)]x cannot
both be in P. Conversely, if is satisfiable then for each i, consider an edge [ci, C]x for
which ci contains a TRUE literal x. These edges, together with edges cc + , l, 2,
m form a noncrossing path from c to c.

It remains to show that the AT-graph H corresponds to a T-graph HT. We obtain
a planar representation ofHr by a (local) modification of the planar drawing of G"
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FIG. 6(a)

First we "double" vertices that correspond to clauses and "omit" vertices that cor-
respond to variables, as indicated in Fig. 8. It is clear that we can achieve the intersections
of edges within each clause; see Fig. 9.

Finally, it is necessary to realize intersections of edges within variables. This leads
to the following problem: We consider the vertex x ofG, which corresponds to a variable
x and the edges incident with x. These edges are either positive or negative according to
the occurrence of either x or in the corresponding clauses. Now we want to replace
every edge by an arc in such a way that any two arcs intersect ifand only ifthey correspond
to edges ofdifferent signs. However, this is possible to do locally as the desirable intersection
graph is complete bipartite and, by Corollary 3.6, it is strong outerstring. See Fig. 10.

Putting an extra vertex in the middle of each multiple edge, we get rid of multiple
edges. Denoting the resulting AT-graph by H’, we see that H’ contains a noncrossing
path connecting c and c, if and only if is satisfiable.

2. Noncrossing cycle. Follow the previous proof, starting with

E={cci+lli 1,2, ,m}tO{[ci, C]xlXrciorrci, <=i<=m} (Cm+l=l)

in the definition of the AT-graph H.
Remark 5.2. With a simple modification of the above construction, we can show

that noncrossingpath and noncrossing cycle remain NP-complete for layouts of (simple)
3-regular graphs.

Spanning trees play a key role in many graph-theoretical and optimization questions.
Hence it is natural to consider the problem noncrossing spanning tree (which is defined
as problem for P "to be a spanning tree"). It follows directly from the proof of
Theorem 5.1 that the following corollary holds.

COROLLARY 5.3. The noncrossing spanning tree problem is NP-complete.
It is straightforward to call a T-graph noncrossing connected if every two vertices

are connected by a noncrossing path. Note that a noncrossing connected graph need not
contain a noncrossing spanning tree (cf. the graph depicted in Fig. 11 ). Thus the following
problem does not coincide with noncrossing spanning tree.
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\\ y ii//I

FIG. 6(b)

NONCROSSING CONNECTEDNESS.
Instance: A T-graph GT.
Question: Is GT noncrossing connected?
However, the AT-graph H’ from the proof of part of Theorem 5.1 is noncrossing

connected if and only if it contains a noncrossing path from c to c, (and then contains
a noncrossing spanning tree). Hence the following corollary holds.

COROLLARY 5.4. The noncrossing connectedness problem is NP-complete.
Remark 5.5. We can again show easily that noncrossing spanning tree and non-

crossing connectedness are NP-complete for layouts of 3-regular graphs.
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6. Noncrossing matching. In this section we consider the following problem, which
arises from one of the basic optimization problems in graph theory.

NONCROSSING MATCHING.
Instance: A T-graph GT and a positive integer k.
Question: Does GT contain a noncrossing matching of size >= k?

THEOREM 6.1. The noncrossing matching problem is NP-complete.
Proof. In view ofthe remark before Theorem 3.1, noncrossing matching in 1-regular

T-graphs is exactly the independent set problem for string graphs. Every planar graph is
a string graph ([EET, KGK, Si]) and independent set is NP-complete in planar graphs
[GJ]. Hence noncrossing matching is NP-complete even in layouts of 1-regular
graphs.

7. Noncrossing 1-factor. A k-factor is a spanning k-regular subgraph. A 1-factor
(also called a perfect matching) in a graph G is thus a matching of size V(G)I/2. In
the last two sections we are concerned with the following problem.

NONCROSSING k-FACTOR.
Instance: A T-graph G.
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FIG. 10

FIG.
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Question: Does GT contain a noncrossing k-factor?
We have the following results.
THEOREM 7.1. The noncrossing -factor problem ispolynomially solvablefor layouts

ofgraphs with maximum degree <= 2, and it is NP-completefor 3-regular T-graphs.
THEOREM 7.2. For k 2, 3, 4, 5, noncrossing k-factor is NP-complete in (k + )-

regular T-graphs.
THEOREM 7.3. For k >= 6, noncrossing k-factor becomes trivial, but it is NP-complete

ifthe input is a nonrealizable) AT-graph.
The first (polynomial) part of Theorem 7.1 will be proved in this section. The NP-

complete results will be proved in a unified way in the next section.
Proofof Theorem 7.1, part 1. We prove that noncrossing 1-factor is polynomially

solvable even for AT-graphs with maximum degree =< 2. (A subgraph (V, F) of an AT-
graph (V, E, I) is noncrossing if e 4: e’, e, e’ F imply { e, e’} q I.) Let H (V, E, I)
be an AT-graph such that the underlying graph G (V, E) has all degrees _-< 2. Let Gl,

G:z, , Gk, Gk+ 1, Gs be the connected components of G ordered so that G, ,
Gk are cycles and Gk + 1, Gs are paths. Explicitly, put

ai ({1), ,l)i}, {)1), ,)il) }) for i<=k,

ai { l) l)ini } { l) l)i2, l)ini_ l)ini fork+ <= <= s.

Without loss of generality we may suppose that all ni’s are even (otherwise H has no 1-
factor), and we put

Ci={vv,vvia,’"),C={vvg,viavi,"’} for/= 1,2,-.-,s.

Suppose (V, F), F c E is a/-factor in G and denote Fi F fq (vi)) for 1,
2,--.,s. ThenFi=CiorFi=Cfori= 1,2,...,k, andFi=Cifori=k+ 1,...,
s. We encode this fact via a formula with variables x, x2, "", x. so that xi is TRUE
ifand only ifFi Ci, and is satisfied by a truth valuation ifand only ifthe corresponding
1-factor is noncrossing. We let be the conjunction of the following clauses:

1. xi for k + 1, ...,s;
2. Yi if C is not noncrossing (i.e., the graph (Ci, I f3 ()) fails to be discrete),

1, 2, ..., s;
3. xi if C is not noncrossing, 1, 2, k;
4. Yi V if Ci U C is not noncrossing, i, j 1, 2, s;
5. Yi V xj. if C U C) is not noncrossing, =< s, j =< k;
6. xi V xj if C U Cj is not noncrossing, i, j 1, 2, s.

Straightforwardly, 4 is satisfiable if and only ifH contains a noncrossing 1-factor. This
completes the proof, since satisfiability of formulas with binary clauses can be decided
in polynomial time [GJ].

8. Noncrossing k-factors. We will prove the NP-completeness ofgeneral factors by
means of the "signal-sender" technique. It is more convenient to formulate and prove a
more general statement.

Let P and R be graph properties that are connected (i.e., a graph G has the prop-
erty P (respectively, R) if and only if each connected component of G has P (respec-
tively, R)).

DEFINITION 8.1. A T-graph GT (V7, Er) together with edges t, f is called a 2-
gadget if it has the following properties.

1. The edges and fintersect each other and both meet the outer face of the lay-
out Gr;
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2. There are subsets Ft and Ff ofEr such that
(i) the graphs (Vr, Ft) and (VT, Ff) are noncrossing subgraphs of GT;
(ii) (V, Ft) and (V, Ff) have property P;
(iii) Ft N {t,f} {t}, Fff’l {f, t} {f};
3. If a subset F of ET is noncrossing and has property P then F f { t, f } l;
4. The graph G (V, E) has property R.
DEFINITION 8.2. A T-graph Hv Vg, Er) together with edges el, e2, e3 is called

a 3-gadget if it has the following properties.
1. The edges el, e2, 6’3 meet in the clockwise order the outer face of the layout Hv;
2. There are subsets Fi c E’, 1, 2, 3 such that
(i) the graphs V’r, Fi), 1, 2, 3 are noncrossing subgraphs of Hr;
(ii) the graphs V, Fi), 1, 2, 3 have property P;
(iii) Fir) {el, e2, e3} {ei} for/= 1,2,3;
3. IfF is a noncrossing subset of Er and has property P then F f-) { e, e2, e3 } 4: ;
4. The graph H (V’, E’) has property R.
We consider the following general problem.
NONCROSSING P-SUBGRAPH IN A TOPOLOGICAL R-SUBGRAPH (PTR).
Instance: A T-graph Gr with property R.
Question" Does GT contain a noncrossing subgraph with property P?
THEOREM 8.3. Let P andR be connected graph properties such that 2- and 3-gadgets

exist. Then the PTR problem is NP-comp?ete.
Proof. We will prove planar 3-sat z PTR. Let 4 be a formula with a set C of 3-

clauses over a set of variables X. We assume that the graph Ho (X t.J C, { xclx c
C or e c e C } is planar.

Let us fix a noncrossing planar drawing ofH and, for every clause c, we list its
variables clockwise x(c), x2(c), x3(c) (according to the edges that leave c in direction
to xi(c) in the drawing of H).

For every x e X, let Gr(x) be a copy of the 2-gadget Gr (concerning gadgets we
preserve the above notation). The copies of edges and f are denoted by and fx,
respectively. Similarly, for a clause c C, we denote by Hr(c) a copy of the 3-gadget
Hr; the copies of the edges e, e2, e3 are denoted by exc), ex:tc), ex3(c), respectively.

We define an AT-graph H(4) as follows:

v(n(th))= I,..J V(GT(x))LJ [,.J v(n.(c)),
xX cC

E(H(4)) I,_J E(GT(x))U I,.j E(HT(X)),
xX cC

I(H(4)) U I(Gr(x))LJ U I(HT(c))U{ {fX, eCx }lx6c6C}
xX cC

U{{tX, ex}leceC}.

Since H(q) is a disjoint union of graphs GT(X) and HT(C) it has property R. It is
also easy to see that the AT-graph H($) is realizable, i.e., that it corresponds to a T-
graph H($): a realization ofH(b) is obtained from the planar drawing ofH, by replacing
every vertex x by a layout GT(X), and every vertex c by a layout H(c). Intersections
of edges x (respectively, fx) with e are realized by extending the edges x (respectively,
fx) in the direction of the edge xc of H,.

We prove that H($) contains a noncrossing subgraph with property P if and only
if $ is satisfiable:
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e3

GT HT
FIG. 12

1. Let H(4) contain a noncrossing subgraph with property P, say F c E(H(4)) is
such that (V(H()), F) has property P and no two edges from F form a pair from
I(H(b)). Since the property P is connected, we have

F= U F(x)U U F(c),
xX cC

where F(x) E( Gv(x)), x X, and F(c) E(Hr(c)), c C are noncrossing and have
property P.

Define a truth assignment o’X-- { TRUE, FALSE } by

[TRUE iftxF(x),
o(x)

tFALSE if fx F(x).

By condition 3 of Definition 8.1, IF(x) FI { , fx }l 1, and o(x) is defined correctly.
Now consider a clause c C. By Definition 8.2.3, there is an x X such that ex

F(c). We have either x c or Y c. If x 6 c then fx and e intersect and (as F is
noncrossing) we get F(x). Thus p(x) TRUE and c is satisfied. On the other hand,
if Y 6 c then x and e intersect and we get f F(x). Thus o(x) FALSE and c is
satisfied. It follows that o is a satisfying truth assignment for .

2. Let be satisfied by a truth valuation o X -- { TRUE, FALSE ). For every
clause c C, denote by g(c) a variable x that guarantees the validity of c (i.e., either
x 6 c and p(x) TRUE or 7 6 c and o(x) FALSE; g(c) need not be unique).

e

GT HT

FIG. 13
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FIG. 14

We put

[ Ft(x) (i.e., tXeFt(x))
F(x)=

Ff x)(i.e., fXeFf x))

if o(x) TRUE,

if p(x) FALSE

for every x e X (cf. Definition 8.1.2).
F(c) Fi(c) (i.e., eg(c) Fi(c)), where g(c) xi(c) for every c e C (cf. Definition

8.2.2) and

F= U F(x)U U F(c).
xEX cEC

Since P is a connected property, (V(H(b)), F) has P. We can show easily that
V( H(b )), F) is a noncrossing subgraph of H(b). U]

FIG. 15
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FIG. 15 (continued).
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e
3

e2
FIG. 16 (continued).

Proofof Theorem 7.1, part 2, and proofof Theorem 7.2. For the following pairs of
properties P, R, the PTR problem is NP-complete:

A
B
C
D
E

P R

1-factor 3-regular
2-factor 3-regular
3-factor 4-regular
4-factor 5-regular
5-factor 6-regular

According to Theorem 8.3, it suffices to exhibit corresponding gadgets GTand HT. Gadgets
for cases A, B, C, D, E are depicted in Figs. 12, 13, 14, 15, and 16, respectively. Note
that only the factors Ft and FI are indicated; factors Ff and F2, F3 follow from the
symmetry. The nonexistence of a factor F0 c E(HT.) that would be disjoint with
{ e, e2, e3 } is illustrated in part (c) of each figure by indicating those edges that would
have to be contained in every such factor. That would lead to high (or low) degrees of
some vertices (indicated by a circle).

ProofofTheorem 7.3. It is well known that every planar graph contains a vertex of
degree _-< 5, and so no k-regular graph with k >_- 6 admits a noncrossing drawing in the
plane. Thus for k >_- 6, the answer for any instance of noncrossing k-factor is negative.

The latter part of the theorem is proved via Theorem 8.3 again (more precisely, via
a modified version of Theorem 8.3, since now we have AT-graphs at the input and not
T-graphs. Hence the gadgets are AT-graphs as well and they are not necessarily realizable.).
We show here an explicit construction of gadgets in the case of k being even.

Define an AT-graph H (V, E, I) by

V={a,b,c,d}tA{xi,yi[i 1,2, ,k- 1},

E {ab,bc, cd, ad}lO{axi, bxi,cyi,dyi,xiYili 1,2, ,k- 1}

U{xixj, yiyjl <=i<j<=k 1},

I={{ab, bc)},
ab, f bc.
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a(

a(

FIG. 17(a)

Z Z

Z Z Z

FG. 17(b)

It is easily seen that H is (k + )-regular, every noncrossing k-factor in H contains
either the edge t, or the edge f, and H contains noncrossing k-factors F and Ff (e.g.,
Ft E { bc, ad } 1‘3 { xiyili 1, 2, k } )). Thus we take H for a 2-gadget. See
Fig. 17(a).

We define an AT-graph H’ (V’, E’, I’) by

V’= {z,,za, ,z6}to{ui, vili l,2, ,k-1},

E’= {2122,2223, ,Z6ZI}to{ZiUj, Zi+ll)jIi 1,3,5,j= 1,2, ,k-1}

1.3 { uiuj, vivj -< < j <= k 1},

el zz2, e2 z3z4, e3 z5z6.

Again, it is easily seen that H’ is (k + )-regular and that it contains (noncrossing)
k-factors containing exactly one of the edges el, e2, e3 (e.g., F1 E’ { e2, e3, zuk_ ,
z2vk_ } tO uiui+ , vvi+ li 1, 3, 5, })). Suppose F c E’ is a k-factor such that
F f) { el, e2, e3 } . Then { zujli 1, 3, 5, j 1, 2, ..., k } F and the subgraph
induced by F on { uil 1, 2, k } should be (k 3)-regular. This is impossible,
since k is even and hence both k and k 3 are odd. Thus we take H’ for a 3-gadget
and the proof is completed. See Fig. 17(b). The construction of a 3-gadget in the case of
k being odd is a bit more technical. D
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Note that the noncrossing k-factor problem for k -> 6 is thus the only case presented
in this paper for which a topological embedding ofthe input AT-graph (or more precisely
its realizability) actually matters.
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THREE-DIMENSIONAL STABLE MATCHING PROBLEMS*

CHENG NGf AND DANIEL S. HIRSCHBERGf

Abstract. The stable marriage problem is a matching problem that pairs members oftwo sets. The objective
is to achieve a matching that satisfies all participants based on their preferences. The stable roommate problem
is a variant involving only one set, which is partitioned into pairs with a similar objective. There exist asymptotically
optimal algorithms that solve both problems.

In this paper, the complexity ofthree-dimensional extensions of these problems is investigated. This is one
of twelve research directions suggested by Knuth in his book on the stable marriage problem. It is shown that
these problems are NP-complete, and hence it is unlikely that there exist efficient algorithms for their solutions.

The approach developed in this paper provides an alternate NP-completeness proof for the hospitals/
residents problem with couples--an important practical problem shown earlier to be NP-complete by Ronn.

Key words, stable marriage problem, stable roommate problem, NP-complete problems, three-dimensional
matching

AMS(MOS) subject classifications. 68Q25, 90B99

Introduction. Consider the problem ofassigning 3n students to n disjoint work groups
ofthree students each. The students must guard against any three individuals abandoning
their assignments and instead conspiring to form a new group that they consider more
desirable.

The following procedure is followed: each student ranks all 1/2 (3n )(3n 2)
possible pairs of fellow students according to his/her preference for working with the
pairs. A destabilizing triple for an assignmentMconsists ofthree students such that each
ranks the remaining two (as a pair) more desirable than the pair that he! she is assigned
to in M. The students’ task, the 3-person stable assignment problem (or 3PSA for short),
is to find a stable assignment, one that is free of all destabilizing triples, if such an
assignment exists.

Readers will recognize that 3PSA is a three-dimensional generalization ofthe stable
roommate problem, which partitions 2n persons into n pairs of stable roommates. A
better known variation is the stable marriage problem, which divides the participants
into two disjoint sets, male and female. Each pair in a stable marriage must include a
male and a female. The stable marriage problem has a similar generalization in three
dimensions, which we name the 3-gender stable marriage problem (or 3GSM for short)
and define in the next section.

The stable roommate and stable marriage problems have been studied extensively
3 ]-[ 5 ], 9 ]. There exist efficient algorithms for both problems that run in O(n2) time
1], [6], [10]. Ng and Hirschberg [12] have obtained lower bound results proving that

these algorithms are asymptotically optimal. Since no significant improvement is possible
on the original problems, it is then natural to consider their three-dimensional general-
izations, 3GSM and 3PSA. This is one of twelve research directions suggested by Knuth
in his treatise on the stable marriage problem [9 ].

In this paper, we show that both 3GSM and 3PSA are NP-complete. Hence, it is
unlikely that fast algorithms exist for these problems. The NP-completeness of 3GSM
has been independently established by Subramanian 5 ]. In we extend the approach
developed in this paper to the study of two problems dealing with the task of matching
married couples to jobs.

Received by the editors March 8, 1989; accepted for publication (in revised form) May 8, 1990.

f Department of Information and Computer Science, University of California-Irvine, Irvine, California
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Definitions. An instance of 3GSM involves three finite sets A, B, and D. These sets
have equal cardinality k, which is the size ofthe problem instance. A marriage in 3GSM
is a complete matching of the three sets, i.e., a subset ofA B D with cardinality k
such that each element ofA, B, and D appears exactly once.

For each element a of A, we define its preference, denoted by >=a, to be a linear
order on the elements of B D. The intuitive meaning of (/31, 61 a (/2, 62) is that a
prefers (/, 6 to (/32, 62) in a marriage. For b e B and d e D, there are also analogous
definitions >--b and >--d on the Cartesian products A D and A B, respectively. When
the subscript in the relation is evident from context, we omit it from the > notation.

A marriage is unstable if there exists a triple .4 B D such that is not in the
marriage and each component of prefers the pair that it is matched with in to the pair
that it is matched with in the actual marriage. A stable marriage is a marriage where no
such destabilizing triple can be found. Formally, a stable marriage is a marriage M, such
that, for all (a, b, d) M and for the triples (a,/31, 61 ), (O/2, b, 62) (a3, /3, d) M;
either (/3, 61) >= (b, d), (c2, 62) >=b (a, d), or (3,/33) >=d(a, b).

A 3PSA instance of size n involves a set S of cardinality n 3k, where k is an
integer. The preference of s e S, denoted >-s, is a linear order on the set of unordered
pairs { Sl, $2 }IS1 =1/= $2 and Sl, $2 S { S} }. A stable assignment M in 3PSA is a
partition ofS into k disjoint three-element subsets, such that, for all Sl, sz, s3 } Mand
for the subsets {Sl, all, ff12 }, {$2, O’21, 0"22 }, {$3, O"31, 0"32} e M; either
{ $2, $3 }, { 0"21, 0"22 s2 { S1, $3 } or { 031 032 } s3 { s1, $2 }.

When referring to preferences, we adopt the convention that items are listed in
decreasing order of favor. For example, the listing PlP:z"" P, where each p denotes a
pair, represents the preference Pl >= P2 >= >- P. We also use the simpler notation xyz
to denote the ordered triple (x, y, z) or unordered { x, y, z }. Similarly, xy denotes
(x, y) or {x, y}.

Although 3GSM is similar to its 2-gender counterpart in that an instance can have
more than one stable marriage, it differs from the 2-gender counterpart in that there
exist instances that have no stable marriage. Figure shows a 3GSM instance with A
{Cl, a2 }, B {C/l,/32 }, and D {61, 62 }. A complete list of all possible marriages,
each shown with a corresponding destabilizing triple, confirms that no stable marriage
exists for this instance of 3GSM.

NP-completeness of 3GSM. In the previous section, we noted that some instances
of3GSM do not have stable marriages. In this section, we will show that deciding whether
a given instance of 3GSM has a stable marriage is an NP-complete problem. This is
accomplished by giving a polynomial transformation from the three-dimensional match-
ing problem (or 3DM for short) to 3GSM. A proof that 3DM is NP-complete is first
given in Karp’s [8] landmark paper.

An instance of3DM involves three finite sets ofequal cardinality--which we denote
by A’, B’, and D’, relating them to A, B, and D of 3GSM. Given a set of triples T’

___
.4’ B’ D’, the 3DM problem is to decide if there exists an M’

___
T’ such that M’

is a complete matching, i.e., each element of.4’, B’, and D’ appears exactly once in M’.
Given a 3DM instance I’, we construct a corresponding 3GSM instance I. Although

our construction can be adapted to work for any 3DM instance in general, we assume,
in order to simplify the presentation, that no element of A’, B’, or D’ appears in more

In fact, the number of stable marriages in many instances is exponential in the instances’ size. Irving and
Leather 7 give a proof of this for the 2-gender case. Extending the proof to cover the 3-gender case is straight-
forward.
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Possible Marriage Destabilizing Triple

FIG. 1. An instance of3GSM that has no stable marriage

than three triples of T’. This assumption is made without loss of generality. In their
reference work on NP-completeness, Garey and Johnson [2, p. 221 mention that 3DM
remains NP-complete with this restriction.

We construct I by first building a "frame" consisting of the elements c1, a2 A,
/1, /2 B, and 151, 62 ( D. The preferences of these elements do not depend on the
structure of I’ and are displayed in Fig. 2. In Fig. 2 and subsequent figures, we are only
interested in the roles played by a few items in each preference list. Therefore, we use
the notation IIRem to denote any fixed but arbitrary permutation ofthe remaining items.

We will prove in Lemma 2 that the triples a1161 and O/2/262 must be included in
any stable marriage. Note that a1[3161 is the weakest link in such a marriage because it
represents the least preferred match for both/31 and 6. Consequently, if any element
a A is matched in marriage with a pair that it prefers less than/3161, then a16 becomes
a destabilizing triple.

The above observation gives us a strategy that uses the pair /16 as a "boundary"
in the preferences ofA’s remaining elements. A necessary condition for a stable marriage
in I is that all remaining elements ofA must match with pairs located left ofthe boundary,
i.e., >_-/3161. Using information from T’ to construct the set of items to be positioned left
of the boundary, we ensure that this condition for stable marriage can be met only if T’

1

1

FIG. 2. Preferences ofthe elements a, a2, [3, 2, 1, 2.
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contains a complete matching. The remaining difficulty is to ensure that matching all
elements ofA left of the boundary is sufficient to yield a stable marriage. Before giving
details of the construction that provides the solution, we first prove the lemmas that
establish the frame’s properties.

LEMMA 1. Ifa stable marriage M exists for I constructed by extending theframe
in Fig. 2, then Oi/2 m.

Proof. The proof is by contradiction. Suppose al/3261 e M. Since Ol/2tl M, 2’s
match cannot be a1/ or a2/32. From 62’s preference, al is the only pair >--2022"
Therefore, o2/2 _2 (2’s match in M. Moreover, 6 and 0/262 are the first preference
choices of O/2 and/32, respectively. Hence, O2fl22 is a destabilizing triple for M, a con-
tradiction, if]

LEMMA 2. Ifa stable marriage M exists for I constructed by extending theframe
in Fig. 2, then a61 M and O/2/2t2 M.

Proof. We first prove a/316 M. Suppose/3 is not matched with a161 in M, we
can then find a destabilizing triple for M. There are two cases.

Case 1. 31 is matched with al/2. O1/162 G M implies that o2/2t2, O1/161, and
c/326 M. By an argument similar to that of Lemma 1, o1/26 is a destabilizing triple.

Case 2. /31 is not matched with a62 nor c6. t/261 M by Lemma 1. Also,
a/316 M, which implies that O1/12 is a destabilizing triple in this case.

Hence, we conclude that al161 M, which implies that al/3162 M. It is now easy
to verify that if O/2/262 M, then it is a destabilizing triple. U]

If the sets of I’ (A’, B’, and D’) each has k elements, then the sets of I (A, B, and
D) each has 3k + 2 elements. The a’s, 3’s, or 6’s, which are in the frame, account for
two elements. The remaining 3k elements are defined as follows.

Suppose A’ { a,, a2, "-’, a }, B’ bl, b2, "", bk }, and D’ { d, d2, "", dk }.
According to an earlier assumption, each element aie A’ appears in no more than three
triples of T’. We clone three copies of ai and replace a; with the clones a[ 1], ai[ 2], and
a;[ 3] in A. These clones’ preferences are set up to make it possible for exactly one of
their matches in a stable marriage to correspond to a triple in T’.

To prevent the two remaining clones from interfering with the above setup, we add
elements w,, y to B and x, z to D. In a stable marriage, the pairs wXa, and y,z,
are required to match with two of ai’s clones, putting them out of action. We complete
the sets B and D by adding to them the elements ofB’ and D’, respectively. To summarize,
A { al, a2 ) (.J -JaieA’ ai[ 1], ai[2 ], ai[ 3 ), B B’ u { 3, 2 } (-J [JaieA’ { Wai, Ya, }, and

z ’u u {Xa,,Zo,).
Given that abj, dr,, aibj:dt:, and abj3d are the triples containing a; in T’, the pref-

erences in Fig. 3 accomplish the objectives outlined above. When there exist fewer than
three triples containing a;, we equate two or more of the j’s and l’s.

The following lemma establishes the roles of wai, x, y, and zi.
LEMMA 3. Ifa stable marriageM existsfor I constructed with thepreferences shown

in Fig. 3, then for every a A’, there exist jl j2 1, 2, 3 }, jl 4 j2 such that
(a) ai[jl WaiXai - M, and
(b) ai[jz]Ya, Za, M.
Proof. Consider the triple a;[ w,xa, which represents the third preference choice

of x, and the first preference choices of a;[ 1] and w,. It becomes a destabilizing triple
unless x is matched with one of its first three preference choices, proving part (a) of
the lemma.

Similarly, z must be matched with one ofits first three preference choices. Otherwise,
yaz forms a destabilizing triple with a;[ 1] or a[ 2 ], depending on which a clone is
matched in part (a). [21
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y,,Za bi d/ .86 Flae
yaz,, bid/ 111 "tiRe
y.,z., bidl: /1’1 ]"IRe

a,

a,[1] w., x,,,
a[2] w,, x,,,
a[3] w,,, x,,,

/,

w., a[1]x., a[2]x,,,
y,,, a[1]z.,, a[2]z,,,

bt

,,
x,,
Zat

d

a[3]x,, I[,
at[3]z,, I’[aem

]"[Rem

ai[3] w,, a[2] w,., a[1] w=,... FIRem
a[3ly,,, a[2lY,,, a[llY,,, ""FIae

tiRe

FIG. 3. Preferences in the 3GSM instance I. The column of#6’s represents the boundary. Preferences of
o’s, {3"s, and 6’s are those shown in Fig. 2.

We are now ready to prove the NP-completeness of 3GSM by showing that I has a
stable marriage if and only if T’ has a complete matching of I’.

THEOREM 1. If T’ contains a complete matching M’ ofthe 3DM instance I’, then
the constructed 3GSM instance I has a stable marriage M.

Proof. We show that it is possible to construct a stable marriage M. Begin by adding
a/3di and a2/262 tO M.

For each element ai A’, the only triples in T’ containing ai are aibd,, aibdt,
and abj3 dr3 using the notations found in Fig. 3. One of these triples is in M’.

ai[1]bd,, ai[2]WaXa, and ai[3]YaiZa if aib,d,M’;

Add toM ai[1]WaX,, a[2]bjd:, and a[3]YaZa, if abjdt6M’;

ai[1]WaiXa, ai[2]yaZa, and ai[3]b3dt ifaib3dt3M’.
Since M’ is a complete matching, the above construction guarantees that those

elements ofB and D that originate from B’ and D’ are used exactly once in M. It is easy
to verify that all other elements ofA, B, and D are also used exactly once. Hence, M is
a marriage.

To show thatMis stable, it is sufficient to show that no element ofA is a component
of a destabilizing triple, a and ce2 satisfy this condition immediately because they are
matched with their first preference choices.

Referring to Fig. 3, each of the remaining elements of A is matched with a pair
located to the left of the boundary. Hence, the only pairs that can form destabilizing
triples are WaXa and YaZa. However, wa s (ya’S) match is one of its first three preference
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choices. These three choices are in exact reverse order of Xai’S (Za,’S). This eliminates

Wai and Yai from participating in any destabilizing triple.
THEOREM 2. If the 3GSM instance I has a stable marriage, then T’ contains a

complete matching ofthe 3DM instance I’.
Proof. Suppose I has a stable marriage M. Lemma 2 requires M to include

and a2t3262. Lemma 3 requires that, for each ai E A’, two of the ai clones match with

WaiXai and YaiZai Let M’ represent the matching that results when M is restricted to the
remaining elements that are without predetermined matches.

For each a; E A’, only one ai clone remains to be matched in M’. Therefore, we will
drop the distinction between an ai clone and the a; it represents, without the risk of
introducing any ambiguity in M’. The elements that participate in M’ can then be char-
acterized as exactly those elements of A’, B’, and D’. Since M’ is a subset of a marriage,
it represents a complete matching.

Due to the absence ofdestabilizing triples, every ai in M’ must match with a preference
choice located to the left of the boundary. The construction of I, as illustrated in Fig. 3,
restricts this choice to the third item in the preference list since the first two items are
already matched. Moreover, the triple formed by ai and this item is contained in T’.
Hence, every triple in M’ is also a triple in T’, and M’ is the desired complete matching
contained in T’.

THEOREM 3. 3GSM is NP-complete.
Proof. It is easy to verify that the construction of I from I’ can be accomplished

within a polynomial time bound. Therefore, Theorems and 2 establish that 3GSM is
NP-hard. It is also possible to check the stability of a given marriage in polynomial time,
establishing 3GSM’s membership in NP.

NP-completeness of 3PSA. The NP-completeness of 3PSA follows from that of
3GSM because the former is a generalization of the latter. Given a 3GSM instance I
where A {al, a2, "", ak}, B { b, b2, "", bg}, and D { d, d, ..., dk}, we
can extend it into a 3PSA instance I by defining S A t.) B t.) D. Each element of S
retains its entire preference list from I as the first k2 preference items in f. We refer to
these k2 items as inherited items. All remaining items are inconsequential in f and are
arranged in fixed but arbitrary permutations following the inherited items. The result is
illustrated in Fig. 4.

THEOREM 4. 3PSA is NP- complete.
Proof. Any stable marriage M in I is an assignment in f. Any destabilizing triple

for M in f is simultaneously a destabilizing triple for M in I. Therefore, the stability of
M in I implies its stability in

We claim that any stable assignment 3 in af involves only inherited items and is
therefore a marriage in I. This is equivalent to claiming that Air is a complete matching
of A B D. Otherwise, there exist elements ai - A, b B, dt D not matched to
inherited items, which implies that aibdt is a destabilizing triple.

Since 3r involves only inherited items, any destabilizing triple for 2Q in I is simul-
taneously a destabilizing triple for AIr in f. Therefore, the stability of 2Q in [ implies its
stability in I.

Related results. In addition to the interest generated among computer scientists,
the stable marriage problem has also received substantial attention from game theorists.
It is used to model economic problems that require matching representatives from different
market forces, such as matching labor to thejob market. Since 1951, the National Resident
Matching Program (NRMP) has based its success on an algorithm that solves the stable
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FIG. 4. Preferences in the 3PSA instance [.

marriage problem 14 ]. The NRMP is the centralized national program in the United
States that matches medical school graduates to hospital resident positions.

In recent years, NRMP administrators have recognized that an increasing proportion
of medical school graduates comes from the set ofmarried couples who are both medical
students graduating in the same year. In 1983, NRMP instituted a "couples program"
that allows a participating couple to increase the probability of being matched with
two resident positions in close proximity. To participate in this special program, a couple
submits a combined preference list that ranks pairs of resident positions.

In 1984, Roth 14, p. 1008 discovered a dilemma with NRMP’s couples program.
He showed that there are instances where no stable matching can exist. Recently, Ronn
13 proved that the problem ofdeciding whether a stable matching exists in an instance
of the couples program is NP-complete.

As an extension of our work in this paper, we have obtained an alternate NP-
completeness proof for NRMP’s couples program 11 ]. We model the couples program
as a job matching problem for dual-career couples where only a single job market is
involved. Each couple has a preference list that ranks pairs ofavailable positions. However,
each employer ranks applicants individually without regard to marriage relations. A
matching is stable if no couple can find an alternate pair of employers such that all four
participants benefit from the new arrangement.

The NP-completeness proof for the problem in the above model is an adaptation
of those developed in this paper. We refer interested readers to [11] for further details.
In addition, we also examine the simpler problem that results when the employers are
partitioned into two disjoint job markets, one for the male and female participants,
respectively. We show that the problem remains NP-complete even with this simplifi-
cation.

Conclusions and open problems. We have shown that three-dimensional general-
izations of the stable marriage and stable roommate problems are NP-complete. Our
result also applies to the problem of finding stable job assignments for dual-career couples,
resulting in an alternate NP-completeness proof for NRMP’s couples program. It may
be interesting, as a topic for further research, to investigate the possibility of applying
our result to other matching problems and their variants.

The proofs in this paper exploit the ability to assign a somewhat "inconsistent"
preference list. For example, in Fig. 2, i52 does not rank consistently ahead of 2 but
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instead depends on with whom the/3’s are matched. In the example, al i al/2 but
a2f12 >=2 a2/31. An interesting question to consider is whether the matching problems
remain NP-complete if all preference lists must obey a "consistency property," namely,
xy >-a xz holds for either all x’s or no x.

There are other ways to generalize the stable marriage problem in three dimensions
besides those considered in this paper. One approach allows A to rank only elements of
B, B ranks only elements of D, and D ranks only elements of A. A triple abd M is
destabilizing ifab d, a2bd2, a3b3d-Mand b a b, d >=b d2, a >=a a3. One ofthe referees,
who called our attention to this problem, attributes its origin to Knuth and dubbed it
"circular" 3GSM. The complexity of this problem is currently an open problem.

Acknowledgments. We thank the referees for many helpful suggestions that have
improved the presentation of this paper and for pointing out the two open problems in
the previous section.
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SPECIAL RIM HOOK TABLOIDS AND SOME NEW
MULTIPLICITY-FREE S-SERIES*
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Abstract. This paper develops some general methods for expanding series of the form
Hi + k Ax/k)+l as a sum of Schur functions. That is, a combinatorial interpretation is given in terms of
special rim hook tabloids and the coefficientsJ, of the coefficients dx where

I l+klfkxki dxSx

and Sx denotes the Schur function associated with the partition ,. Such a series is called multiplicity free if dx
is 1, -1, or 0 for all ,. The general methods are then applied to giveexplicit algorithms to find the coefficients
cx where

-xr/-
+,

cxSx

In particular, it is shown that for all m, n > 0, cx is always 1, -1, or 0 and hence series of the form
1-I((1-x’fn)/1-x’])) +l are always multiplicity free. It is also shown that all series of the form
I-Ii(( x’f)/( x)) +/-l are also multiplicity free for all m.

Key words. Schur functions, multiplicity-free S-series, special rim hooks tabloids, hook Schur functions
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In some recent work, Yang and Wybourne [16], King, Yang, and Wybourne 8],
and Lascoux and Pragacz [9] have produced a number of new expansions of series in
terms of Schur functions that are called S-functions series. For example, there are 32
formal expressions

(0.1) I-[ (1 +xi) +--1H (1 +xixj) +-1

i_j

where the different symbols + or and < or =< can be freely chosen. Note that each of
the series of (0.1) is symmetric, i.e., invariant under permutations of the variables, and
hence has an expansion in the form

(0.2) ., d,S xi x2, "),

where Sx(Xl, X2, is the Schur function associated with the partition , and dx is some
coefficient. The problem then is to find the coefficients dx for any particular symmetric
series. We say that a series is multiplicity free if its expansion in the form of (0.2) has
the property that dx 0, l, -1 } for all . Littlewood [10] was the first to give the
S-series for many of the 32-series of the form (0.1). Littlewood’s work was expanded on
by Yang and Wybourne 16 ], who gave expressions for 30 of 32 series, and Lascoux and
Pragacz 9 solved the two cases left unsolved by Yang and Wybourne.
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In addition to the series of the form in (0.1), all three papers above also studied
series of the form

(0.3) H / axi + azx +... + a,x)+

pIt was known (see 3 ], 5 ], 15 ]) that series of the form Hi _+ xi and Hi +
x,P.)- are multiplicity free. Yang and Wybourne [14] gave explicit expressions for
the series

H(1 + xi +x)+ H (1- xi +x)+ H (1 +x+x +x/)+,andH (1 xi +x x +-

which shows that these S-series are also multiplicity free. In general, King, Yang, and
Wybourne [8] gave techniques to expand series of (0.3) in terms of nonstandard Schur
functions. Similarly, Lascoux and Pragacz [9 ], using techniques from the theory of
,-rings, were able to give a closed expression for the series

p--I(0.4) H( -"Xi
O<=r_p H

where the sum runs over all sequences in P of the form H (ho, hp_ ), where
N 0, 1, 2, } and ho, hp_ 0 mod p and hp_ hp_ mod p. Now
there are standard techniques for transforming a nonstandard Schur function into either
plus or minus a standard Schur function. The problem is that even when we have an
explicit formula like (0.4), it is difficult in general to be able to find the coefficients dx
that appear in the expansion of the series in terms of standard Schur functions as in

p-1(0.2).Indeeditisnotatallclearfrom(0.4)thattheseriesI]i(1 +xi+ + x )is
multiplicity free.

The main result of this paper is to show that for all integers n, p > 0, the S-series
for series of the form

(p- 1)n)_+l(0.5) H(1AvX-xnA A- X

are all multiplicity free. In fact, we show that there is a very simple algorithm to determine
the coefficients dx. We use two basic tools to derive our results. First, we use the generalized
Cauchy identity for the so-called hook Schur functions HSx(x, y) see 11 ], 12 ), which
up to sign factors are the functions Sx(X- Y) in X-ring notation. Second, we use a
combinatorial interpretation for the inverse ofthe Kostka matrix given by Egecioglu and
Remmel [6] in terms of special rim hook tabloids.

S-function series have many applications to problems in physics involving Lie groups.
Rowe, Wybourne, and Butler 14 and King and Wybourne 8 have shown how particular
infinite series of S-functions arise in the determination of branching rules from certain
noncompact Lie groups to compact Lie groups. Such branching rules are particularly
relevant for calculations of nuclear models that exploit various properties of the non-
compact sympletic groups Sp(2n, R), where the series

D H (1-xix)-i_j

and

M=H(-x,)-’

naturally occur. The construction of symmetrical wave functions necessitates the reso-
lution of the Schur function expansion of plethysms of the D-series and M-series. This
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leads naturally to the need to evaluate the Schur function expansion ofsome ofthe series
discussed in this paper.

The outline of this paper is as follows. In we establish our notation and state
the necessary definitions and results from other papers that we need in order to prove
our results. In 2, we outline a general method for expanding series of the form

(0.6) I-I + jxk

i k>l

for any formal power series / Yk_ ijxg. In 3, we then apply our general method to
derive the S-series for the series in (0.5), as well as the hook Schur function analogue of
these series.

1. Basic definitions and results. Let X (0 < 1 =< =< ,k) be a partition of n,
i.e., n Xl /k= )ki. Each one of the integers k is called a part of . We write n
to denote that k is a partition of n. An alternative notation for k is , ql 2q2... nqn,
where qi is the number of parts of size in k. The length of , l(k), is the number of
parts of k.

The Ferrers diagram of shape k, denoted by Fx, is the set of left justified rows of
squares or cells with )i cells in the th row from the top for 1, k. For example,
see Fig. 1.1. In this context, the pair (i, j) denotes the cell in the ith row andjth column
of Fx, where we label the rows from bottom to top and the columns from left to fight.
We let ’ denote the conjugate of k, i.e., Fx, is the Ferrers diagram that results from Fx
by transposing Fx about the 45 line { (i, i) li >-- 0 }.

Given two partitions (0 < ,l =< =< ) and (0 < u -< u2 -< =< Ul),
we write z =< k if l =< k and ul-i =< ,-i for 0, l- 1. The skew diagram Fx/, of
shape k/u will consist of the cells of Fx that remain after the cells of F, are removed.
For example, see Fig. 1.2. We note that it is possible for a given skew diagram to repre-
sent Fx/, for many , and ts. For example, the diagram pictured in Fig. 1.2 also equals
F(2,3,4,4)/(1,1,2,3 and F(1,2,3,3,3)/(1,2,3 ). We write c , if # -< , < k, and/l < . It is
then easy to see that a given skew diagram is of the form Fx/, with u for unique

u and .
A rim hook H ofa partition is a consecutive sequence of cells on its North-Eastern

rim such that any two adjacent cells of H share a common edge and the removal of H
from Fx leaves a Ferrers diagram corresponding to a partition. H is special rim hook

F {1,2,3,3} --
FIG. 1.1
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F (1,2,3,3)I(1,2) --
FIG. 1.2

(srh) if it starts in the cell (l(),), 1). H is a transposed special rim hook (t-srh) if it
ends in cell (1, Xx)). For example, Fig. 1.3 pictures all the special rim hooks of ),

(1, 2, 3, 3) and Fig. 1.4 pictures all the transposed special rim hooks of X. Given any
rim hook H of 2,, we let HI number of cells of H, r(H) number of rows of H,
and c(H) number of columns of H. It is easy to see by induction on HI that for
any rim hook H

HI + r(H) + c(H).

We say His a rim hook (srh, t-srh) of ,/# ifFx/ Fx./., where it* c X* and His a rim
hook (srh, t-srh) of X* all of whose cells lie in Fx/ Fx./.. For example, there are only
two special rim hooks of l, 2, 3, 3)/(2, 2); see Fig. 1.5.

A tabloid T of shape X/# is a filling of Fx/ with positive integers. T is of type p
q’... iq. if has frequency qi in T. To denotes the entry in the (i, j)th cell of T. A

tabloid T of shape /# is a column-strict tableau if the entries of T are weakly increasing
in each row from left to fight and strictly increasing in each column from bottom to top.

The Schur function Sx of shape X is defined by

(1.2) Sx(x)=E ]-I xr,
T (i,j)e Fx

where the summation is over all column-strict tableaux T ofshape ,. Similarly, the skew
Schur function Sx/,,(x) of shape ,/# is defined by

(1.3) Sx/.( x) Z I] xro,
T (i,j) FX/u

L_

FIG. 1.3
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L

FIG. 1.4

where the summation is over column-strict tableaux T of shape X/ whenever =< X.
The homogeneous symmetric function hx(x) corresponding to a partition X b n is
given by

k

(1.4) hx(x) 1-I hx,(x),
i=I

where

(1.5) hr(x) E XilXi2 Xir"
0 <= i2 "-- ir

The elementary symmetric function ex (x) corresponding to a partition X b n is given by
k

1.6 ex(x) 1-I ex,(x),
i=l

where

1.7 er(X) Xil Xi2"’" Xir.
O<il <i2< <ir

Next we give combinatorial interpretations due to Egecioglu and Remmel 6 for
the coefficients that arise in the expansion of a skew Schur function Sx/,,(x) in terms of
either the elementary or homogeneous symmetric functions. That is, we want combi-
natorial interpretation for H,,x/, and E,,x/,, where

(1.8) Sx/,( x) ., H.,x/,h.( x)
,,i-IX/ul

and

(1.9) Sxl,( X) E,.x/,e,(x).
.i-IX/ul

FIG. 1.5
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T

FG. 1.6

To this end, we need to define special rim hook tabloids SRHT and t-special rim hook
tabloids (t-SRHT). A special rim hook tabloid T of shape ) /u is constructed recursively
as follows. First, we pick a special rim hook H in Fx/, and remove the cells ofH to
produce a skew shape ) )/z). Then the process is repeated for Fx,/, i.e., we pick
a special rim hook H2 of Fx/,, remove the cells ofH to produce a skew diagram of
shape ) 2)/#2), etc. We continue this process until we produce a filling T of Fx/ with
rim hooks H, H2, "’", Hr such that each rim hook H; starts in the Western boundary
of Fx/,. The type of T is u if (IH I, Inrl) arranged in weakly increasing order
produces the partition u. A t-special rim hook tabloid Tofshape )/ and type u is defined
recursively in the same way except that at each stage the rim hook H; must be a t-special
rim hook. For example, there are two SRHTs of shape (2, 3, 4, 4, 5 )/( 1, 2) and type
(1, 4, 5, 5); see Fig. 1.6. The reader can check that there are no t-SRHTs of shape
(2, 3, 4, 4, 5)/( 1, 2) and type 1, 4, 5, 5). Figure 1.7 pictures the only t-SRHT of shape
(2, 3, 4, 4, 5 )/( 1, 2) and type 1, 2, 2, 5, 5). Note that transposing a special rim hook
tabloid T of shape /t and type u about the 45 line produces a t-special rim hook
tabloid T’ of shape k’/#’ and type u. We introduce two sign functions on rim hooks
H, namely,

r-sgn (H) )r(H)-

FG. 1.7
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and

(1.11) c-sgn (H) c(/) 1.

These two sign functions induce two sign functions on SRHTs or t-SRHTs T by

1.12 r-sgn (T) fi r-sgn (Hi)
i=1

and

r
1.13 c-sgn (T) 11 c-sgn (Hi).

i=1

For example, if T is the special rim hook tabloid of Fig. 1.6, then

r-sgn (T) (- )2-(-1 )1-(-1 )2-(-1 )2-= -1

and

c-sgn (T)=(-1)3-(-1)-(-1)4-(-1)4- 1.

We let SRHT (u, 2//) (toSRHT (u, /)) denote the set of all SRHTs (t-SRHTs) of
shape )/# and type u. This given, it is proved in [6] that our desired combinatorial
interpretation of H,,x/, and E,,x/, is given by

(1.14) H,x/ Z r-sgn (T)
T SRHT (v,A/t)

and

1.15 E,,x/, c-sgn T ).
T t-SRHT (v,),/u)

The hook Schur function HS,(x; y) is defined as follows:

(1.16) HS,(x;y) ,, S#(x)Sx,/,,(y).

We note that HSx(x; y) is clearly related to the function Sx(X- Y) in ,-ring notation.
That is, ifX x + xz + and Y= Yl + y2 + then

(1.17) Sx(X-Y) Su(X)(-1)lx’/"’lSx,/,,(Y).

We let HSx(0; y) and (HSx(x; 0)) denote the result of setting all the variables x(yi) to
be zero. Hook Schur functions have the following properties; see [1], [2], and [12]"

(1.18) HSx(x;O)= Sx(x),

(1.19) HSx(O;y) Sx,(y),

(1.20) HSx(x; y) HSx,(y;x),

(1.21) HSx(x;s)HSx(y;t)=I-I l_xiyjH l_sitjH(1 +xitj)H(1 +yisj).
i,j i,j i,j i,j

We note that 1.21 is a generalization of the two Cauchy identities:

(1.22) Z Sx(x)Sx(Y) I-[
-xiyji,j
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and

(1.23) Sx(x)Sx,(t) = 1-I (1 +xt).
3, i,j

That is, setting si = tj ? 0 for all i and. j in (1.21) y!elds (1.22) and setting Si = yj = 0 for
all i andj in ( 1.21 ) yl.elds (1.23). Gven an S-series, S = Z dxSx(x), we say the series

.HS = Z y) s the hook S.churfunction analogue of S. It is often the case that
if the S-series S has a nice generating function, then the hook Schur function analogue
also has nice generating function although there is no standard method to obtain such a
generating function for HS from a generating function for S; see [11] and [12] for ex-
amples.

Finally, we should point out that there is another equivalent definition ofthe Schur
function Sx(x). Namely, if X n and X = (0 =< kl -< k2 "’" =< kn), where we add a
sequence of zero parts at the start of the nonzero parts of to give us n-parts, then we
can express Sx(x) as the ratio of two n n determinants:

det x’J+J- 1

tj." 1(1 24) S3,(x1, ,x,,)
det[x

One advantage of (1.24) is that it makes sense for any se.q.uence X = ()tl, ’’’ , Xn! of
nonnegative integers. If X does not correspond to a partmon, then we say Sx(x) is a
nonstandard Schur function. By interchanging the columns of the determinant in the
numerator of (1.24), we can transform any nonstandard Schur function into a standard
Schur function up to a sign. In fact, analyzing the effect of column switches we are easily
led to the following relations:

(1.25) Sx(x) = 0 if ki 1 = ki + 1

and

(1.26) (X) S( x 1, , hi +1 + l,Xi l,Xi + 2,. ,Xn) (X)"

.2. Expansions of series of the form 1-[i (1 + Ek>l AXe) ---1o In this section we
outline some general methods for expanding series of tae form I-[i (1 + Ekl JkXtJ-".kx+l

and closely related series.
First, suppose that we start with two polynomials p(x) = 1 + plx + "" + p,,x

and q(x) = 1 + qlx + "" + qmxm. We can write

p(X)--(--1 )npn fi (Ui--X) and q(x)=(-1 )mqm
i=1 i=1

where { Ul, "’" ,Um} = R[p(x)] is the set of roots ofp(x) and { vl, "" , l)m} = R[q(x)]
is the set of roots of q(x). Note that

n m

(--’1)npn H Ui-- 1 =(-1 )mqm I-I
i=1 i=1

so that we can write

(2.1)
n

p(X)’- N (1--XSi)
i=1
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and

(2.2) q(x) E (1-xti)
i=1

where si / ui and b / vj for all and j. Thus { sl, Sn } IR[p(x) is the set of
inverses of the roots ofp(x) and { tl, tm} IR[q(x)] is the set of inverses of the
roots of q(x). Now, specializing variables in the generalized Cauchy identity (1.21),
we have

(2.3)

q(-xi)p(-yi)

i
E -Piiii E

XiSj
E

Yitj
I (1 -!- Xij)E (1 -t- YiSj)

i,j i,j i,j i,j

HSx(x;y)HSx(s, ,Sn;t, ,tm)

E HSx(x;y)HSx(IR[p(x)l;IR[q(x)]).

Given a S-series S Zx dxSx(x), the conjugate ofS, S’, is the series S’ Ex dxSx,(x)
and the hook Schur function analogue of S, HS, is given by HS Zx dxHSx(x; y). By
further specializing variables in (2.3), we get two basic S-series and their conjugates and
hook Schur function analogues.

PROPOSITION 2.1. Given p(x) and q(x) as in (2.1) and (2.2), we have

(2.4) (a) I/. q(-xi)=p(xi) Ex Sx(x)HSx(IR[p(x)];IR[q(x)]),

(2.5) (b) I/. p(-xi)=q(xi) ’x Sx,(x)HSx(IR[p(x)l;IR[q(x)]),

(2.6) (c)
q(--Xi)P(--Yi)
P(Xi)q(Yi)

., HSx(x;y)HSx(IR[p(x)l;IR[q(x)]).
Proof. The proof of (a) results from (2.3) by setting y; 0 for all i; (b) results from

(2.3) by setting x; 0 for all to obtain the series Hi P(--Yi)/q(Yi) and then replacing

Yi by Xi" and (c) is just (2.3).
PROPOSITION 2.2.

(2.7) (a)/ p(xi)
, Sx(x)Sx(IR[p(x)]),

(2.8) (b)I-Ip(-xi) ,Sx,(x)Sx(IR[p(x)]),
x

(2.9) (c) I/. P(--Yi)=P(Xi) Ex HSx(x;y)Sx(IR[p(x)]),

(2.10) (d)I p(-xi._.___)
P(Yi) - HSx,(x; y)Sx(IR[p(x)]).

Proof. Equations (2.7), (2.8), and (2.9) result from (2.4), (2.5), and (2.6),
respectively, by setting ti- 0 for all i, i.e., by setting q(x)= 1. Equation (2.10)
results from (2.9) by interchanging x’s and y’s and using the fact that HSx(x; y)
HSx,(y; x) []
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Thus the explicit computation of the series (2.4)-(2.10) reduces to the problem
ofcomputing HSx(IR[p(x) ]; IR[ q(x) or Sx(IR[p(x) ). To this end, let us first consider
the problem of computing Sx/,(IR[p(x) ). Now by 1.9

(2.11 Sx/.( IR[p(x)]) , E,x/.e(IR[p(x)]).

But then

(2.12)

Thus

(2.13)

Now recall by 1.15 ),

(2.14)

p(x) +Pl X-I- q- PnX fi six)
i=1

(--1)rxrer(Sl, ,Sn)
r=0

(-1)rxrer(IR[p(x)]).
r=0

er(IR[p(x) 1) )rpr r >= O.

E.,x/. c-sgn (T),
Te t-SRHT (X/u,u)

where c-sgn (T) ]-lh r c-sgn (h) and for any rim hook h, c-sgn (h) (- )c(h)- 1. It
follows from (2.13 and (2.14 that

(2.15) E,,x/,e,(IR[p(x)])=

where

, op( T),
T t-SRHT (u,X/)

(2.16) %(T)= I-I op(h)
hT

and for any rim hook h,

cop(h) (- )c(h)- 1(__ )[hi Plhl

(2.17)
(-1)c(h)-1(_ )r(h)+clhl- lplhl

=(--1)r(h)Plhl
-r-sgn (h)Plhl

Combining (2.12 )-(2.17 ), we have proved the following theorem.
THEOREM 2.3. Suppose p(x) + plx + + PnXn I-I-_l(1 xsi). Then

(2.18) Sx]t(S1, ,Sn)= &]t( IR[p(x)])= Z. IX/ul

where

(2.19) wp(E,,x/,) oop(T)
Te t-SRItT

and Op(T) is given by 2.16 and 2.17 ).
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Of course, the special case of Theorem 2.3 when # b gives Sx(IR[p(x)]). To
compute HSx/,(IR[p(x) ]; IR[ q(x) ), note that

(2.20)

HS/( IR[p(x)];IR[q(x)])

Z

Z

S/,(IR[p(x) Sx,/u,( IR[ q(x)

Z Z Z wp(T)wp(R).
<=<=xv lulal-vv IX/ul Tet-SRHT(,u/a)

R t-SRHT

If we consider the pairs of t-special rim hook tabloids that occur on the fight-hand side
of (2.20), we are naturally led to the concept of a bi-special rim hook tabloid of shape
X. That is, if we transpose R e t-SRHT (7, X’/tx’) about the 45 line, we get an element
R SRHT (7, X/u). The pair T, R t) then gives us a filling of Fx/. Thus we define a
bi-special rim hook tabloid (bi-SRHT) B of shape X/a and type (u, 7) to be a pair
T, S) where T is a t-special rim hook tabloid of shape #x/a, where a -< #x -_< X and S is

a special rim hook tabloid of shape X/#x. For example, B in Fig. 2.1 is a bi-SRHT of
shape (22, 4, 6 3) and type (( 32, 4), 1, 2, 3, 52) ), where for emphasis we have separated
the pair by a darkened line. We let B-SRHT ( u, 7), X/a denote the set of all bi-SRHTs
of shape X/a and type (u, 7). Also from (2.18), we see that we should define the wp,q
weight of B T, S) B-SRHT (( u, 7), ( ;h/a)) by
(2.21) p,q(B 1-I Op( H oq( h ),

teT heS

where

(2.22)

and

wp(t) =-r-sgn (t)Pit

(2.23) q(h) c-sgn (h)ql,i

I
FIG. 2.1
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Note that we need c-sgn (h) in (2.23) because when we transpose a t-special rim hook
h* of weight r-sgn (h*)qlh. we get a special rim hook h of weight c-sgn (h)qlh This
given, we then have the following result.

THEOREM 2.4. Let p(x) / px / -t- PnX I-[= xsi) and q(x)
+ qx + + qmX I-Iim= (1 xt), then

HSx/.( Sl Sn; tl tm) HSx/.( IR[p(x) IR[ q(x) ])

(2.24)

where

(2.25) Wp,q(B(,.y),X/,) Wp,q(B)
B B-SRHT (v,’v) ,3 a)

and Wp,u(B) is given by 2.21 ).
Note that when we plug in the expressions for Sx(IR[p(x) and HSx(IR[p(x) ];

IR[q(x)]) into the series (2.4)-(2.10), we see that the coefficients that arise in the
expansions of the series depend only on the coefficients of the polynomials p and q
and not on the roots ofp and q. Moreover, if IX[ k, then the coecients of Sx(x) or
HSx(x, y) in any of the series depends only on the coefficients p, p and q, ...,
q since any tim hook in t-SRHT or B-SRHT that contributes to the coefficient of
Sx(x) or HSx(x, y) can have length at most k. It thus follows that all our results apply
to infinite series p(x) + Z px and q(x) + Z qgx, as well as to polyno-
mials. That is, suppose p(x) and q(x) are infinite series as above and we let p,(x)
+ px + + px and q,(x) + qlx + + qnxn. Then it is easy to see that

the series

(2.26) q(-xi)p(_yi) q.(--xi)P.(--Yi)

P(i)-- Pn(Xi)qn(Yi)

has no terms of degree n. Hence if n then the coefficient of HSx(x, y) in

q(-xi)p(- yi)
and

qn(--Xi)Pn(--Yi)
P(Xi)q(Yi)

are the same.
Thus we can summarize our results in the following theorems.
THEOREM 2.5. Letp(x)= + px and q(x)= + qx. Then

p(x

q(xi) x ,
(2.29) (C) q(-xi)p(-yi)= HSx(x;y)( Wp,q(B(,),x)),P(Xi)q(Yi) x

where

Op,q(B(,,,.,,>,x Z 6Op,q(B
B B-SRHT (v,.y,,)



MULTIPLICITY-FREE S-SERIES 265

and ifB (T, S)6 B-SRHT ((, 3’), )= Zu_x t-SRHT (, #) SRHT (3’, X/#), then
6Op,q(B) Wp,q( T, S) HteT-r-sgn (t)Plt I-[heS-c-sgn (h)qlh

THEOREM 2.6. Let p(x) + Zk_ PkX. Then

(2.30) (a) Ii p(x;)
(2.31) (b) I-Ip(-xi)= Z Sx’(x)( wp(E,x)),,

P(Yi)
HSx’(x;y) wp(E,,x)

where

wp(E,,x) op(T)
Tt-SRHT (u,,)

and if T t-SRHT (u, h), then

OOp(T) I-I -r-sgn (h)Plhl
beT

Note that the coefficients ; (.,) O.p,q(B(.,),x) and . op(E.,x), which appear in Theo-
rems 2.6 and 2.7, were derived from our expansion of Sx/,, in terms of the elementary
symmetric functions given by (1.9). We could go through a similar analysis based on
the expansion of Sx/. in terms of the homogeneous symmetric functions given by 1.8 ).
We will indicate briefly what happens if we use (1.8) in our analysis. So let p(x)
+ Zk_l Pkxk and q(x) + Zk_l qkxk. Suppose X I- n, and let pn(x) + plx +
+ pnX" I-[’=l (1 xsi) and q.(x) + qlx + + qnX" I-[’=l (1 xti).

Then we have shown that

(2.34) Wp,q(B(,.),x) HSx(s, ,Sn’,t, ,tn).

Then by (1.9)

(2.35)

HSx(Sl,’",s.;tl,’" ,t.)= Z S.(Sl,"’,s.lSx,/.,(tl,’" ,t.)

Next observe that

(2.36)
Pn(X) XSi

+ , xmhm(Sl, ,Sn).
m_l

Thus for rn -< n

(2.37) hm( sl
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where

(2.38)
Pn(X)

-Jr- U Xk.
k_l

Moreover, it is easy to see that for k =< n

--Pc(2.39)
p,(x) xk p(x) xk

Thus if we set

(2.40) _1=1+ ZP,Xk,
p(x)

then for m =< n

(2.41)

By a similar argument, if we set

hm(S1, ,Sn) =P*m.

(2.42)
q(x)

+ , qx,
k_l

then for m -< n

(2.43) hm(tl, ,tn)=q*m.

Plugging (2.41) and (2.43) plus our interpretation of H,,x/ from (1.14) into (2.35), we
get for h - n

(2.44)

X Te SRHT (,) Se SRHT (,X’/’)

where for T SRHT (u, #),

(2.45) v( 7) 1-[ v(h)
hT

and for a special rim hook h e T

(2.46) vp(h) r-sgn (h)p ]hl.

Similarly for S SRHT (’r, X’/’),

(2.47) Vq( S) I-I Vq( h ),
heS

where for a special rim hook h e S

(2.48) l)q( h r-sgn (h)qhl.

Now if we consider pairs T, S) that occur on the fight-hand side of (2.44), we see that
if S denotes the transpose ofS about the 45 line, then the pair T, St) gives us a filling
of Fx. Thus we are led to the concept of a transposed bi-special rim hook tabloid B
of shape /a and type (u, ,) as consisting of a pair (T, R), where for some
a =< t =< h, T SRHT (u, #/a) and R t-SRHT (-, h / t). We let tB-SRHT (( u, "),
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denote the set of all transposed bi-special rim hook tabloids of shape k/a and type
3’). Then combining (2.34), (2.44), and Theorem 2.5, we have the following theorem.
THEOREM 2.7. Let

p(x) + , px,
k_ p(x)

+ pxk, q(x) -+- qkx
k

k>=l k_l

and

1-+- Z qxk.
q(x) >=

Then

(2.49)

(2.50)

(2.51)

where

(a) Ii
q(-xi)

P(Xi) xSx(x)( . Vp,q(t-B(,3"),x)),
,3")

(b) i P(-Xi) ( )qtxi E Sx,(x) E )p,q(t-B(.,3"),x)

(C) Ii
q(--xi)P(--Yi)
P(Xi)q(Yi)

HSx(x; y)( Z Vp,q( t-B(,,3"),x) )
Vp,q(l-B(,3"),x) Vp,q(B)

B tB-SRHT (u,3’) ,,)

and ifB U, V) e tB-SRHT ( u, 3’) X) E, __< x SRHT v, #) t-SRHT (3", X / #), then
Vp,q(B) Vp,q( U, V) I-Iteu r-sgn (t)p]tl I-Ih v c-sgn (h)q(hl.

A similar argument will also allow us to derive the following analogue of Theo-
rem 2.6.

THEOREM 2.8. Let p(x) + k_ PX and 1/p(x) k>= PXk. Then

( )

(2.54) (c)II/p--/) ,HSx(x;y) , vp(H3",x)

P(Yi) Z HSx,(x; y) ., vp(H3",x)

where

vp( H3",,) _, vp( T
T SRHT (3",.)

and if T SRHT (3", ,), then

vp( T)= 1-[ r-sgn (h)Phl
hT
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Finally, we should observe that we have left the series that appear in Theorems 2.5-
2.8 in a form that derives directly from the generalized Cauchy identity 1.21 ). However,
by replacing X by -xi or p(x) by / r(x), we can get series of other forms. For example,
replacing xi by -xi in (2.31 ), we get

(2.56)

or by replacing p(-x) by 1/r(x) in (2.27) or (2.28) we get expansions of series of
the form

-Ii r(--xi)q(--Xi) or . r(xi)q(xi)"

3. New multiplicity-free S-series. In this section, we use the results of 2 to derive
a number of new multiplicity-free S-series. We start by considering the series

pn
P 2p _]._ +_ p(n- 1) 1--XiH(1 +X +X )i )--H

l__xi
(3.1)

Let w be a primitive npth root of unity so that (2" is a primitive pth root of unity. Then

p(x) +xP+x2P+ +XP(n-1)) Xpn

Xp

(3.2) I-I (1 -wix) (1 --wknx)
i--0

np- p

]"[ (1--SiX),
i=1

where { sl, Snp-p } { (2
j O <= j <-- np and j :/: 0 mod n }.

First we apply Proposition 2.2 (b) with -xi replacing xi and we get

]-[P(Xi) Z (--1)lx’l Sx,(x)Sx(s1, ,Snp_p)

(3.3)
X

(-1 )l#lSt(x)S#,(s1, ,Snp_p).

Note that S,,(s1, Snp-p) 0 if ’ has more than np- p rows so that from (3.3) it
follows that

(3.4) d, 0 unless F, has np-p or fewer columns.

Next let q(x) (-x)pn and r(x) xp. Then if we apply Theorem 2.5(a)
to q(x) and r(x), we get

H P(Xi) Yi
q(--Xi)

r(xi)
(3.5)

xSx(x)( (2r,q(B(,.,x)),
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where

(3.6) O3r,q(n(u,r),x)

_
6Or,q(B)

B B-SRHT (( v,’y, ),X)

and if B T, S) e B-SRHT ((, 7), X), then

(3.7)

(.Or,q(B) OOr,q( T, S)

I-I -r-sgn (t)rlt I-[ -c-sgn (h)qlh
teT heS

II (-1)r(t)(-1)(ltl -p) 1-I (--1)c(h)(--1)Pn+ lx(lh =pn),
tT hS

where for any statement A, we set X(A) ifA is true and X(A) 0 ifA is false. We
can see from (3.6) and (3.7) that Or,q(B(,,.r),x 0 unless is of the form (pk) and
3’ is of the form (pnl). We claim that if X is a shape with at most np p columns,
i.e., if l(X’) -< np p, then there is at most one pair (k, l) for which there exists
B B-SRHT (((pk), (pnt)), ) and if there is such a (k, l), then there is at most
one such B. That is, suppose B (T, S) is a bi-special rim hook tabloid of shape
X and type ((pk), (pnl)). Thus for some / _-< X, T6T-SRHT ((p), #) and $6

SRHT ((phi), /). First, note that since each t-special rim hook of T is of size p and
must contain at least one cell in the first row of T, is a shape with at most p rows.
Thus all cells in Fx in a row higher than p must be covered by rim hooks from S.
Moreover, we claim no rim hook from S can start in a row =< p. For suppose h is a rim
hook of size np that starts in cell (i, 1) where -< p, then c(h) hl / r(h)
np + r(h) >= np + >- np p + 1. That is, h covers at least np p + columns
and hence cannot be contained in Fx that has at most np p columns by assumption.
But this means S is uniquely determined by X since we must start in the top North-West
square of Fx and successively begin to fill Fx with special rim hooks of size np until we
reach a point where the next rim hook is to start in a row where =< p. The remaining
cells that are not covered by the rim hooks of size np must be of shape #. Then we start
to fill F with t-special rim hooks of size p starting in the South-East corner of F,. Since
all t-special rim hooks of T are of the same size, we never have any choice in this filling
so that Tis uniquely determined by X as well. Let us say that X is (np, p)-viable if there
is a bi-special rim hook tabloid ofshape X and type ((p), (np)l). Note that the following
is an algorithm to determine if X is (np, p)-viable if I(X’) <= np p.

Algorithm to determine if X is (np,p)-viable for l(X’) <= np p
Step 1. Set # X.
Step 2. If l(t) > p, go to Step 3, otherwise go to Step 4.
Step 3. If/ has a special rim hook h of size np, let z* F, h denote the shape

that results by removing the cells of h from F,. Then set # * and go to
Step 2. If # has no such special rim hook h, stop; X is not (np,p)-viable.

Step 4. If # has a t-special rim hook of size p, then set t F and go to Step
4. If # has no such special rim hook, stop; X is (np,p)-viable if and only if
=b.

As an example ofthe algorithm, suppose n 4 and p 3. Figure 3.1 (a) shows that
X (2, 52, 62, 7, 8, 9) is not 12, 3)-viable because we get stopped at the second round
of Step 3. Figure 3.1 (b) shows X 5, 7, 95) is not 12, 3 )-viable because we get stopped
the first time we reach stage 4. Figure 3.1 (c) shows 12, 3, 6, 82, 93) is 12, 3 )-viable.
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(a) not (12.3)-viable

(b) _--’-------] not (12.3)-viable

(c) III not (12.3)-viable

L_

FIG. 3.1

Now if , is np,p)-viable and B T, S) is the bi-special rim hook tabloid of shape
and type ((pk), (np)t), then by (3.7) and the fact that Ihl + r(h) + c(h),

(3.8) Wp,q(B) U r-sgn (t) I-I -r-sgn (h).
teT heS

Thus we have proved the following theorem.
THEOREM 3.1. Suppose

(3.9) H + x’ (n- l)p
-[- X p-iF’" -[- X )-- Z d),S, x

Then
(a) dx 0 if ll o mod p or l(,’) > np p;
(b) if ll 0 mod p and l(’) < np p, then dx 0 if) is not (np,p)-viable and

if is (np,p)-viable, dx 1-It T r-sgn (t) 1-Ibis-r-sgn (h) where B (T, S) is
the unique bi-special rim hook tabloid ofshape , and type ( (pk), npt) ).

Note that we can now use Theorem 2.6 to derive the following series from Theo-
rem 3.1.

COROLLARY 3.2. Let dx be defined as in Theorem 3.1. Then

(3.10) (a)i-i +xp _p(,-) -1 Ixli"[-’’’-Jf-.Xi -Z(-1) dx,Sx,,

(3.11) (b)l-I

(3.12)

-}-(--yi)P-k-(--yi)2P-} q-(--yi) (n-1)p

(1 +xp P("-)-Jr- -Jr- X
, (- )lxl dx,HSx(x, y),

p p(n- 1)
+xi ff- +Xi(c) lI q-(--yi)Pq-(--yi)2Pq -]-(--yi) ("-I)p-

Z(--1 )lXldxHSx(x’Y)"
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2Next we consider series of the form Ui xT)/( x ). First, if n 0, it is
known that the series l-I; 1/( x) is multiplicity free. Actually, for any p > 0, the
series I-I; 1/( x) is multiplicity free, see [3]-[5] and [15]. In fact, it is easy to see
directly from Theorem 2.6 (a) that

(3.13) 1/( -x,P.) c,S(x),
x

where cx I-l v r-sgn (h) if there is a t-special rim hook tabloid T oftype (p) for some
k and cx 0 if there is no such T. Here we use the fact that if ] 4:0 mod p, then there
is no t-SRHT T of shape and type (p) and if ]] kp, then there can be at most
one t-SRHT T of shape X and type (p). Thus c { 0, + } for all and the series

pl-I; 1/( x is multiplicity free in general. We note that our evaluation of cx in
(3.13) is precisely the one given in [3].

Now if n 2k, then the series I-I; x2i)/( x2) is a special case of the series
in Theorem 3.1 and hence is multiplicity free. Thus we need only consider series of
the form

2 2k1-xk + "qt- x "+" X .qt_ "]- X
(3.14) I-I -x2 1-I +xi -’ bxSx(x).,
First we apply Proposition 2.1 (a) with p(x) + x and q(x) U 2k + cix), where
a is a primitive (2k + )st root of unity to conclude that

i
q(-xi) ]-I + xi + xZi +’" + xZi

(3.15)
p(xi) +xi

Sx(x)HSx(-1;-o,-o2 o/2k)

Now any hook Schur function HSx(x; y, Y2) 0 if Fx contains any cells in a
row >_- 2 that lie in a columnj > 2k. That is, HS,(x; y, Y2) 4:0 implies Fx must
lie within the (1, 2k)-hook pictured in Fig. 3.2. Thus it follows immediately from
(3.15 that

(3.16) bx 0 if Fx does not lie in the 1,2k)-hook.

Next we apply Theorem 2.5(a) with q(x)= + X2k+l and p(x)= 1--X2 to
conclude that

2k+

P(Xi) 1--X
(3.17)

2k

FIG. 3.2
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where

(3.18) 0p,q(B(,,),x)
B B-SRHT ((’,3") ,,)

and if B T, S) B-SRHT ({ , y}, X), then

(.Op,q(n (.Op,q( T, S)

I-I -r-sgn (t)plt 1--[ -c-sgn (h)qlh
(3.19) teT heS

p,q(B)

H (--1)r(t)(--1 )x(Itl 2) I-[ (-1)(h)x(I h 2k+ ).
tT hS

We can see from (3.18) and (3.19) that Op,q(B((,.r)x))= 0 unless u is of the form
(2 a) and -), is of the form ((2k + )b). We claim that if is a shape that fits inside
the (1, 2k)-hook, then there is at most one pair (a, b) for which there exist B e
B-SRHT (((2a), ((2k + 1) b)), X) and if there is such a pair (a, b), then there is at
most one such B. That is, suppose B T, S) is a bi-special rim hook tabloid of shape
and type ((2a), ((2k + )b)>. Thus for some t =< ,, T e t-SRHT ((2a), #) and S e

SRHT (2k + )a, ),/t). Since each t-special rim hook of T is of size 2, it follows that
/z is a shape with at most two rows and [t[ 2a. Thus all cells in Fx in a row higher
than 2 must be covered by rim hooks from S. Thus if l() > 2, then we must start to
fill Fx, starting in the top North-West corner, with special rim hooks of size 2k + until
we reach a point where the next rim hook we place would start in a row where =< 2.
Let u -< ) be the shape of the cells that are not covered by rim hooks at this point. We
know that u =< u. Note also that because h is contained in the 1, 2k)-hook, it follows
that any special rim hook of size 2k + that starts in a row =< 2 must reach row 1. This
means that we can place at most one special rim hook h of size 2k + in F, and h must
end at the end of row of F,. Thus there is at most one way in which we can place a
special rim hook h of size 2k + in F,. Now if I1 is even, then it must be that S does
not intersect because otherwise u is the shape that results from by removing a rim
hook of size 2k + starting at the end of row 1. But then I,1 !1 (2k + is odd,
contradicting our choice of I1 2a. Thus if I1 is even, t u. If I1 is odd, then we
cannot have t u so that S must contain the special rim hook of size 2k + that ends
at the end of row 1. In either case, we see that S is completely determined by ,. Once S
has been determined, we see that T is completely determined as well because all special
rim hooks of T are of the same length. Let us say that , is (2k + 1, 2)-viable if there is
a bi-special rim hook tabloid of shape and type ((2a), ((2k + )b)>. The following
algorithm determines if is (2k + 1, 2)-viable is is contained in the 1, 2k)-hook.

Algorithm to determine if , is (2k + 1,2)-viable for contained in a 1,2k)-hook
Step 1. Set # .
Step 2. If l(t) > 2, go to Step 3, otherwise go to Step 4.
Step 3. If t has a special rim hook h of size 2k + 1, let u* F, h denote the

shape that results by removing the cells of h from F. Set t t* and go to
Step 2. If # has no such special rim hook h, stop; , is not (2k + 1,2)-viable.

Step 4. If I1 is odd, go to Step 5; if I1 is even, go to Step 6.
Step 5. If t has a rim hook h of size 2k + that ends in the first row of u, then set

t F, h and go to Step 6. If u has no such special rim hook h, stop; X
is not (2k + 1,2)-viable.

Step 6. If t has a t-special rim hook of size 2, then set u F, t and go to Step
6. If # has no such special rim hook, stop; , is (2k + 1,2)-viable ifand only
if u= q.
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Note that the algorithm simply tells us to fill in Fx with special rim hooks of size
2k + until our next rim hook is to start in a row =< 2. At that point, we have a decision
based on whether we have an odd number or even number ofsquares to fill. This situation
is pictured in Fig. 3.3 for the case of k 2. In both Figs. 3.3 (a) and 3.3 (b), on the left
we have reached the point where the next special rim hook of size 5 should start in row
2. In Fig. 3.3(a), we have eight cells remaining so we must now start to fill in with
t-special rim hooks of size 2. In Fig. 3.3 (b), we have seven cells left, so we must add one
more rim hook of size 5 ending at the end of row and then fill in the rest of the cells
with t-special rim hooks of size 5.

Now if 3‘ is (2k + 1, 2)-viable and B (T, S) is a bi-special rim hook tabloid of
shape k and type ((2a), ((2k + )b), then by (3.19), we have

3.20 Wp,q(B) 1-’[ r-sgn (t) I-[ -c-sgn h ).
teT heS

Thus we have proved the following theorem.
THEOREM 3.3. Suppose

nx2ik+
(3.21) I-I l-x,2. Z bxSx(x).

Then
(a) bx 0 if3‘ is not contained in the 1, 2k)-hook;
(b) otherwise bx 0 if 3‘ is not 2k + 1, 2)-viable and if3‘ is 2k + 1, 2)-viable,

then bx I-[tT r-sgn (t) I-Ibis -c-sgn (h), where B T, S) is the unique bi-
special rim hook tabloid ofshape 3, and type ((2a), ((2k + )b)).

Note that we can now apply Theorem 2.5 to derive the following series from Theo-
rem 3.3.

COROLLARY 3.4.

-X(3.22) (a)I-I +x/2k+1= Sx(x)bx,,,

(3.23)
(-x:’+ )( -y)

(b) x/)(i.+y/7 zj 2H&(x;y)b.x

{a)

L__

{b}

FIG. 3.3
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We note that we can apply the same type of argument used to prove Theorem 3.3
z, a,S,(x) We canto try to evaluate any series of the form i x)/( x Yx

show that ax 0 unless , is contained in the (p 1, rn )-hook. Also, ax 0 unless
there are bi-special rim hook tabloids B of shape and type ((pa), (mb)) for some
a and b. However, for p >= 3, it is no longer the case that if , is contained in the
(p 1, rn )-hook, then

[..J B-SRHT (((pa),(mb)),)t)[ <= 1.
a,b

Thus we cannot immediately conclude that all such series are multiplicity free. We
can, however, get a bound on ax for such series and in a number of special cases prove
that the series is multiplicity free. For example, all series of the form ]’-Ii (1 x’)/

xi3) are multiplicity free. Such results will appear in [13].

Note added in lroof. The authors can now show that all S-series of the form
1-[; (1 xim)/(1 -x’) are multiplicity free. These results will appear in [13].
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BOOTSTRAP PERCOLATION, THE SCHRODER NUMBERS,
AND THE N-KINGS PROBLEM*

LOUIS SHAPIRO" AND A. B. STEPHENS

Abstract. A percolation process on n n 0-1 matrices is defined. This process is defined so that a zero
entry becomes one if two or more of its neighbors have the value one. Entries that have the value one never
change. The process halts when no more entries can change. The initial matrices are taken to be all the n n
permutation matrices.

It is shown that the number of matrices that eventually become all ones is given by the Schrfder numbers.
Asymptotically, the proportion of such matrices approaches zero. Next, matrices that exhibit no growth at all
are considered. The number of such matrices is given in terms of a generating function, and the proportion of
such matrices approaches e-2 as r/goes to infinity. The methods used involve bracketing, trees, and generating
functions.

Key words, bootstrap percolation, Schrfder numbers, trees, generating function, permutation matrix
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In this paper we consider some combinatorial problems dealing with bootstrap per-
colation. In this percolation process we start with an n n matrix where each entry is 0
or 1. The entries of this matrix change by iteration according to a certain rule. According
to the rule, at each iteration we look for any 0 entry that has two or more of its nearest
neighbors (above, below, fight, left) equal to 1, and change all such zeros to ones. We
repeat this process until no more changes are possible.

Following are some examples:

(A) 0 -- --0

(B) 0 --0

--
(c)

0 0 0
0 0
0 0 0
0 0

We would say in example A that the matrix fills up. In example B, a 2 2 submatrix
fills up, while in C there is no growth.

The process described above is an example ofbootstrap percolation. Many variations
are possible by changing the rule. For example, "two or more" could change, the matrix
could be rectangular, cylindrical, or infinite, and so forth. The topics ofpercolation and,
more generally, cellular automata have been very actively researched in recent years and
the books of Grimett [9], Kesten [12], and Durrett [5] provide a good introduction, as
does the survey article of Durrett [4]. See also [2] and [8 ].
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This article, however, is essentially self-contained. We want to consider bootstrap
percolation as discussed above in the special case where the initial matrix has exactly
one in each row and column; i.e., the matrix is a permutation matrix. For the n n
case there will be n! initial matrices. Note that both examples A and C start with per-
mutation matrices. Ifthe matrix is considered to be a chessboard and a becomes a rook
then these permutation matrices become configurations of n nontaking rooks.

We will answer the following questions:
How many of the n! initial configurations will fill up?

(2) For large n what proportion fill up?
(3) How many initial configurations allow for no growth?
(4) For large n what proportion allow no growth?
The answers to (2) and (4) are 0 and e-2 while the answer to is the sequence

of Schrrder numbers. A computer was used to find the first few terms: 1, 2, 6, 22, 90,
394, of ), which suggested the (n )st Schrrder number (a surprise to us). The
answer to (3) involves a simple generating function that has radius of convergence equal
to 0,

1. Preliminaries. Since the Schr6der numbers are central to this paper but not
widely known, we give a briefdiscussion and some references. They are defined as follows.
The Schr6der numbers have as their generating function

R(x)= rnX", where R(x)= +x(R(x)+(R(x))2)
n=0

or more briefly R + x(R + R2). Thus

R(x) -x- /1 -6x+xZ)/2x.
Another equivalent formulation is the recurrence

(n+ 1)r, 3(2n 1)r,_-(n-2)r,_2, n>=2

with r0 1, r 2.
The first few Schrrder numbers are { r, } =0 1, 2, 6, 22, 90, 394, 1806, }.
Two places where the Schrrder numbers appear are the following:
(A) Count the number of random walks from (0, 0) to (N, N) that stay below the

line y x + 1, where the set of possible steps is (0, ), 1, 0) and 1, ).
(B) Count the permutations possible using a double-ended input-restricted queue

i.e., deque). See Knuth 13 for an excellent exposition complete with railroad
tracks.

The Schrrder numbers are closely related to the Catalan numbers [3 ], [7 ], [14 ],
one connection being the equation

r"=
o=

C._,

where Cm /(m + ))(2mm is the mth Catalan number. In addition to the reference
to Knuth, the Schrrder numbers appear in [3 ], [15 ], and [16 while the original ap-
pearance 17 dates back to 1870. See also 6 ].

2. Matrices that fill up. We are now ready to prove our main result.
THEOREM 1. The number of n n permutation matrices that fill up is rn-l, the

(n )st SchrOder number.
Proof. Let r ala.., a, be an arbitrary permutation of { 1, 2, n }. We first

define inductively what we mean by a block.
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(i) Each ai is a block.
(ii) If two adjacent blocks B and B* contain elements a and a*, respectively, that

are a consecutive increasing or decreasing pair, then form a new block (BB*) or [BB*]
using for the increasing case and for the decreasing case.

Note that blocks are disjoint and each block of cardinality rn contains the integers
(i,i+ 1,...,i+m)forsomei, 1-<i-<n.

We repeat the following process until no new blocks can be formed.
The permutation - can be considered as a sequence of blocks. We read r left to

fight and use (ii) to form new blocks whenever possible.
This process is illustrated in the following example:
If r 9 8 3 4 5 2 7 6 the first pass evolves as

1-- 11981-- 11981 (34)--- 1198] ((34)5)-- 11981 [((34)5)21-- 11981[((34)5)2][76]

as we read from the left to fight.

pass 1:

pass 2:

pass 3:

pass 4:

1198][((34)5)2][76]

1198]([((34)5)2][76])

1[[98]([((34)5)2][76])]

(1 [[98]([((34)5)2][76])])

Those permutations ending up in a single block are in a direct correspondence to
the permutation matrices that fill up.

To see this, let Pbe a permutation matrix with corresponding permutation r. Blocks
in r correspond to subsquares ofP, which have already filled out. The case oftwo blocks
being merged by rule (ii) corresponds to two subsquares of l’s within P, which meet at
a corner and percolate to form a larger subsquare just large enough to contain both
subsquares.

For such permutations we now form a binary tree as follows:

which we redraw as follows:

( )
/ \

/ \
(

/ \ /
9 [

/ \

/ \

/ \
3 4

)
\

/\
7 6

/

)
\

/ \
(
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Note that we do not need the labels for the leaves since starting at the top we must have
} to the left and 2, 3, 9 } to the fight and so on.
Examining the structure of this tree in more detail, we note that the type, or

], of any node must differ from the type of its fight child. To see this, note that if a
node and its fight child are both of type then this must result from two consecutive
increases. But a string j, j + 1, j + 2 becomes ((j, j + )j + 2) which gives a left child,
not a fight child. Similarly, let Bj, Bj / , B/ 2 be blocks where the elements ofB are less
than those of B+I, which in turn are less than those of B.+ 2 and where consecutive
blocks do contain consecutive elements. These blocks become ((Bj., Bj / Bj. / 2) which
also gives a left child, not a fight one. The reasoning for [[ ]] is similar.

In the example above, the subsequence 3, 4, 5 is illustrative. If a node in the tree is
a block consisting of more than one ai then it must be of the form (BB*) or BB * ]. We
say that B is its left child and B* is its fight child. A block consisting of a simple element
is a leaf of the tree. If we now go over to generating functions, we obtain the equation

R(x) + 2xR(x) + 2x2R2(x) + 2x3R3(x) -Jr-

where counts the empty set, 2xR represents

/( )
/ or

R(x) R(x)

while 2x2R2(x) represents

and so forth. Thus

and

[] ()
/ \ or / \
(x) ) (x)

/ /
R(x) R(x)

R(x) + 2xR(x)
-xR(x)

R(x)= +x(R(x)+(R(x))2).
This completes the proof.

Note that the generating function for { rn- n% is

xR(x) rox + rx + rzX h- ....
Having established that we have the Schr6der numbers we can use the results of

Knuth 13 ]. We obtain via the quadratic formula, partial fractions, and Stirling’s for-
mula that

C(3+f) withc=l .3V_-4r 3/2 0.139,
n

which in turn answers question (2) as follows.
COROLLARY. lim,_ (r,_ 1/n!) 0.

3. No growth configurations. We now turn to the question of counting matri-
ces where no growth occurs. The first two interesting cases occur when n 4, which
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yields the permutations 3 2 4 and 2 4 3. Here is a brief table for the first few no
growth numbers.

1 2 3 4 5

Let A(x) Z=0 anXn. It then follows that

A(xR(x)) , n!x"= e(x),
n_O

e(x) being defined by the last equality. (Intuitively, we let each of n! initial configurations
fill out as far as possible. We end up with one, four, or more subsquares arranged in a
no growth configuration. The growth in each subsquare is counted by the generating
function xR(x). For instance, if we were to end up with six subsquares the relevant
generating function would be a6(xR(x))6. Summing yields the last result.) The
e(x) function goes back to Euler and is highly nonconvergent but. not completely unman-
ageable. Since the functional inverse of xR(x) is x(( x)/( + x)) we have A(x)
e(x(( x)/( + x)), which, at least in some sense, answers (3).

The no growth numbers (caffeine numbers?) actually go back to a problem in re-
creational mathematics: in how many ways can n kings be placed in an n n board, one
king on each row and column, so that no two kings can take each other? A result of
Kaplansky 10], [11 says the following: Let P(n, r) be the probability that on an n
n board there are r pairs of kings that can take each other. Then as n gets large the
P(n, r), 0 _-< r =< n approach a Poisson distribution with X 2. In particular,
P(n, O) (a,,/n!) -- e-z, thus answering (4) while A(x) e(x( x)/( + x)) is the
answer to (3) in terms ofa generating function. The coefficient of wkx in the expansion
ofA(wxR(x)) provides the number of n n initial configurations that fill out to form
k subsquares.

Further information on the n-kings problem is given in ], while 18] is an invaluable
reference for integer sequences.
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DISJOINT COVERS IN REPLICATED HETEROGENEOUS ARRAYS*

P. K. MCKINLEY’, N. HASAN, R. LIBESKIND-HADAS’, AND C. L. LIU"

Abstract. Reconfigurable chips are fabricated with redundant elements that can be used to replace the
faulty elements. The fault cover problem consists of finding an assignment of redundant elements to the faulty
elements such that all of the faults are repaired. In reconfigurable chips that consist of arrays of elements,
redundant elements are configured as spare rows and spare columns.

This paper considers the problem in which a chip contains several replicates of a heterogeneous array, one
or more sets of spare rows, and one or more sets of spare columns. Each set of spare rows is identical to the set
of rows in the array, and each set of spare columns is identical to the set of columns in the array. Specifically,
an ith spare row can only be used to replace an ith row ofan array, and similarly with spare columns. Repairing
the chip reduces to finding a cover for the faults in each of the arrays. These covers must be disjoint; that is, a
particular spare row or spare column can be used in the cover of at most one array. Results are presented for
three fault cover problems that arise under these conditions.

Key words, reconfigurable chips, fault covers

AMS(MOS) subject classification. 94C15

1. Introduction. As chip density increases, the likelihood of fabrication defects on
chips also increases. Maintaining an acceptable yield in chip production requires the
capability to repair defective chips. To this end, reconfigurable chips are fabricated with
redundant elements that can be used to replace faulty elements. Thefault cover problem
consists of finding an assignment of redundant elements to the faulty elements such that
all of the faulty elements are replaced.

For reconfigurable chips that consist of arrays of elements, redundant elements are
configured as spare rows and spare columns 15 ]. Examples ofsuch reconfigurable arrays
include not only arrays of memory elements [19], but also arrays of processors [1 1],
14 ]. A line refers to a row or column of an array. In a reconfigurable array, each spare

line can be activated by programming selection circuitry after fabrication to effectively
replace lines containing faulty elements. The fault cover problem seeks an assignment
of the spare lines to the array such that all of the faulty elements are repaired. The set of
replaced lines is referred to as a cover.

In the model studied previously 8 ], 12 ], a row that contains faulty elements can
be replaced by any spare row, and a column that contains faulty elements can be replaced
by any spare column. An example of this model is shown in Fig. l, in which ’s indicate
faulty elements. Assigning spare rows to rows and 4 and spare columns to columns 2
and 6, marked with arrows, represents one possible repair solution for this array. The
fault cover problem for this type of reconfigurable array is NP-complete [12]. Several
algorithms, including exhaustive approaches and heuristics, have been developed for this
problem [3], [4], [7], [12], [18], [19].

The situation in which a particular row (column) can be replaced only by a member
of a proper subset of the spare rows (columns) arises when the elements in the array are
not all identical. For example, consider the array shown in Fig. 2, which contains four

Received by the editors January 16, 1990; accepted for publication (in revised form) May 8, 1990. This
research was supported in part by National Science Foundation grant MIP 87-03273.

]" Department ofComputer Science, University of Illinois, 1304 West Springfield Avenue, Urbana, Illinois
61801.

Current address, Department of Computer Science, Michigan State University, East Lansing, Michigan
48824.

Current address, IBM Corporation, Post Office Box 950, Poughkeepsie, New York 12602.

281



282 P. K. MCKINLEY, N. HASAN, R. LIBESKIND-HADAS, AND C. L. LIU

0

> 1

2

3

> 4

5

6

7

0 1 2 3 4 5 6 7 0 1

I o X
o i

o X

X

X o

o o o

Array

o

Spare
columns

o

Spare rows

FIG. I. Reconfigurable 8 8 array with two spare rows and two spare columns.

types of elements. In the configuration shown, the array comprises two types of rows
and four types of columns. A spare row and column of each type is provided. Clearly, a
line can be replaced only by a line of the same type.

We are concerned with problems in which such heterogeneity of array elements
implies that the ith rows of all the arrays share one or more spares, and similarly for the

0 A O O 0 0 A 0 []

0 A 0 0 0 H O A 0 E3

0 A O O O [3 0 A 0

0 D A A A 0 O [3 A

0 D A A A 0 O [3 A O

Array Spare Columns

0 A O O O [3

0 D A A A

Spare Rows
FIG. 2. Heterogeneous reconfigurable array.
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jth columns of all the arrays. In other words, the set of spare rows is identical to the set
of rows in the array, and the set of spare columns is identical to the set of columns in
the array. When the chip contains a single array of elements, the problem of repairing
faults is trivial. In fact, each fault can be covered in either of two ways, with a spare row
or with a spare column. When the chip contains multiple copies of an array, however,
repairing the chip reduces to finding a cover for the faults in each of the arrays. Figure
3 shows three copies of an array whose faults must be covered by lines from one set of
spare rows and one set of spare columns. A spare line can be assigned to only one of the
three arrays; that is, the three covers for the arrays must be disjoint.

To formulate the problem of finding disjoint covers for replicated heterogeneous
arrays, we model each array as a (0, )-matrix, a 0 indicating a nonfaulty element and
a indicating a faulty element. Figure 4 shows an instance of the problem for the arrays
depicted in Fig. 3. Each of the arrays contains two faulty elements. One solution to the
cover problem, indicated with arrows, is the following: spare columns and 2 are assigned
to array 1; spare row 2 is assigned to array 2; spare column 4 is assigned to array 3. The
covers are disjoint and all of the faults are covered.

In this paper, we present results for three fault cover problems for reconfigurable
arrays in which the use of spare lines is constrained in the manner described above.
These problems are the feasibility problem, the disjoint minimum cover problem, and
the multiple spare arrayproblem. In the first two problems, the chip is assumed to comprise
replicates of an array and one set each of spare rows and columns. The feasibility

problem asks whether or not the chip can be repaired; the disjoint minimum cover
problem seeks a feasible solution but with the stipulation that the individual cover of
each array be minimum, that is, consisting of a minimum number of spare lines. In
2 and 3, respectively, we show that these problems can be solved in polynomial time.
The multiple spare array problem is a generalization of the feasibility problem in which
more than two arrays of spares are available for use in coveting faults. In 4, we show
that the multiple spare array problem is NP-complete. In 5, we briefly discuss other
potential applications for our fault cover model, and in 6 we summarize our results.

Array 1 Array 2 Array 3
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FI O O O [3

O A O O O

O A A O O

I-1 0 A 0 I-1

I-1 0 0 0 CI
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FIG. 3. Replicated heterogeneous arrays and spares.
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FIG. 4. Disjoint covers ofarrays.

2. Feasible disjoint covers. Given copies of an R C array, each containing zero
or more faulty elements, an array ofR spare rows and an array of C spare columns, the
feasibility problem seeks an assignment ofthe spare lines to the arrays such that all faults
are covered and no spare line is assigned to more than one array. The ith spare row may
only be assigned to cover the ith row of an array, and the jth spare column may only be
assigned to cover the jth column. To solve the feasibility problem, we show that the
problem can be formulated as a multigraph coloring problem. This problem in turn can
be reduced to the 2-satisfiability (2SAT) problem in which, given a set U of Boolean
variables and a conjunction of 2-clauses over U, we seek an assignment of values to
variables such that each ofthe clauses is true. The 2SAT problem is solvable in polynomial
time using any one of several known algorithms 2 ], 5 ]. The multigraph is constructed
as follows.

CONSTRUCTION 1. Given a set of replicated arrays A, A2, "", At, we represent
eachfault with a vertex vi in a multigraph G. With each vertex vi, we associate the label
ai :ri, ci), representing the array, row, and column, respectively, ofthe ithfault. For each

pair offaults not in the same array that lie in the same rows of their respective arrays,
we add a red edge to G between the vertices representing thefaults. Similarly, we add a
black edgefor pairs offaults in the same columns oftheir respective arrays. Let V be the
set ofvertices and E the set ofedges in G.

The multigraph G may not be connected. In fact, if there exists a fault in row and
column j of an array, and if there are no faults in row or column j of all other arrays,
then this fault will be represented by an isolated vertex. Next, we consider the problem
of assigning the colors red and black to the vertices of such a multigraph. We say that a
coloring isfeasible if every vertex is colored, no black edge has two black endpoints, and
no red edge has two red endpoints.

THEOREM 1. A feasible coloring for a multigraph resulting from Construction
exists if and only if there exist disjoint covers K, K,..., Kt for the arrays A,
A2, ,At.

Proof. In the following, i, j, k, l e { 1, 2, IV I}. Assume that K, K2, Kt
are disjoint covers forA, A2, At. For each faulty element i, ifspare row r; is contained
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in Kay, then we color vertex I) red; otherwise we color the vertex black. We claim that
this coloring is feasible. If not, then there must exist a red edge whose endpoints, labeled
(ai:ri, ci) and (aj:rj, cj), with ri rj, are both red or a black edge whose endpoints, labeled
(a,:r,, c,) and (al :rl, Cl), with ck cl, are both black. The former case implies that row
r; is contained in two different covers, Ka and Kaj. This contradicts our assumption that
the covers are disjoint. The latter case implies that column ck is contained in two different
covers, Kay, and Kar Again, this is a contradiction.

Next, let C: V-- { red, black } be a feasible coloring ofthe multigraph. We construct
a set of covers K1, K2,’", Kt as follows. For each vertex vi that is colored red, we
include spare row r; in cover Kay. For each vertex vj that is colored black, we include
spare column cj in cover Kaj. We claim that K, K2, Kt are disjoint covers ofA,
A2, , At. Since each vertex represents a faulty element, and for each vertex vi at least
one of row r; and column c; is included in cover Kay, it follows that K, K2,’", Kt
constitute covers for Al, A2, "’, At, respectively. Assume that K, K2, "", Kt are not
pairwise disjoint. If a row ri is included in both Ka and Kay, then there must exist two
vertices labeled (ai:ri, ci) and (aj:rj, cj), with ri rj, both colored red and connected by
a red edge, a contradiction. Similarly, if a column c is included in both Kak and Kat,
then there must be two vertices labeled (a::r, c,) and (a:rt, c), with ck Cl, both
colored black and connected by a black edge. Again, this is a contradiction. U3

Figure 5 shows the multigraph corresponding to the arrays and their faults shown
in Fig. 4. Red edges are depicted with solid lines, black edges with dashed lines. If vertices
v, v_, vs, and v6 are colored black and vertices v3 and v4 are colored red, then the coloring
is feasible. From this solution, we generate disjoint covers for the arrays as follows: for
each red vertex labeled (a:ri, ci), we assign spare row r; to cover row ri in array ai; for
each black vertex labeled (aj:rj, cj), we assign spare column cj to cover column cj in
array a. That is, spare columns and 2 are assigned to array 1; spare row 2 is assigned

v 2

v1

2:2,3

(2:2,4)
134

FIG. 5. Muhigraph forfeasibility problem.
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to array 2; spare column 4 is assigned to array 3. This solution is indicated with arrows
in Fig. 4.

To solve the feasibility problem, we require an algorithm to solve this multigraph
coloring problem. Construction 2 shows that this problem can be formulated as an instance
of 2SAT, solvable in polynomial time [2], [5].

CONSTRUCTION 2. Given a multigraph G V, E) with red edges and black edges,
we construct a conjunction ofclauses as follows: For each vertex v V, we introduce a
Boolean variable si. For each red edge vi, v), we include the clause . for each
black edge vg, vt), we include the clause s s).

Intuitively, setting si to true means that the fault represented by s is covered by a
row. Similarly, setting s; to false means that the fault represented by si is covered by a
column.

THEOREM 2. The conjunction ofclauses resultingfrom Construction 2 is satisfiable
ifand only ifa feasible coloring existsfor the multigraph G.

Proof. Let C: V-- { red, black be a feasible coloring of the multigraph G. We
assign values to the Boolean variables as follows: For each vertex vi that is colored red,
we assign variable si the value true. For each vertex vj. that is colored black, we assign
variable s the value false. Each red edge (vi, v) has at least one black endpoint, so the
clause ( ) is true. Each black edge (vg, vt) has at least one red endpoint, so the
clause (s V st) is true. Therefore, all the clauses in the conjunction are true.

Next, let TA: { si } -- true, false } be a truth assignment satisfying the conjunction
of clauses. We color the multigraph as follows: For each true variable, we color its cor-
responding vertex red. For each false variable, we color its corresponding vertex black.
Note that an isolated vertex will not be represented in the conjunction of clauses. For
completeness, we color each isolated vertex red. Each clause ofthe form (g/V ) is true,
so the red edge (vi, vj) it represents must have at least one black endpoint. Each clause
of the form (s V st) is true, so the black edge (v, vz) it represents must have at least
one red endpoint. Therefore, the coloring is feasible.

As an example, we give the 2SAT formulation for the set of arrays shown in Fig. 4.
Using the numbering of the vertices in Fig. 5, the conjunction of clauses is:
(gl X/g4)/X (2 X/g3)/X (g2 X/g4)/ (s4 x/ss)/X (s4 X/s6). An example of a satisfying
truth assignment is constructed by setting s3 and s4 to be true and setting s, s2, ss, and
s6 to be false.

3. Disjoint minimum covers. The disjoint minimum cover problem seeks a feasible
solution to the fault cover problem, with the stipulation that the individual cover ofeach
array be minimum. Finding minimum covers is one way to reduce the cost of repairing
the chip 3 ]. To show that the disjoint minimum cover problem can be solved in poly-
nomial time, we must first provide some background results. A minimum cover of a
(0, )-matrix is a minimum set of lines that contain all the l’s. The problem may be
represented by a graph. For a given (0, )-matrix, we construct a bipartite graph G,
which consists of two sets of vertices, X and Y, and a set of edges E. For each row ri of
the matrix there is a vertex Xri X. For each column c of the matrix there is a vertex
y e Y. There is an edge between vertices Xr and y, if there is a in position (r, c) in
the matrix. This construction is illustrated in Fig. 6. A cover of G is a set of vertices K
X LI Y such that every e e E is adjacent to some vertex k e K.

A matching in a graph is a subset ofthe edges such that no two edges in the matching
have a common endpoint. A maximum matching is a matching ofmaximum cardinality.
The bold edges in Fig. 6 constitute a maximum matching. Given a graph G and a matching
in G, a vertex is said to be matched if it is adjacent to an edge in the matching; otherwise,
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FIG. 6. (0, )-matrix and corresponding bipartite graph.

it is said to be unmatched. The K6nig-Egervfiry theorem 13 states that the size of a
minimum cover in a (0, )-matrix is the same as the size of a maximum matching in
the corresponding bipartite graph. Finding a maximum matching in a bipartite graph
can be done in time O(mT-ff), where m is the number of edges and n is the number of
vertices 10 ].

LEMMA 1. Given a bipartite graph G (X Y, E), a maximum matching M in
G, and a minimum cover K ofG, exactly one endpoint ofeach edge in M belongs to K.

Proof. By definition, at least one endpoint of every edge must be included in K.
Since edges in M have no endpoints in common, no vertex can cover two edges in M.
So at least one endpoint of each edge in M must be in K. From the K6nig-Egerviry
theorem 13 ], we know that KI MI. Therefore, at most one endpoint of each edge
in M can be in K. F1

LEMMA 2. Given a bipartite graph G (X tO Y, E) and a maximum matching M
in G, an unmatched vertex does not belong to any minimum cover K ofG.

Proof. By Lemma 1, there must be at least MI matched vertices in the cover.
Since [K[ [M[, the cover K can contain no other vertices. V1

Using these two lemmas, we now show that the disjoint minimum cover problem,
like the feasibility problem, can be reduced to 2SAT. The conjunction of clauses is formed
using the following construction.

CONSTRUCTION 3. Let R and C be the number ofrows and columns, respectively,
in each oft (0, )-matrices, A, A2, At. Let Gi be the bipartite graph corresponding
to Ai. Let Mi be a maximum matchingfor Ai, For each row ri, < ri < R, we introduce
Boolean variables, ri,, ri,2, "’", ri,t. For each column ci, < ci < C, we introduce

Boolean variables, ci,, ci,2, ci,t. The conjunction consists offour types ofclauses:
For each 1, we include the clause (ri,k V cj,k), where ri, cj, andA are the row,

column, and array, respectively, that contain the 1.
(2) Next, for each row ri that contains a in one or more of the arrays, andfor

each unordered pair ofmatrices, Ak and At, we include the clause ?i, v ?i,t). For each
column cj that contains a in one or more ofthe arrays, andfor each unordered pair of
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matrices, Ak and AI, we include the clause (-(j,k v -j,t). Hence,for each line that contains
a in one or more ofthe arrays, t(t )/2 clauses are included in the conjunction.

(3) For each that is represented by an edge in M, we include the clause Yi, v
,), where ri and c are the row and column, respectively, that contain the 1.

(4) Finally, for each row ri whose representative vertex in G is not matched, we
include the clause Yi,k). For each column c whose representative vertex in G is not
matched, we include the clause (j,k).

THEOREM 3. The conjunction of clauses resulting from Construction 3 is satisfi-
able ifand only ifthere exist disjoint minimum covers K, K2, Kt for matrices A,
A2, ,At.

Proof. Assume that there exist disjoint minimum covers K, K2, , Kt for matrices
A, A2, At. We assign truth values to variables as follows: For each spare row r;
Kk, we set ri,k to be true; for each spare column cj K1, we set cj, to be true. Each in
Ak is covered by its row ri or its column cj, so its corresponding clause (ri,k X/ Ci,k) must
be true. Since each spare row ri can be assigned to at most one cover, every clause
(?i, X/ k-;,z) must be true. Since each spare column cj can be assigned to at most one
cover, every clause ?j,k X/ ?j,t) must be true. By Lemma 1, we know that, for each edge
in a matching M, exactly one of its endpoints must be included in a minimum cover
of Gk. Therefore, every clause (?;,k V ?j,k) must be true. Finally, by Lemma 2, an un-
matched vertex in a bipartite graph G cannot be in a minimum cover of Gk, so all 1-
clauses must be true. Hence, using the truth assignment above, the conjunction ofclauses
is true.

Conversely, assume the conjunction is satisfiable. Then there exists a truth assignment
that forces every clause to be true. For each true variable ri,k, include spare row ri in
cover Kk. For each true variable cj.,l, include spare column cj in cover K. The clauses
from step imply that each is covered. The clauses from step 2 imply that the covers
are disjoint. The clauses from steps 3 and 4 imply that the covers are minimum. []

We omit the details of the conjunction for the example shown in Fig. 4. We note,
however, that while there exists a solution to the feasibility problem for this example,
there does not exist a set of disjoint minimum coverings for the three arrays shown. Such
a set could involve no more than three spare lines, but the faults in the arrays cannot be
covered with fewer than four.

4. Disjoint covers using multiple spare arrays. The multiple spare array problem
is an extension of the feasibility problem discussed in 2 to include the case in which
the chip contains more than one set of spare rows, more than one set of spare columns,
or both. Multiple sets ofspares offer potential increases in chip yield because more defects
can be successfully covered. Of course, the increase in yield must be balanced against
the increase in fabrication and materials costs accompanying the use ofadditional spares.

The multiple spare array problem can be stated as follows: Given (0, )-arrays of
R rows and C columns each, SR R C arrays of spare rows and SC R C arrays of
spare columns, the problem is to find an assignment of the spares to the arrays such that
all the ones in the arrays are covered. An example of the multiple spare array problem,
in which SR 2 and SC 1, is depicted in Fig. 7. Unfortunately, finding such disjoint
covers is much more difficult than is the original problem, in which SR SC 1.

THEOREM 4. The multiple spare array problem is NP-complete.
Proof. The problem is in NP because we can guess an assignment of the spares to

the arrays and check in polynomial time whether or not all the faulty elements are
covered. Next, we want to use a reduction from a known NP-complete problem to the
multiple spare array problem to show that the latter is NP-complete. Our reduction is
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arrays containing some faulty elements

R

two arrays of spare rows one array of spare columns

FIG. 7. Multiple spare array problem.

from the vertex cover problem, which is as follows: Given a graph G (V, E), and an
integer K _-< V I, does there exist a subset V’

_
Vwith V’I =< K such that for each edge

(u, v) E, at least one of u and v belongs to V’? The vertex cover problem is NP-
complete 6 ].

Given an instance of the vertex cover problem, we want to construct an instance
ofthe multiple spare array problem. Given V= { v, v2, vn }, E { el, e2, em },
and a positive integer K =< n, we construct n m arrays, A, A2, "", An, K m
arrays of spare rows, and one m array of spare columns. That is, SR K and SC
1. An entry 1, j) in array Ai is if and only if vertex vi is one of the endpoints of edge
ej. This means that the sum of the number of faulty elements in each column over all
the arrays is exactly 2.

Now we want to show that there exists a solution to the instance ofthe vertex cover
problem if and only if there exists a solution to the instance of the multiple spare array
problem. If there is a solution to the instance of the vertex cover problem, then there is
a subset V’ { v’, v, v } of V such that _-< K and every edge in E has at least one
endpoint in V’. For each vertex v in V’, we assign a spare row to the first (and only)
row of array Ai. We use at most SR spare rows, because SR K. Since every edge has
at least one of its endpoints in V’, the sum of the number of faulty elements that have
not been covered by spare rows, in each column over all the arrays, is at most 1. This
means that a spare column can be used to cover each of these l’s.

Suppose there is a solution to the instance of the multiple spare array problem. Let
Aa,, Aa:z, Aal, where <= SR, be the arrays to which spare rows are assigned. Let V’
be { Va, ray Val}. Since we have only one array of spare columns, this means that
the sum of the number of faulty elements left uncovered by the spare rows in each
column over all the arrays is at most 1. Recall that initially this number was 2. This
means that the set V’ contains at least one endpoint of each edge in E. []

Although chip yield may be increased with the use of multiple sets of spares, our
NP-completeness result implies that heuristic algorithms are likely to be the only viable
approach to the problem. The investigation ofsuch heuristics is a potential area for future
research.
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5. Other fault cover applications. The results presented here have potential appli-
cation in two other VLSI contexts. First, as the density ofreconfigurable arrays continues
to increase, with a corresponding increase in the number of elements in the arrays, re-
pairing a chip will require a larger number of spare lines. Often, however, an individual
row or column contains only a small number of faulty elements [! 7 ]. This implies that,
for a reconfiguration method such as shown in Fig. 1, in which entire rows or columns
are replaced, the spare elements will be used inefficiently because most of them will
replace correctly functioning elements. The number of such wasted redundant elements
increases as the size of the array increases and limits the number of chips that can be
repaired.

One way to increase efficiency in the use of spares, and thus increase yield, is to
replace the single large array with an array of smaller subarrays. The redundant elements
are arranged such that rows and columns of individual subarrays may be replaced, in-
dependent of other subarrays, achieving the desired higher efficiency. Allocating spare
lines for each subarray may be expensive. Alternatively, allowing a spare line to be used
anywhere on the chip is not an attractive solution because the cost of wiring and the size
of programmable decoders increases with the partitioning of the array. A compromise
solution, used in [9 ], [16 ], is to limit the number of subarrays to which a particular
spare line may be assigned. Figure 8 shows how our model may be used in this manner.
The array has been partitioned into 16 subarrays. The spare elements have been arranged
as one array of spare rows and one array of spare columns.

Another potential application of our model stems from recent interest in three-
dimensional VLSI design [1 ]. Consider the situation depicted in Fig. 9, in which eight
arrays are sandwiched between an array of spare rows and an array of spare columns.
Arranging redundant elements in this manner, and requiting that a spare row be used
to replace only one of the rows directly below it, and that a spare column be used to
replace only a column directly above it, offers one way to reduce the circuit complexity
in reconfigurable three-dimensional devices.

In both applications just described, the arrays may be homogeneous. Our model
for heterogeneous arrays is applicable because it is assumed that the need to simplify
wiring for reconfiguration imposes constraints on the use of spares.

FIG. 8. Reconfiguration ofspares.
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spare rows

spare columns

FIG. 9. Three-dimensional arrays and spares.

6. Summary. We have presented results for a set of fault cover problems in repli-
cated, heterogeneous arrays of elements. First, a polynomial-time solution was given for
the problem of finding a set of disjoint covers, if one exists, for the arrays using one set
of spare rows and one set of spare columns. Second, a polynomial-time algorithm was
given to find a feasible set of disjoint covers such that each is minimum. Finally, the
problem of finding a feasible solution when multiple sets of spare lines are available was
shown to be NP-complete. We briefly discussed two other potential applications of this
work. We are currently studying extensions of the problems discussed here.
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AN INTEGER PROGRAM FOR CODES *

MARTIN DOWD

Abstract. For each value of the parameters A, n,d, a linear program exists whose integer
solutions correspond to codes. The Plotkin bound gives a necessary and sufficient condition on n/d
for feasibility. Some further simple remarks on the tableau of the linear program can be made; it can
also be modified to consider only linear codes. For A divisible by 4, codes with optimum n/d with
smallest possible value for n are Hadamard matrices. The question of a bound on n is an instance
of the more general question of an upper bound on b for a block design with given v and k, which is
conjectured to be polynomial in v. Some constructions related to these questions are given.

Key words. Plotkin bound, short block designs, Hadamard rectangles
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1. The integer program. A code may be considered as the rows of a 0-1
matrix, and conversely if the rows are distinct. Say that the minimum distance of the
matrix is that of the code. Let ,4 {1... A}.

THEOREM 1. Up to column permutation the A n matrices o/minimum distance
greater than or equal to d correspond to the integral solutions to the ]ollowing system
of inequalities:

(1) xs >_ O, all S

_
A

xs > d, all T C_ c4,1Tl 2

(3) xS n.

Proof. Given a matrix, assign to xs the number of columns which are 1 in exactly
the rows of S. Conversely, a nonnegative integer solution determines how often each
column appears.

THEOREM 2. The system of Theorem 1 is feasible i and only in/d > 2(A-1)/A
if A is even, and n/d >_ 2A/(A + 1) if A is odd.

Proof. Divide the xs by d and sum (2) over T, yielding

ISlI.A-Sl _>

Since Isll - sl is at most A2/4 if A is even, and (A + 1)(A- 1)/4 if A is odd, one
direction follows. For the other, distribute the weight n evenly between the variables
xs with SI A/2 for A even, or SI (A- 1)/2 for A odd.

The bound is the Plotkin bound, with A fixed rather than n and d. For some n
and d with n/d meeting the bound integer solutions exist. The complete block design
with v 2k + 1 (where these are the block design parameters in the usual notation)
yields an example, if a row of O’s is added.

*Received by the editors June 26, 1989; accepted for publication (in revised form) July 10, 1990.
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In general, however, the Plotkin bound yields far too low a restriction on n for
existence of an integer solution, for given A and d. For example, fix d and apply the
sphere packing bound.

It is interesting to note that a "row" of an assignment can be defined by defining
the matrix X with Xis xs if point is in set S, or 0 otherwise. The distance
between two rows is given by the Manhattan norm s IXs- Xjs[. However, the
theorem shows that a packing argument in the (2k 1)-dimensional space over the
reals will yield no improvement to the Plotkin bound.

2. Some properties of the tableau. It is clearly unlikely that any useful
theorems concerning the tableau will be easy to derive. Some simple observations
can be made, however. The system of equations (2) can be slightly simplified, by
normalizing the solutions so that the last row is all O’s, i.e., by setting xs 0 if
A E S. With v A- 1, let V {1... v}, and let Cv, or simply C, denote the matrix
whose rows are the coefficients of the resulting equations. If the rows of C are labelled
with the sets T C_ V, 1 <_ IT <_ 2, and the columns with the sets S c_ V, then CTS 1
if IT N S] is odd (i.e., 1), and 0 otherwise. All solutions to the original system can be
obtained by choosing a solution to the new system, and for each S c_ V splitting xs
between S and SU {A}. More generally we may consider the family C,v for 1 _< t _< v,
by considering T with [T _< t.

THEOREM 3. The matrix C, has full rank.
Proof. A basis for the solutions of Cx 0 may be obtained as follows. Let Q

be the matrix whose rows and columns are labeled with the subsets of V, and where
Q,TS (_l)lSnTI. It is well known that QTQ (1/2-1)I. Appending a row of-l’s
to C, adding twice this to every other row, and multiplying by -1 yields the rows of
Q with IT] _< t, so that transposing the remaining rows of Q yields all but one of the
linearly independent solutions to the homogeneous system. The remaining solution is
given by xs 1 if S , else xs O.

Theorem 2 can be generalized to arbitrary t; let

be the number of u element sets T such that IS N T[ is odd for IS s. Then

For t 1, the bound xs >_ 1 is met by the solution xs 1 if S V and xs 0
otherwise. Furthermore, any set of v linearly independent columns of C that includes
the column labeled V is a basis yielding this solution, since B-Ij e for some unit
vector e, where j is the all l’s vector, if and only if some column of B is j. For t 3
differentiating yields [S[ (v2 / 2)/2v, which is nonintegral.

Let F" denote the v-dimensional vector space over the two element field F; by
identifying the members of V with a basis of F", each S c_ V may be identified with
a vector of Fv. The linear group on F then acts on the vectors (xsl by permuting
coordinates. For each T C_ V let UT be the (v- 1)-dimensional subspace {S [S
T[ is even}. We claim that an element of the linear group acts on the solutions to
C,’x 0 if and only if it preserves the UT with IT[ _< t. If it preserves these subspaces,
it maps the equations among themselves; and if it does not it maps some subspace
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corresponding to a solution to one corresponding to an equation. Let GSv, or simply
GS, denote this group, for t 2. The following theorem gives a characterization of it;
it can also be characterized as a group of operations on Hadamard rectangles [Do87].

THEOREM 4. GSv is the group generated by the permutation matrices and the
matrix A, defined by Arc 1 if r c or c v and 0 otherwise. It is isomorphic to
the symmetric group on A points.

Proof. Temporarily call the group generated by the matrices G$1; it is easily
verified that GSI acts as the symmetric group on the sets (i} together with V (A
acts by transposing V and (v}). Furthermore, considering these as the vertices of
the complete graph on A vertices, the action on the Us is the same as the action on
the edges, where Uj corresponds to the (i}(j} edge; and U to the (i}Y edge. The
first claim is by induction on v; for the basis, v 2 and the group is the entire linear
group. Using the induction hypothesis it is readily verified that a matrix M in GS
may be brought by members of GS1 to a form where Mrc 0 only if r c, c v- 1
and r _< v- 1, or c v. Considering the action on Ulv shows that Mr,v- 0 for
r < v 1; and on Uj for 1 _< _< j < v that the Mrs, r < v, are equal.

THEOREM 5. The minimum size circuits of Cv are isomorphic to C3 (ignoring
the 0 column in both).

Proof. We may assume three of the columns are those labeled {1}, {2}, {3}. In-
ductively, the ith column, 4 <_ < 7, if it is a linear combination of the previous
columns, would be disjoint from {4,..., v}. Hence in rows (1 }, {2}, {3} it is distinct
from the previous columns; hence linearly independent of them; and hence without
loss of generality, disjoint from {4,..., v}.

3. Remarks on applying pivots. The possibility exists that the tableau of
the linear program may have some interesting properties involving sequences of pivots
applied to it. A basic feasible solution (see [PS82] for terminology) has only O(v2)
types of columns, a fact whose relevance will become apparent in 5. This leads us
to ask whether anything further can be said about optimum basic feasible solutions,
in particular if they are reached via the simplex method. For example, consider the
"augmented" tableau CII with inhomogeneous column all l’s, say; we can ask which
optimum basic feasible solutions can be reached, without repeating a pivot row. Call
a sequence of pivots (where a pivot is a pair (r, c) consisting of a row number and
column number) simple if no row is repeated.

A second question is whether the pivots of a simple sequence can be applied in
any order. A characterization of when this is so can be given. Let T be a tableau,
and a (r,c),..., (r,c) a simple sequence of pivot positions. Define the matrix
M to have (i, j) entry Tr,c. Define a simple sequence a to be positive if, when
the pivots are applied to T in this order, the pivot entry is always positive; and legal
if every pivot is legal, that is, preserves feasibility. We will see that if a is a simple
sequence of pivots then a may be arbitrarily reordered if and only if Ma is a P-matrix,
i.e., a matrix whose principle submatrices have positive determinant (see [BP79] for
P-matrices). Computer experiments show that in the augmented tableau of the linear
program for codes, such M do not necessarily exist.

Let a be a simple sequence; r some row not involved in a; and c the inhomogeneous
vector of the tableau T. Given a k x k principle submatrix M of Ma define the matrices
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M+r and Mr as follows:

Mj

Tr,cj
Tr,c

ifi, j<_k
ifi<_k,j=k+l
ifi=k+l,j<_k
ifi’-j’-k/l

M/ ( Mj if r
Tr,c ifi=k.

THEOREM 6. A simple sequence a is positive if and only if every leading principle
submatrix of Ma has positive determinant. It is legal if and only if in addition, for
each leading principle submatrix M of Ma, whenever Mr has positive determinant
M+r has nonnegative determinant.

Proof. The proof is by induction on the length k of a. The basis for the first
claim simply states that the pivot entry is positive. In one direction, it suffices to
show that after applying the (rl, cl) pivot, the leading principle submatrices of the
matrix of the remaining sequence in the new tableau are positive. Let c denote Trl,cl;
the determinant of each leading principle submatrix of Ma is multiplied by 1/c by
applying the pivot. Furthermore, the submatrix obtained by then deleting the first row
and column has the same determinant. For the converse, by induction if det(Ma) <_ 0,
but det(M) > 0 for all proper initial subsequences T of a, then the last pivot entry is
<_ 0. The second claim follows by a similar argument; the basis states that the pivot
is legal.

With the aid of a computer, we have determined the following. For Ca, every six
of the seven nonzero, columns forms a basis. There are two basic feasible solutions.
One has xs 1/2 if ISI is 1 or 3; it is of cost 2 and its bases are those omitting an S
with ISI 2. The other has xs 1/2 if ISI is 2, and is of cost . The two solutions are
stabilized by GS, and each set of bases is acted on transitively. Fixing a basis for the
second solution, there are 24 sets of pivot points of legal simple sequences leading to
the basis from the augmented tableau. The number of orderings that are legal ranges
from 1 to 84.

For Ca the bases may be classified according to the distribution of values. There
are 10 types, namely,

(-/)4(1/.), (-/)1(/), (-/.)(1/), 0(-/)(/),
04(-1/2)(1/2)5, 05(1/2)5, 02(1/4)s, 03(1/4)7, (1/3)(1/6)9, and (1/6).

The number of solutions of each type is, respectively,
30, 20, 5, 5, 10, 1, 5, 5, 10, 1;

and the number of bases
30, 20, 5, 810, 810, 162, 60, 160, 10, 1.

We have not determined which can be reached by simple sequences.

4. Linear codes. The linear program can be modified so that only linear codes
are considered. Suppose A 2k, let Fk denote the k-dimensional vector space over
the two element field F, and let C denote the family of set theoretic complements of
the (k- 1)-dimensional subspaces of Fk.

LEMMA 7. An incidence matrix is the matrix of a linear code if and only if its
rows can be labeled with the points of Fk so that the nonempty S for which xs > 0
are the sets in .

Proof. If the code is linear, choose k rows forming a basis and label them with a
basis of Fk. This induces a labeling of the remaining rows in an obvious way. Given
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a column, the rows in which it is 0 are those sums of basis rows which involve an even
number of basis rows which are 1 in the column; these form a subspace. Conversely,
it suffices to consider the case xs 1 for all complements S of (k- 1)-dimensional
subspaces, and x5 0 for all other S. But it is easily seen that this is the dual
Hamming code.

THEOREM 8. If in the equations of Theorem 1 S is restricted to range over ,
and T over pairs containing O, the nonnegative integral solutions correspond to linear
codes of minimum distance >_ d.

Proof. The proof is immediate from the lemma, and the fact that only the weight
need be bounded below for a linear code.

For any k there is a well-known Hadamard matrix corresponding to a linear code.

5. Codes with optimum n/d.
LEMMA 9. If a code has constant distance d then d is even, if A >_ 3.

Proof. Normalize the code to have a row of O’s; any nonzero row then has weight
d. Given two distinct rows, suppose there are A columns with l’s in both rows. Then
the distance between the rows is 2(d- A), so d 2A.

It is easily seen from the proof of the lemma that a code with constant distance
(also called a simplex code) is essentially the same (up to a row of O’s when normalized)
as a pairwise balanced design with constant row weight 2A.

THEOREM 10. A code achieving the bound on n/d has constant distance. For A
even, such codes correspond to block designs with v A 1 and b/r 2v/(v -t- 1).

Proof. By the proof of Theorem 2, in a code with minimum n/d the weight of
any column is A/2 if A is even, or (A- 1)/2 or (A + 1)/2 if A is odd. To show that
the code has constant distance, count pairs where one row is 0 and the other 1. The
total is nA2/4 for A even, and n(A- 1)(A + 1)/4 for A odd; if any distance is greater
than d, summing over the pairs of rows will yield a larger value. The last claim follows
either by noting that a PBD with constant column weight is a block design, or noting
directly that the rows of the design have constant weight.

We will call block designs with v odd and b/r 2v/(v + 1) H-designs. For v
odd, b/r 2v/(v / 1) is equivalent to r 2, or k (v -t- 1)/2. For such designs,
b is a multiple of v; indeed b/v 4/(v / 1) 2r- b. Note that the code itself is
never a block design, since for v even k v/2 is equivalent to b/r 2 rather than

The complete design, with all (v + 1)/2 element subsets of the treatments as
blocks, is an example of an H-design. The resulting code has length (A/2)’A-1 The
smallest possible length (corresponding to the highest possible rate, since A is fixed),
is easily seen to be A- 1 if A 0 (mod 4), (corresponding to a Hadamard matrix), or
2(A- 1) if A 2 (mod 4).

If in a code of minimum nld we replace 0 by +1 and 1 by -1, and add 2d- n
columns of /l’s, the rows of the resulting configuration are orthogonal. Such a con-
figuration has been called a Hadamard rectangle, or a rectangular Hadamard matrix.
Hadamard rectangles are very easy to construct; simply delete rows from a Hadamard
matrix. To obtain H-designs, the number of columns must be divisible by the number
of rows, and there must be sufficiently many columns which are all +1. Hadamard
rectangles with v rows satisfying the first requirement exist, of length O(v3); this
follows by Theorem 7.13 of [GS79].

If Hadamard matrices exist for all A 0 (mod 4), then shortest possible codes
achieving the bound on n/d exist for all A. For A 2 (mod 4) the required Hadamard
rectangle is obtained from a Hadamard matrix of order 2A by normalizing so that
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there is a column of /l’s, and taking the rows with +1 in a second column. For A
odd, delete a row from a code for A / 1; indeed, the minimum n for A rows is at most
that for A / 1, but there may be A row codes not obtained by deleting a row from an
A -+- 1 row code, even of minimum length when the minimum lengths are equal.

If only codes with optimum n/d are considered, the linear program can be mod-
ified by making (2) an equality constraint. If also only S with ISI (v / 1)/2 are
considered, the result is essentially a special case of VIII.(7.2.a) of [BJL]; Lemma
VIII.7.3 of [BJL], due to Wilson, states that these have an integer solution if and only
if A is a multiple of A0 (see below for Ao). A homogeneous system can be obtained
by setting all sums other than the first equal to the first, rather than A. It would be
of interest to obtain a module basis for the integer solutions; one example of such,
without the size restriction on S, is given in [Do87].

6. A more general question. The existence of Hadamard matrices is sub-
sumed by the more general question of the smallest possible value of b when v _=

3 (mod 4) and k (v + 1)/2. In general, for 2 _< k < v let

d gcd(v(v- 1), k(k- 1), v(k- 1)),
A0(v,k)=k(k-1)/d, bo v(v-1)/d;

it is easy to see that for any design with given v and k, A01A and bolb.
Define bl (v, k) to be the smallest b for which a design actually exists, and similarly

for A1. We conjecture that
1. bl is bounded by a polynomial in v.

Successively stronger versions of this conjecture can be made.
2. 51 O(v2), or equivalently A1 O(k2).
3. A1 _< KAo for some real number K.

It seems quite likely that version 2 is true, and there is no evidence that version 3 is
not. Another question of interest is for what v, k does there exist a block design with
A k(k- 1); for these v,k, version 2 holds.

If v is restricted to be a prime power q then there is a design with A k(k 1),
by the double transitivity of the affine group AGL(1, q) on GF(q). Whether version
3 holds when v is a prime power is question that should be investigated, if v q + 1
version 1 follows by the double transitivity of PSL(2, q) on PG(1, q); the bound on
is O(v3). Higher-dimensional geometries give a polynomial bound for further v, but
the degree increases with the dimension.

If k is fixed, Ao is periodic in v, with period k(k- 1) (and is at most k(k- 1)). By
Wilson’s theorem, then, for sufficiently large v bl (v, k) bo(v, k). Thus, as v increases,
there is an increasing bound kv such that bl (v, k) bo (v, k) (and bl (v, v k)
bo(v, v- k)) for k <

It is also true ([BJL, 8.7.1]) that for fixed v and k, if A is sufficiently large and
AolA then there is a block design with the given parameters. We may thus define
b2(v, k) as the least b such that there exists a block design with b + tbo blocks for all
t _> 0, and similarly for A2. We conjecture that b2 is O(v2). Note that if bl b0 then
b2 bo.

Let B(K, A) denote the values of v for which there exists a pairwise balanced
design, with each pair occurring A times and block sizes in K; if A 1 it may be
omitted, and k written for {k}. Let (_>k denote the prime powers q >_ k. It is easily
seen that B(Q>-k) c_ B(k,k(k- 1)), since B(k, k(k- 1)) is closed and contains Q>_k.
It follows from the following that there is a design with A(v, k) k(k- 1) if v >_ kc
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where c is an appropriate constant. For fixed k c may be chosen smaller than the
general value; for example for k _< 7 c may be 1 [Ha75].

LEMMA 11. There is a vo such that if v >_ vo and v >_ k43 then v E B(Q>k).
Proof. Let gq>-k denote (ql’"qr qi Q>k}; Nq,>_k C_ B(Q>k) Cl TD(k), by

Macneish’s theorem and induction, where TD(k) denotes those g for which there exists
a transversal design with k groups and group size g. By [BJL, IX.2.1 and IX.2.6], it
suffices to show that, if v _> v0 and v _> k43, there are nonnegative integers x, y, u such
that

v xy + u; y Was>_k-t-1;x, X -" 1 Was>_b-t-1; y, u gq>-b; u <_ y.

This follows by obvious modifications to the argument in [Ro64].
7. A group construction. Group methods can be used to construct some short

block designs. Let G be a group acting on a v element set S. Let Oi, 1 _< <_ w, be
the orbits of pairs, and let By, 1 _< j <_ , be base blocks, i.e., k element subsets of
S. For B C_ S let Ba denote the multiset of images. More usually Ba denotes the
set, but we will use (B} for this. Also, let hy -IO N B2)I, where B(2) denotes the
collection of 2-element subsets of B.

If multisets are used, the length b of the incidence matrix resulting from the action
of G on the By equals IGI, and if the matrix is pairwise balanced ) bk(k- 1)/v(v-
1). Thus, the matrix is a block design, provided

= IG v(v 11 IOIZ

for each i. In particular the right sides must be integers. If the {B} are used, the
jth term of the sum must be divided by the order IGBI of the setwise stabilizer, and, cannot be so easily determined. The set version is completely general, provided
multiple copies of an orbit are allowed.

In the multiset version, if G yields a design, and H is a group containing G and
acting on S, then H yields a design. If H is a permutation subgroup of G and H has
the same orbits of pairs as G, then again H yields a design.

LEMMA 12. If conditions (4) are met for all but one, they are met .for all i.

Proof. This follows since

Many constructions are known for G acting regularly; the family of base blocks
is then called a difference family. It may be verified that for a difference family to
exist, A must be divisible by Ad k(k- 1)/dd where dd gcd(k(k- 1),v- 1),
and that ,d Aogcd(v,k). The cyclic groop Zv is one useful groop; another is
GF(ql) x GF(qs) where v q...q8 and the qi are powers of distinct primes.

If Go acts regularly on itself and A is a group of automorphisms of Go, G A Go
acts on Go viax a(x)t for a A, t E Go. For example, if Go Zv then the
automorphisms are multiplication by elements of Units(Z.), the units of the ring Z..
The order of A Go when A is all the automorphisms is re(v) where is the Euler
function. There is an orbit of pairs Od for each proper divisor d of v, namely,

{fx,y}’x-y =_ d(modv)} {{x,y}’x-y e dC},
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where
dG {x e Z,: gcd(x, v)- 1} dUnits(Zv/d).

In particular, Io l (1/2)v(v/d).
Although it turned out to be irrelevant, we noticed the following property of

the dG, which does not seem to be well known, d is closed under multiplication
if and only if gcd(d, e) 1 where e v/d; this follows because d is those x for
which max(ordp(x), ordp(v)) has a fixed value, for each p. Further, in this case d is
a group; the identity is de(e), since de(e) 1 (mode), so d(e)d _= d (modde). It is
readily verified that the map u d(e)u from Units(Ze) to d is an isomorphism.

If v 3q where q is a power of a prime other than 2,3, let Go GF(3) x GF(q),
and let A be multiplication by units, of which there are 2(q- 1). The orbits of
differences are as for q prime, and may be called O1, 03, and Oq; the sizes are v/2 times
2(q-l), q-l, and 2. If 1, for 3q-1 to divide k(k-1)(q-1) k must equal (3q+1)/2;
we consider k (3q + 1)/2. Let a, 0, 1, 2, denote I{x e B:x =_ i(mod 3)}1; note
that h3 , a(a- 1)/2.

LEMMA 13. Every nonnegative integer can be written in the form

Proof. A proof is given in 9.
COROLLARY 14. Every nonnegative integer can be written in the form

n 3x 4- 2xl 4- y21 4- 3x22 4- 2x2 4-y.

Proof. By Lemma 13, 3n 4- 2 w2 4-3y2 4- w22 4- 3Y22. This is impossible if either wl
or w2 is divisible by 3, so we may assume wl, w2 1 (mod 3). Letting x (w- 1)/3
yields the corollary.

THEOREM 15. Suppose q is a power of a prime other than 2 or 3. Then

bl(3q, (3q + 1)/2) < 12q(q- 1).

If q 3x2 4- 2x + y2 for some integers x, y then

bl(3q, (3q 4- 1)/2) < 6q(q- 1).

Proo]. We apply the group Ax Go where Go GF(3) x GF(q), A is multiplication
by units, and 2. We have

2q 3x2 + 2xl + y2 + 3x2 + 2x2 + y22;

since 2q 2 (mod 4), exchanging yl and y2 if necessary we may assume

xjyj(mod2), j=l,2.

Now, 3x2 + 2x + y2 >_ 0 for integer x, y, so 3x + 2xj + y] _< 2q; it follows that

xj <
v/6q 4- 1- 1 2v/6q 4- 1 4- 1

3
,x:i:y>_-

3
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Suppose q 1 (mod 4); then the quantities

q + 2xj + 2yj + 1 q + 2xj 2yj + 1 q- 4xj 1
a:ol 4 ajo2-- 4 ,ajl2 4

are integers. From the above inequalities they are nonnegative if q >_ 11. Since
ajo1-4.-ajo2 4-ajl2 < q we may choose base blocks Bj, containing ajtu pairs of the form
{ (t, v), (u, v)}. Let

aj0 aj01 + aj02, aj aj0 + ajl2, aj2 ajo2 4- ajl2.

Then j ajt (3q + 1)/4 and [:j at (3q2 + 4q + 1)/2. The latter implies the re-
quirement on h3j, and the requirement on j hqj is clearly satisfied. The theorem
in this case now follows by Lemma 12. If q 3x2+ 2x / y2 then q 1 (rood 4); letting

I and suppressing j, the above argument goes through, for all q. Note that if
q=l(mod4) andq<llthenq=5=3.12+2.1+02 Ifq=3(mod4) let

q + 2x + 2y 1 q + 2xl 2y 1 q- 4x 3
al01 4 a102 4

all2 4
q + 2x2 4- 2y2 5 q 4- 2x2 2y2 5 q 4x2 4- 5

a201 4 a202 4
a212 4

alo alol 4- a102 4- 1, a al0 + all2 4- 1, a12 a102 4- all2 4- 1,

a20 a201 4- a202 4- 3, a21 a201 4- a212 a22 a202 4- a212.

The at, are integers, and are nonnegative if q > 21. The remaining cases are as
follows:

q=7: x=-2, y=l, x2=l, y2=0;
q=11: x=-3, yl=0, x2=0, yg.=1;

q=19: x=3, y=0,x2=l, y2=0.

Remarks on the primes q 3x2 4- 2x + y2 may be found in 8. Note that y 0
if and only if q 5. If y # 0 one can verify that six distinct representations may
be obtained by permuting the ai (where x q a a2, y al a2, a0 + al +
a2 (3q + 1)/2); this is so for q a prime power. There may be several sextuples of
representations. More can doubtless be said about the number of representations.

8. Remarks on primes of the form 3x2 4- 2x + y2o It is undoubtedly the case
that the asymptotic density of the primes of the form 3x2 4- 2x 4- y2 can be determined
by straightforward methods, along the lines of those of [Pc73] and [Wi75]. Indeed,
this can undoubtedly be done for any two variable polynomial.

It is well known that an odd prime p is representable as w2 + 3u2 if and only
if p 1 mod 6; the representation is essentially unique. For an arbitrary integer a,
writing a d2e where e is square free, a is representable if and only if e is, and as is
well known this is the case if and only if it is a product of primes congruent to 1 mod
6. This gives another characterization of the special q of Theorem 15, namely, those
where 3q + 1 is of this form.

It follows from the test of Mann and Yamamoto that if there is a (v, k, ) difference
set and 3Iv then any prime divisor of the square free part of k- must be congruent
to 0 or 1 mod 3 ([Ma65, Cor. 7.2.4]; [BJL, VI.5.6.a]). The restriction above, therefore,
yields no new information for difference sets. Also, difference sets do not always exist;
for example, there is no difference set when q 17 ([BJL, table D]).
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9. Proof of Lemma 13. To prove Lemma 13, we consider quaternions of the
form

a ao + alx/’i + a2j + a3x/k,
where the ai are integers. We verify that these form a ring, and that N(a) a] +
3a + a / 3a. Thus, the integers of the form (5) are closed under multiplication.
They certainly contain 0 and 1. If n is of the form (5) and is even, and if a0 and a2
have the same parity mod 2, so do al and a3, and

(n ao 4- a2 al 4- a3 ao a2 al a3

2
+3

2 + 2
+3

2

Otherwise, by permuting the variables if necessary, we may assume that ao and al,

and a2 and a3, have the same parity. If, say, ao and al are odd, one of ao 4- al is
divisible by 4, and

(ao =t: 3al ao 4- al

2 + 3
2 +

so we may assume all the a are even and again n/2 is of the form (5).
It remains to prove the lemma for an odd prime p. For this we introduce the ring

H of quaternions of the form

ao + al + a2j + a3j,

where the a are integers and (-1 + /i)/2. This is clearly a ring, by the usual
properties of and j (-1 )j. Also, for a E H

N(a) a] -aoal + a2 + a a2a3 + a],

and is an integer.
We claim that N is a "left" Euclidean norm on H, that is, given a, d E H, d 0,

there are q, r H with a qd + r and N(r) < N(d). It suffices to prove this for d an
integer n, since then ad* qdd* + rd* where N(rd*) < N(dd*) and it follows for all
d. Now, for a H

N(a) 1/4(2ao- al) 2 + 1/4a2 + 1/4(2a2- a3) 2 + 1/4a32.

Writing 5i for ai -nqi, is suffices to show that q can be chosen so that 1511 <_ n/2 and
]250 -511 _< n, and similarly for 53, 52. Certainly the required ql can be chosen, and
q0 then can also be since ao -nqo can be chosen in any desired interval of length n.

The remainder of the proof is as in [He64, Thm. 7.f], except u uo 4- ul + u2j +
u3j, from which

2u (2uo ul) + ul/i + (2u2 u3)j + u3x/k

follows, and 4p is of the form (5).
10. Conclusion. For v 3q, we have shown the existence of short H-designs.

Questions that should be studied further include improvements to the bound for H-
designs; bounds for any k; and the existence of designs with k(k-1). The method
of difference families would doubtless yield some results.
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The more general problems of bounds on bl(v, (v+ 1)/2) for v odd, and on b(v, k)
in general, seem to require more extensive developments. Additional results would
doubtless follow by both group methods and recursive methods; in particular Lemma
11 can doubtless be improved, perhaps using additional recursions and direct sieving
methods. Nonconstructive methods for these problems are more difficult than those
used in the proof of Wilson’s theorem, since v cannot be taken as large as necessary.
Finally, methods based on the integer program might be further investigated.
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A FORMAL THEORY OF CONSENSUS*

J. P. BARTHILEMY’ AND M. F. JANOWITZ:

Abstract. A broad set-theoretic model for consensus methods is presented. Within the framework of this
model, a very general characterization of the median rule as well as various types of quota rule and polynomial
rule are obtained. The model encompasses those situations where a single consensus object is achieved, as well
as those in which a multiple consensus is allowed.

Key words, consensus, voting rule, median, quota rule, semilattice
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Introduction. Consensus techniques have developed in such diverse fields as voter
preference, taxonomy, phylogenetics, mathematical economics, anthropology, and so-
ciology. For example:

Social welfare functions and voting theory are concerned with the necessity for
any society to arrive at a collective decision based on information provided by the in-
dividual members of that society.

Evolutionary biology deals with the reconstruction of evolutionary trees from
various estimates that are obtained from fossils as well as currently existing specimens.

Classical statistics summarize numerical data by means of the concept of central
value (e.g., mean, median, mode, etc.). Modern data analysis is becoming more and
more concerned with information obtained from more complex objects (rankings, par-
titions, hierarchical trees, undirected trees, etc.). Due to the lack of a natural numerical
structure for these objects, there is a need to develop a mathematical theory ofconsensus.

Arrow (1962) proposed a number of seemingly reasonable conditions that voting
schemes might enjoy and proceeded to show in his celebrated "impossibility theorem"
that no such voting scheme could exist. Since then there has been a flurry of activity
designed to prove analogues of this theorem in other contexts, and to establish contexts
in which the rather dismaying consequences ofArrow’s theorem are not necessarily valid.
The resulting theory has developed somewhat independently in a number of disciplines,
and we often see the same theorem proved differently in different contexts.

What is needed is a general mathematical model in which these matters may be
disposed of in a common setting. That is to say, we forget about the exact nature of the
objects and, using some abstract structure on various sets of objects under consideration,
concern ourselves instead with ways in which the structure can be used to summarize a
given family of objects. Proceeding in this manner, two approaches are already available:
one uses linear algebra (Rubinstein and Fishburn 1986)); the other uses ordered struc-
tures (Barthlemy, Leclerc, and Monjardet (1986)). The present paper deals with ordinal
models. Since Barbut 961 ), several authors have considered such models for a theory
of consensus (see Monjardet 980), 1990); Bandelt and Barth61emy (1984); Neumann
and Norton 1986); Leclerc (1990)). In papers like Monjardet (1990) the emphasis is
on those lattice polynomial rules that produce a unique consensus object from a fixed
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number of objects that are to be summarized. In the present paper the approach is
somewhat different:

(i) The number ofobjects to be summarized is not fixed. For example, in connection
with voting rules, it is important to know what happens when new voters are added or
when one or more ballots are disqualified.

(ii) A given family may have associated with it one or several consensus objects.
For example, assume that the simple majority rule is used to determine the outcome of
a vote on a motion. If there are more PRO votes than CON votes, the motion passes,
and it fails if there are more CON votes than PRO votes. In case of equality between
PRO and CON the decision is in doubt and simple majority rule can only produce
{ passes, fails } as a consensus.

Here is the general organization of the paper. Some preliminary ideas are discussed
in 0, with being devoted to a discussion of set-theoretic models for consensus
methods. Median semilattices are introduced in 2 in order to study the "majority rule"
consensus, and characterizations are provided therein for the so-called "median" con-
sensus. Section 3 contains material that generalizes the results of 2. First of all, consensus
rules are introduced that are more general than the simple majority rule. Second, these
new rules are extended from median semilattices to distributive semilattices, and finally
the need for distributivity is discussed.

0. Preliminaries. We recall here some definitions ofmathematical objects, occurring
as models in cluster analysis and social choice theory, that we shall use throughout
this paper.

Let U be a finite set. A weak order on U is a binary relation W on U which is
asymmetric (i.e., u Wv implies not (v Wu)) and negatively transitive (i.e., not uWv)
and not vWw) imply not uWw) ). An important point is that Wis a weak order if and
only if its "dual negation" N(W), uN(W)v if and only if not (vWu), is a complete
preorder (i.e., a complete transitive relation. Note that terminology in social choice theory
is not always uniform, so that what we have called a weak order is sometimes called a
"strict weak order," and what we called a complete preorder is sometimes called a "weak
order." At any rate, with every weak order Wthere is associated an equivalence relation
E(W) defined by uE(W)v if and only if uN(W)v and vN(W)u. An equivalence class
of E(W) is called a class of the weak order W, and W induces a linear order L(W)
(or -<) on the set of all classes of W. Let C1, C2, "", Cp be the distinct classes of W,
with CI <= C2 <= <= Cp. The q-section Sq of W is the union of the first q classes,
with the convention that So 3. So we get Sp U, and the sections of W constitute
a chain of subsets of U, from to U. Conversely, to each chain of subsets of U,
Uo c U Up U there is associated the weak order W defined by uWv if and
only if u Ui, v Uj.\ Ui, with < j. So we have a bijective map from the set " of all
weak orders on U to the set C of all chains of subsets of U, from to U. Moreover, the
weak order W is included in the weak order W’ (in the sense that uWv implies u W’v)
if and only if each section of W is a section of W’.

A hierarchical tree (alias n-tree) on U is a set H of subsets of U, such that U e H;
tH;foreachuU,{u}H;andforeachpairA, BH, ACIB{A,B,}.A
set A 6 H is called a cluster of H. The set U and the singletons { u are called the trivial
clusters. We shall let gfg denote the set of hierarchical trees on U.

A phylogenetic tree on the set U is a graph-theoretic tree T together with a map f
from U to the vertex set V of T such that each vertex in V\f(U) has a degree greater
than or equal to three. The deletion of any edge of T induces a bipartition on U that is
called a split of T. The splits of T fulfill the following compatibility property: if A, A’)
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and { B, B’} are splits then at least one among the four intersections A f) B, A’ fq B.
A N B’, A’ fq B’ is empty. We know from Buneman 1971 that a phylogenetic tree may
be recaptured from its set of splits B(T); the datum of a phylogenetic tree on U is
equivalent to the datum of pairwise compatible bipartitions of U. So introducing the
graph G(U) with all bipartitions of U as vertices and all pairs of compatible bipartitions
as edges, the phylogenetic trees may be interpreted as the complete subgraphs of G(U).
We shall use - to denote the set of phylogenetic trees on U.

1. A generalized setting for consensus functions. Let X be a finite set. We are con-
cerned with the determination of a consensus between several elements of X. We shall
not assume that such a consensus is unique.

1.1. Consensus rules.
DEFINITION 1. A consensus rule on X is a map c:X* P(X)\ { }, where P(X)

is the power set ofX, and X * tOk> 0 Xk with Xk as the k-fold Cartesian product ofX
with itself. A strict consensus rule is a mapping c:X* X.

An element x* (x, xk) ofX * is called a profile. We denote by (x) a constant
profile; i.e., a profile having each of its k components equal to some fixed x. An element
y c(x* is called a consensus of x*. In the case of a strict consensus rule, the element
c(x*) is called the consensus of x*.

Let k be a positive integer. A map from X into P(X)\ { } (respectively, to X)
is called a k-consensus rule on X (respectively, a strict k-consensus rule on X). Finally,
the symbol V will be used to denote the set { 1, 2, k of the first k positive integers.

1.2. Stability and stability families. The general idea here is that the elements of
X are complex objects built from bricks (e.g., the hierarchical trees are built from the
clusters). In the following, we shall look at properties involving essentially the bricks
occurring in the several consensuses of a profile, forgetting the ways in which the bricks
are used to construct the different types ofconsensus. A stabilityfamily (Barthrlemy and
Monjardet 1981 )) on X is a pair (S, f) where S is a set (the set of "bricks") and fa
map from X into P(S). To each consensus rule c and each profile x* 6 X*, the (S, f)-
solution set S(c, x*) is defined by the requirement that

S(c,x*): tA f(x).
xc(x*)

If T is a fixed subset of S and f(x) T for all x X, then S(c, x*) T for every
consensus rule c and every profile x*. Since the notion of a stability family now provides
no information about the nature of consensus rules, there seems little point in considering
this degenerate case./t will therefore be assumed that any stabilityfamily S, f) has the
property that there exist a, b Xsuch thatf(a) 4:f(b ). Indeed, in many concrete situations,
the mapping f is in fact one-to-one.

Examples and 2 below are often considered in the literature on consensus.
Example 1. X is either the set #/’ of all weak orders on the finite set U, or the set

o of all linear orders on U, or the set (9 of all partial orders on U. The set S is the
cartesian product U U. For each x 6 X, f(x) is the set of all ordered pairs (u, v) such
that u < v for the given order x.

Example 2. X is the set of all partitions on the set U; S U U, and for each
x 6 X, f(x) is the set of all pairs (u, v) such that u and v are in the same class of the
partition x. Thusf(x) is the equivalence relation associated with the partition x.

A more detailed explanation of this can be found in the paper From copair hypergraphs to median graphs
with latent vertices, J. P. Barthrlemy, Discrete Mathematics, 76 (1989), pp. 9-28.
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DEFINITION 2. Let c be a consensus rule, and let (S, f) be a stability family on X:
(i) c is stable on solutions whenever, for every positive integer k, for all s S and

for all profiles x*, y* 6 Xk,

i: se f(xi) } { i: se f(Yi) }
implies that

seS(c,x*) ifand onlyifseS(c,y*).

(ii) c is neutral on solutions whenever, for every positive integer k, for all s, S
and for all profiles x*, y* Xk,

{i: se f( xi) i: t f( yi) }
implies that

s S(c, x* if and only if e S(c, y* ).

(iii) c is monotone neutral on solutions if and only if for every positive integer k,
for all s, e S and for all profiles x*, y* e X*,

(i: sG f(xi)}
_

(i: t6 f(Yi)}

implies that

teS(c,y*) whenever seS(c,x*).

The above definitions can be applied to strict consensus rules either by identifying
x with { x } for each element of X, or by defining the (S, f)-solution set by the rule
S(c, x*) f(c(x*)). Obviously, they can also be adapted to the case of k-consensus
rules. In that spirit we recall in Proposition a fundamental result for strict consensus
rules in social choice and in cluster analysis.

In Examples and 2, stability on solutions is usually called the decisiveness condition
(when it is fulfilled, the consensus rule c is said to be decisive; Ferejohn and Fishburn
(1979)). Recall that a strict consensus rule on the set of binary relations is said to be
paretian if and only if for each profile x* X, Ol<=i_< k X C(X* ). Proposition sum-
marizes some familiar results in social choice theory and mathematical taxonomy; part
(i) is essentially the classical Arrow theorem (Arrow (1962)), under the decisive case;
part (ii) is essentially a result by Mas-Collel and Sonnenschein (1972) and Brown 1975 );
part (iii) is the Mirkin theorem (Mirkin (1975)) in the improved formulation by Le-
clerc(1984).

PROPOSITION 1. (i) ForX orX q, the decisive andparetian strict consensus
rules are exactly the dictatorships; that is, for each integer k there exists an integer
i(k) <= k such that for each x* (x, Xk) eXk, c(x*) Xi(k).

(ii) For X (9, the decisive and paretian strict consensus rules are exactly the
oligarchic rules; that is to say, for each integer k, there exists a nonempty subset Wk of
V such that for each x* (x, Xk) (9, C(X*) NiEWk Xg.

(iii) For X , the decisive and paretian strict consensus rules are exactly the
oligarchic rules.

Another classical property ofconsensus rules is the notion ofsymmetry. Translated
in terms of stability families this becomes the following definition.

DEFINITION 3. A consensus rule c is symmetric on solutions if and only if for each
profile x* (Xl, Xk) and each permutation r of Vk,

S(c,x*)=S(c,a(x*)) where tr(x*)=(x(), ,X(k)).
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In case ofa strict consensus rule c, we shall just say that c is symmetric. To illustrate
the notion of symmetry, we mention the result below, which follows immediately from
Proposition 1.

COROLLARY 2. (i) For X t1/" or X f’, there is no strict consensus rule that is
paretian, decisive, and symmetric.

(ii) For X (_9 or X ’, the only strict consensus rule that is paretian, decisive,
and symmetric is the unanimity rule, which is defined by c(x* f3 { xi: <= <= k } for
x* Xk.

Working in the general framework of stability families, we now describe the structure
of a neutral consensus rule.

1.3. Neutral consensus rules on a finite set. Let X be a finite set with (S, f) a
stability family on X. We are concerned with the characterization of consensus rules that
are either neutral or monotone neutral on solutions. The general flavor ofthe results can
be seen at the outset from the following two lemmas.

LEMMA 3. Thefollowing conditions on the consensus rule c are equivalent:
c is neutral on solutions.

(ii) For each positive integer k, there is a collection Dk ofsubsets of Vk such that
for any profile x* X it is true that

sS(c,x*) ifand only if{i: s f(xi)}D.

Proof. The assertion that (ii) implies (i) is clear, so we assume the validity of (i)
and seek to prove (ii). Fix a positive integer k and consider profiles x* X. Define D
by the rule D D if and only if for some profile x* and some s S,

D i Vk: s f(xi) ) and s, S(c, x* ).

By neutrality, if S and if y* (Yl, Y) X, then

{ieVk" te f(yi)}Dk impliesteS(c,y*).

Define I,: X P(S)\ { by

seb(x*) iff{ieV" s f(xi)}Dk.

We need to prove that if(x*) S(c, x* ). If s
(x*). On the other hand, if s e if(x* ), then

S and some profile y* Xk, we have

{ ie Vk" te f( yi) } ie Vk" s f( xi)

and e S(c, y* ). By neutrality, s
LEMMA 4. Let c be neutral on solutions and define D as in Lemma 3. Then c is

monotone neutral on solutions ifand only ifeach D is an orderfilter ofP(V) in that D
is not empty and D Dk, D c D’ together imply that D’ D.

Proof. If each D is an order filter of P(V), it is clear that c is monotone neutral
on solutions. To obtain the converse, we assume that c is monotone neutral on solutions
and D e D with D c D’. Choose elements a, b X such that f(a) is not contained
in f(b). Define x* (xl, xk) by xi a if D’ and Xi b otherwise. The fact
that D D implies the existence of a profile y* Xk and an element s S such that
sS(c,y*) and D-{ieV: sf(yi)}. NOW if s’ef(a)\f(b), we see that D’=
{i Vk" S’ f(xi)}. Since c is monotone neutral this puts s’ e S(c,x*), whence
D’ e Dk.
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This also leads to a formula for S(c, x* when c is monotone neutral on solutions.
PROPOSITION 5. Thefollowing conditions on the consensus rule c are equivalent"

c is monotone neutral on solutions.
(ii) For each positive integer k, there exists a family Jk,1,"’, Jk,w) of sub-

sets of F, no pair of which is comparable, having the property that for any x*
(x, x) X,

S(c,x*) U [ 0 f(xi)]._
p_ w(k) ieJk,p

Proof. Condition (ii) clearly implies (i), so assume (i). Define D as in Lemma 3,
and note that by Lemma 4, each D is an order filter of P(Vk). Let J,, ..., J,w) be
the minimal elements of Dk. Then if x* e Xk, we know that s e S(c, x* implies that

i6 Vk" S6 f(Xi) } Dk,
SO it contains some Jk,p. But then s fqj,.,f(xi). On the other hand, s iJ.,f(xi)
puts s S(c, x*) by c being monotone neutral on solutions. q

DEFINITION 4. The index of the element s e S in the profile x* e X is defined by
the formula

3,(s,x*) { ie V" se f( xi) } l/k.

We can now state Corollary 6.
COROLLARY 6. Thefollowing two assertions on the consensus rule c are equivalent:

c is monotone neutral and symmetric on solutions.
(ii) Corresponding to each positive integer k, there is a rational number t

(0 <- t <= such that for all profiles x* X,
S( c,x* { seS" 3’( s,x* >= tg }.

In that s e S(c, x*) if and only if the assertion s e f(xi) is true for a certain quota
of indices i, this constitutes a characterization of"quota rules" on solutions. For a fixed
positive integer k, these are often called "counting rules." This notion of quota rule will
be further studied in 3.

1.4. Consistent consensus rules and median consensus of a finite set.
DEFINITION 5. A consensus rule c on the set Xis consistent (Young (1974), Young

and Levenglick (1978)) if and only if for all profiles x*, y* the condition c(x*) f)

c(y*) 4 implies that

c(x* y* c(x* o c(y* ),

where x* y* is the concatenation of the two profiles x* and y*.
For instance, if c is consistent and if c(x) { x ) for each x X, then x c { x*)

implies c(x* x) { x }.
The median consensus is an important example of a consistent consensus rule. In

order to define it, we must consider metrics on the finite set X.
DEFINITION 6. The median consensus on the finite metric space (X, d) is the con-

sensus rule m on X defined by

m(x* { xX:D(x,x* is a minimum),

where x* X* and D(x, x*) ,_i_k d(x, xi).
LEMMA 7. The median consensus on thefinite metric space (X, d) is consistent.
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Proof. Let x m(x*y*) and y re(x*) CI re(y*). Then D(y, x*) <= D(x, x*),
D(y, y* <-_ D(x, y* ), and D(x, x* y* <- D(y, x* y* ). It follows that

D(x,x*)+D(x,y*)= D(x,x*y*)<=D(y,x*y*)

D(y,x*) + D(y, y* <= D(x,x*) + D(x, y*).

This forces D(x, x*y* D(y, x* y* ), so y re(x* y* ). But now

D(x,x* + D(x, y* D(y,x* + D(y, y*

with D(y, x*) <- D(x, x*) and D(y, y*) <= D(x, y*) also forces

D(x,x* D(y,x* and D(x, y* D(y, y*

from which it follows that x m(x*) fq re(y* ). ]

2. The median consensus on median semilattices.
2.1. Median semilattices. Median semilattices constitute an immediate and im-

portant generalization of both distributive lattices and tree semilattices. They arise in a
variety of situations and for that reason results true for all median semilattices often have
far-reaching consequences. For classical results on median semilattices, median graphs
and median algebras, the reader is referred to Bandelt and Hedllkovfi (1983).

We ask the reader to recall that a semilattice is a partially ordered set S having the
property that every pair of elements has a meet. The dual notion is called ajoin semilat-
rice, and to say that S is a lattice is to say that both S and its dual are semilattices. Fi-
nally, the lattice S is called distributive if for all a, b, c S, it is true that (a V b)/k c
(a/k c) V (b/ c). M is an order ideal of the partially ordered set S ifM is a nonempty
subset of S having the property that x M and u =< x together imply that u M. An
order ideal of the form (x] { t: -< x } for some x S is called a principal ideal of S.

DEFINITION 7. A median semilattice is a semilattice such that:
(i) Every principal ideal is a distributive lattice, and
(ii) Any three elements have an upper bound whenever each pair of them has an

upper bound.
A useful tool for working with median semilattices is the so-called Sholander em-

bedding.
PROPOSITION 8 (Sholander (1954)). Every median semilattice (finite or infinite)

(M, <= can be embedded in a distributive lattice L, <=) such that:
(i) M is an order ideal of(L, <-) and
(ii) each element ofL is the join offinitely many elements ofM.
An element s of a partially ordered set P is called sup-irreducible if it is not the

smallest element of P and it cannot be expressed as the supremum of finitely many
elements distinct from s. The next remark follows directly from Proposition 8.

Remark 9. The sup-irreducibles of a median semilattice are exactly the sup-irre-
ducibles of the Sholander distributive lattice described in Proposition 8.

A partially ordered set P is said to have finite length if there is an upper bound on
the lengths of its chains. In a poset P of finite length with smallest element 0, we can
define the height h (x) of the element x to be the least upper bound of the lengths of the
chains connecting x with 0. The element x covers y when x > y and there is no ele-
ment z such that x > z > y. P is said to be graded by its height function provided that
h(x) h(y) + whenever x covers y. In particular, a median semilattice M with 0 of
finite length is graded by its height function h, and the least move (or shortest path)
metric on the diagram ofM is given as in Monjardet 1981 by

d(x, y) h(x) + h(y)- 2h(x A y).
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From here on, d will be referred to as the lattice metric on M. From Proposition 8, it
follows that a height function onMextends naturally to a height function ofits Sholander
distributive lattice L. Hence we have Remark 10.

Remark 10. The embedding ofa median semilattice having finite length with 0 into
its Sholander lattice L is an isometry with respect to the lattice metric d.

Proposition 8 allows us to view a median semilattice as an order ideal ofa distributive
lattice. On the other hand, not every order ideal of a distributive lattice will produce a
median semilattice. An easy example may be obtained by letting L denote the lattice of
all subsets of the three element set S { x, y, z }, and taking M L\ { S }. Then { x },
{ y }, and { z } have pairwise upper bounds while these three elements of M have no
common upper bound. For further details, see Janowitz 1991 ).

2.2. Examples of median semilattices. A first example of a median semilattice
(Bandelt (1982)) is obtained from the frames of a poset. Let (E, =<) be a finite poset,
and call Max and Min the sets of, respectively, maximal and minimal elements of
(E, -< ). In connection with the next definition we agree that a closed interval of a poset
(P, =<) will be a set of the form [a, b] c: a =< c =< b }, where a < b. A subposet of
(P, _-<) is a nonempty subset F of P equipped with the same partial order as that of P.

DEFINITION 8. Aframe of the finite poset (E, -< is a subset F ofE such that:
(i) Min F, Max F, and
(ii) Every closed interval of the induced subposet (F, =<) is a chain.
On the other hand, a tree-poset is a poset (P, _-< in which every principal ideal is a

chain. By condition (ii), frames appear as generalized tree-posets. Moreover, for a finite
set U, a subset H ofE P(U)\ { is a hierarchical tree if and only if it is a frame of
(E, ___).

If (E, =< has a largest element I and a smallest element O, then the frames ofE are
nothing but the chains from 0 to 1. Thus the weak orders on the finite set U may be
interpreted as the frames of P(U) ordered by inclusion.

Let Fr (E, =< denote the set of frames of (E, =< ), and let Fr (E, =< be ordered by
inclusion. Obviously, if F 6 Fr (E, =< and Max U Min

___
G
_

F, then G 6 Fr (E, -< ).
Moreover, we can easily show that if A, B, C are frames of (E, =<) such that A B,
A t.J C and B C are each frames, then so is A LIB t_J C. This establishes Proposi-
tion 11.

PROPOSITION 1. Fr E, <= ordered by set inclusion is a median semilattice.
Note that in Fr (E, <-), the sup-irreducible elements are precisely the atoms

Max t.J Min LI { x with x neither maximal nor minimal. Furthermore, the principal
ideals of Fr (E, -< are more than just distributive lattices since they are, in fact, Boolean
algebras.

We have already noted that Fr (P(U)\ ), _) is the set a’Cg of all hierarchical
trees on U, while Fr (P(U), is the set #/" of all weak orders on U. In g, the smallest
element is the bush (i.e., the hierarchical tree admitting only trivial clusters) and the
sup-irreducibles are the hierarchical trees with only one nontrivial cluster. So the set of
sup-irreducibles of 3t may be identified with the nonsingleton proper subsets of U. In

the set inclusion order may be stated as follows: W
___
W’ if and only if each class of

W is the union of classes of W’. The smallest element of W is the trivial weak order
(which admits only the class U) and the maximal elements of /C are the linear orders
on U. The sup-irreducibles of #/’ are the two-class weak orders A < U\A, so the set of
all sup-irreducibles of/C may be identified with P( U)\ { , U}. For further investigations
into the structure of and /" see Leclerc 1985 ), Barth61emy, Leclerc, and Monjardet
(1986), and Janowitz 1985 ), respectively.
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It is easy to show that the set c of complete relations on U also forms a median
semilattice. Here the sup-irreducibles are those relations of the form (U U)\ { a, b }
with a :/: b, and the maximal elements are those complete relations R having the property
that aRb with a 4: b implies the failure of bRa. Thus every linear order is a maximal
element of as well as /’.

Another example of a median semilattice is a tree semilattice. This is a semilattice
T, =< with a smallest element 0 such that every principal ideal is a chain (whence T

Fr T, =< )). The diagram of T, =< is a directed tree that is rooted at 0. Since principal
ideals oftree semilattices are chains, while principal ideals offrames are Boolean algebras,
it follows that no tree semilattice ofheight greater than two can be a semilattice offrames
of a poser.

A final example of a median semilattice is obtained from the complete subgraphs
(or cliques) ofa graph. Let C1 (G) denote the set of cliques of G ordered by set inclusion.
Obviously, if C C1 (G) and C’

_
C, then C’ 6 CI (G). Moreover, we can easily show

that if A, B, C are cliques of G such that A U B, A U C, and B C are each cliques,
then so is A t_J B t_J C. We state this formally as Proposition 12.

PROPOSITION 12. C1 G) ordered by set inclusion is a median semilattice.
Since the phylogenetic trees on U appear as cliques in some graph, the set - of all

phylogenetic trees on U is a median semilattice for the inclusion order between split sets.
The smallest element of- is the one-vertex tree and the sup-irreducibles are the bone-
trees (i.e., the trees with just one edge). Bone-trees are in one-to-one correspondence
with bipartitions of U. So the set of all sup-irreducibles of- may be identified with the
set B(U) of all bipartitions of U. Further investigations of the structure of - may be
found in Barthrlemy and Guenoche (1988).

2.3. Some additional considerations for consensus rules on semilattices. Let X be
a finite semilattice. Denote by 0 the smallest element of X. Take as a stability family
( 1.2) the set S consisting of 0 and the sup-irreducibles ofX, and the map fdefined by

f(x)= {sS" s<=x}.
Note that each nonzero element ofX may be expressed as the join of a family of sup-
irreducibles, so the mapping fis one-to-one.

In order to avoid any possible confusion, we shall use terms like "stable on sup-
irreducible solutions (SIS)" or "symmetric on SIS" in place of the corresponding terms
"stable on solutions" or "symmetric on solutions."

For xeX and se S, let x[s] s if s_-< x with x[s] 0 otherwise. For x*
(Xl, x) e X*, let x*[s] be the profile (x[s], x[s]). Such profiles are called
skeleton profiles.

DEFINITION 9. A consensus function c on X is said to be efficient if and only if it
is true that:

(i) For each constant profile (x), c((x)) {x}.
(ii) For each s e S and x* eX*, c(x*[s]) c_ [0, s].
In the remainder ofthis paper, we shall look for characterizations ofgeneral consensus

rules as defined in 1.1. Median semilattices and especially the majority rule in median
semilattices constitute a good clue as to what to expect and will be studied first.

2.4. Majority rule and median consensus. Consider again a finite median semilattice
Mand the stability family (S,f) defined as in 2.3. Then the index ofthe sup-irreducible
s in the profile x* (Xl, xk) is the number

"r(s,x*) I{ i" SXi} Ilk.
Before proceeding we need a pair of definitions.
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DEFINITION 10. The elements x, y of a semilattice are said to be compatible when
they have a join.

DEFINITION 1. For each integer k and for each x* (Xl, xk) Mk, the
majority rule object a(x*) is given by

i ,i,_ [ 1,
where for each real number h, [h] denotes the largest integer n N h.

Definition 11 provides a generalization of the well-known Condorcet 1785 pro-
cedure. From Bandelt and Bahrlemy (1984), we know that (x* always exists for any
profile x*.

LEMMA 13. For each profile x* and each s e Sfor which (s, x* s is compatible
with a(x* ).

Proof. This result follows from the following observations:
Because (s, x* , for each I V with I + k/2 ], s N xi for at least

one I, so s is compatible with x for at least one I.
(2) If s is compatible with x M, it is compatible with y for each y N x.
(3) If s is compatible with each ofy, yp and ify Yl V V Yp exists, then

s is compatible with y.
Now consider the lattice metric d on M (cf. 2.1 and the median consensus m on

the metric space (M, d) (cf. 1.4). A result from Bandelt and Bahrlemy (1984), which
extends a result of Barbut 1961 ), stipulates the next result.

PROPOSITION 14. Let M be afinite median semilattice. Then for each profile x*
M, a(x * m(x * ). Moreover, ifk is odd, then m(x * { (x* }.

When M is a distributive lattice, we know from Monjardet (1980) and Leclerc
(1990) that m(x*) is the interval [a(x*), (x*)], where

In any median semilattice re(x*) is the set ML[(x*),(x*)], where
L[(x* ), (x * is the interval z e L: (x* N z N (x* ofthe Sholander distributive
lattice L ofM cf. 2.1 ). Our first goal is to arrive at a more detailed definition ofm(x*).
To do that, we need some additional technical facts.

LEMMA 15. Assume that M is a distributive lattice. Let x, y M and s S. Then
s x V y implies s N x or s y.

Pro@ The proof is well known and follows from the fact that

s=(s ax) v (s a y).

LEMMA 16. Assume that M is a distributive lattice and that x* M. Then:
(i) The set ofall sup-irreducibles below (x*) is {s e S: (s, x*) > }, and
(ii) The set ofall sup-irreducibles below (x*) is s e S" (s, x*) }.
Pro@ To establish (i), we must show that for x*,

(s, x*) > implies s N (x*), and
(2) e S and N (x*) implies (t, x*) > .

(1) Consider s 6 S with (s, x*) > . There exists a subset I of V with I11
[1 + k2] with s xi for each e I. Hence s N (x* ).
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(2) Let e S with <= a(x*). It follows from Lemma 15 that there exists a subset
I of Vk with cardinality + k/2 such that <= AiI xi. In other words, 3"(t, x* > 1/2.

The same type of argument will establish (ii).
LEMMA 17. Assume that M is a distributive lattice. For each profile x*, re(x*) is

the set ofall elements oftheform a(x*) V y where y is a join ofsup-irreducibles s such
that 3"( s, x* 1/2.

Proof. If y is a join of sup-irreducibles s such that 3’(s, x* 1/2, then y =</3(x* ),
whence a(x* V y <= [3(x* ). Conversely, ifx re(x* ), and ifs is a sup-irreducible below
x, then 3"(s, x*) >_- 1/2.

Now we return to the context of median semilattices.
PROPOSITION 18. Let M be a median semilattice, and let x* M*. Then:
(i) a(x*) is the supremum ofall s S such that 3"(s, x*) > 1/2.
(ii) re(x*) is the set ofall elements oftheform

a(x*) V s V V%

such that the indicated supremum exists in M, and 3"( si, X*) 1/2 for each index i.

Proof. Use the Sholander embedding ofM into a distributive lattice L. The prop-
osition then follows from Lemma 16 and the following observations:

The sup-irreducibles of L and M are exactly the same (see Remark 9).
(2) Medians in M are medians in L (see Remark 10).
(3) Joins in L are either joins in M or else elements of L\M (see Proposi-

tion 8). 73

The freedom we have to either put, or not put, a sup-irreducible s such that
3"(s, x* 1/2 into a median ofx* is called, following Young and Levenglick 1978 ), the
quasi-Condorcet property.

DEFINITION 12. A consensus rule c on the semilattice X is quasi-Condorcet if and
only if, for each s S and each x* X* such that 3"(s, x*) 1/2, s compatible with x
implies that x c(x* if and only if x V s c(x* ).

2.5. A characterization of the median consensus in a median semilattice.
THEOREM 19. Let c be a consensus ruleon the median semilattice M. Then c m

ifand only ifc satisfies thefollowingfive conditions:
c is efficient.

(ii) c is stable on SIS.
(iii) c is symmetric on SIS.
(iv) c is consistent.
v c is quasi-Condorcet.

Proof. m is obviously efficient and symmetric on SIS. Stability on SIS comes from
the fact that for each x M*, S(m, x*) s S: 3"(s, x*) >= 1/2 }. From Lemma 7, m
is consistent, and the quasi-Condorcet condition follows from Proposition 18.

Conversely assume that c satisfies (i)-(v). Because of (v) it suffices to establish that
for each s e S, each x* M* and each x c(x* ):

If 3"(s, x*) > 1/2, then s _-< x.
(2) If 3"(s, x* < 1/2, then s < x fails.
Let x* e Mk, 3"(s, x*) > 1/2 and suppose that for some x c(x*), s < x fails.

Then s <= xi for p components x of x*, where p > k p. Set y* x*(X)zp_ k. By
efficiency, c((X)zp_) {x}. Hence by consistency, c(y*) {x}. Now consider the
skeleton profile y* [s]. Using efficiency and the quasi-Condorcet condition, we get s
S(c, y* Is]) and by stability, s S(c, y*). But this forces s _-< x, a contradiction.
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(2) Suppose now that 3’(s, x*) < 1/2. Assume that s S(c, x*) and consider the
induced skeleton profile x* Is]. By stability on SIS, s S(c, x* [s]). Suppose s occurs p
times in x*[s] where p < k p. Let y* (s)o(O)p and note that by quasi-Condorcet
and efficiency, 0 c(y*). By efficiency, c((O)2k-p) {0 }. Then by symmetry,

S(,x*[s])--S(,y*(O)k_Zp)--{O} a contradiction. E]

2.6. Applications. In particular, Theorem 19 may be applied to the median semi-
lattices described in 2.2. When M is the median semilattice of all hierarchical trees
on the finite set U, we re-obtain a result from Barthrlemy and McMorris (1986). In this
paper the fact is also established that each condition of Theorem 19 is also necessary.
We leave the reader to state the result when M is the median semilattice - of all phy-
logenetic trees on U. In the case where M is the median semilattice of all weak orders
on U, we get a new possibility theorem for "social choice." Because this field is mainly
characterized by impossibility theorems (like Arrow’s theorem when nondictatorship is
required; cf. Proposition ), this theorem deserves to be fully stated.

According to the median semilattice structure of described in 2.2 we consider
as a stability family the pair (P(U), f), where the map fassigns to each weak order its
set of sections (cf. 0). So for a profile W* (W, W) of weak orders and a
consensus rule c on "/g" a solution section is a subset V of U such that there exists some
W e c(W*) so that V is a section of W. The notions of stability on solution sections,
symmetry on solution sections, efficiency, and the quasi-Condorcet condition follow
immediately.

Any weak order W on a finite set U may be transformed to any other weak order
on U by applying the operations of either merging two consecutive classes or dividing a
class into two consecutive classes. The lattice metric on is simply the count of the
minimal number of such operations needed to perform the required transformation.
Proposition 18 provides the description of the median consensus on and it follows
from Theorem 19 that: The median consensus on is the only consensus rule that is
efficient, stable on solution sections, symmetric on solution sections, consistent, and quasi-
Condorcet

3. The t-consensus rules in a semilattice.
3.1. From median consensus to t-consensus. In this section we shall be dealing exclu-

sively with finite semilattices. A median semilattice structure is needed to obtain the
fact that for any profile x*, m(x*) is the set of all elements of the form a(x*) V s V

V Sp such that the indicated supremum exists in X and -r(s;, x*) 1/2 for 1, 2,
p (see Proposition 18 ).
Suppose now that X is a semilattice having the property that for each x* X*,

a(x*) V {s" "r(s, x* > 1/2)} exists and define the consensus rule ml/2 by

ml/2(x* { a(x* V y: y is the supremum of sup-irreducibles s

with "r(s,x* 1/2 and y compatible with a(x* }.
Does Theorem 19 characterize this m/2 consensus rule? The next proposition shows
that the answer is no.

PROPOSITION 20. For a semilattice X on which m/2 can be defined, thefollowing
conditions are equivalent:

roll2 is consistent.
(ii) Each principal ideal ofX is a distributive lattice.
Proof. Since X is a finite semilattice, every principal ideal ofX is a lattice. To show

that (i) implies (ii), it is sufficient to verify that the consistency of m/2 prevents either
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(al

FIG.

(b)

of the lattices depicted in Fig. from being sublattices of X. By routine but tedious
arguments we can verify that in both sublattices of Figs. (a) and (b),

ml/2(X4,Xl,X2)-- {X4), x4Eml/2(Xl,X3),

while

x4 m /z(X4,X ,X ,X,X3 ).

This shows that m/2 is not consistent. That implication (ii) implies (i) will be established
in Lemma 25. D

This m/2 consensus rule appears as a special case ofa more general type ofconsensus
rule on a semilattice X. To see this, let be a real number such that 0 -< =< 1. If for each
profile x* e X *, at(x* W s S: 3"(s, x* > ) exists, then the mt consensus rule is
defined by taking mr(x*) to be all elements that can be expressed in the form at(x*) /
s X X sp with 3"(si, x*) t. Note that too(X*) is the principal filter generated by
/iXi, while m (x*) is the principal ideal generated by/ixi

In a median semilattice M, for > 1/2, at(x*) must necessarily exist because
3’(s, x*) > 1/2 and 3"(s’, x* > 1/2 together force s, s’ to have a common upper bound. In
view of this, mr(x*) [at(x*), 3t(x*)], where 3t(x*) W {s S: 3"(s, x*) >= t}.

So the mt consensus rules appear as a special case of the quota rules introduced in
1.3. Our goal is to characterize the mt rules in a manner analogous to that ofthe median

rule. Proposition 20 tells us that this goal cannot be achieved unless every principal ideal
ofX is a distributive lattice.

DEFINITION 13. A semilattice X is called distributive if every principal ideal of X
is a distributive lattice.

It is well known (see Lemma 15 that X is a distributive semilattice if and only if
for compatible x, y X and s S, s _-< x x/y implies s _-< x or s _-< y. Lemma 21 is an
immediate consequence of this observation. From now on, we shall use it as a basic fact
without specifically mentioning it.

LEMMA 21. Let X be a distributive semilattice, and let [0, 1] be a real num-
ber for which ct is defined. Then for each x* X* we have s <= ct(x*) if and only if
,(s, x*) > t.

3.2. The quota number of a semilattiee.
DEFINITION 14. The quota number q(X) of the semilattice X is the infimum of the

real numbers [0, 1] such that t(x*) exists in X for each x* X*.
It is easy to show that q(X) always exists for any finite semilattice Xand that ct(x*

exists for each x* X * if and only if q(X) -< _-< 1. Furthermore, to say that X is a lattice
is equivalent to the assertion that q(X) 0. More precisely, we have Proposition 22.

PROPOSITION 22. Let X be a semilattice. Then either q(X) 0 andX is a lattice,
or else q(X) >= 1/2.
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Proof. Assume q(X) < 1/2. Let a, b e X and take x* to be the profile (a, b). Then
if s f(a) U f(b), clearly "r(s, x*) _-> 1/2. The existence of a V b now follows from the
fact that V { s: s f(a) U f(b) } exists, and this establishes that q(X) 0.

As an obvious consequence of Proposition 22, we have Corollary 23.
COROLLARY 23. Let M be a median semilattice. Then either q(X) 0 andX is a

distributive lattice, or else q(M) 1/2 andM is not a lattice.
Remark 24. Quota numbers have been further investigated in Bandelt and Meletiou

(1990) as well as BandeR, Janowitz, and Meletiou (1990). It is shown there that ifX is
a semilattice in which every principal ideal is a lattice, then q(X) exists and belongs to
the set { 0, 1/2, , ], 1}. Hence q(X) is necessarily a rational number.

3.3. Consistency and t-Condorcet property for the mt rule.
LEMMA 25. Let X be a distributive semilattice, and let be a real number in

[q(X), 1]. Then the consensus rule mt is consistent.
Proof. This would follow ifwe could just show that if rnt(x* rot(y* 4 , then:
(1) at(x*) V (y*) at(x’y*), and
(2) 7(s, x* y* >= if and only if 3’(s, x* >= and -y(s, y* >= t.

Assume then that mr(x*) f mr(y*) 4: and let s be such that -y(s, x*) > t. Then s _-<
w for each w mr(x* and consequently s S(mt, y* ). That is to say, we have:

(i) -y(s, x*) > implies 7(s, y*) >- t, and
(ii) "y(s, y*) > implies "y(s, x*) >- t.

In what follows, assume that x* 6 M" and y* 6 M.
Let s 6 S with s <= at(x*). Then by (i), 7(s, y*) >_- t. Assume s <= xi for k

indices and s <- yj- for k2 indices. This says that k > tn and k2 >-_ tn2, so k + k2 >
t(n + n2). But this forces 3’(s, x’y*) > t, whence s <-_ at(x’y*). Since this is true
for all sup-irreducibles below at(x*), we see that at(x*) <= at(x’y*). A similar argu-
ment shows that at(y*) <-- at(x* y*). Assume now that s S and s <= a(x* y*). Then
"y(s, x* y*) > t. Suppose s <= xi for k indices and s _-< yj. for k2 indices. It follows that
k + k2 > t(n + n2). In view of this we cannot have both k <= tn and k2 --< tn2, so at
least one of the inequalities -y(s, x* > or 7(s, y* > must be true. But this says that
s a(x*) or s <= at(y*) and we have established ).

(2) Let s 6 S with 3’(s, x* >_- and ,(s, y* >_- t. Then with k, k2 defined as above,
k >= tn and k2 >= tn2, so k + k2 -> t(n + n2). Consequently, "g(s, x’y*) >-_ t. On the
other hand, if 7(s, x* y*) _>- t, and with k, k2 as above, it must be true that kl + k2 >_-
t(nl + nz). Using (i), we see that

k < tn implies k2 =< tn, and

k2 < tn2 implies kl --< tn.
In either case, the contradiction (kl + k2) < t(nl + F/Z) is forced.

DEFINITION 15. Let X be a semilattice, and let e [0, 1] be a real number. A
consensus rule c on X is t-Condorcet if and only if for each s e S and each x* e X*
such that 7(s, x*) t, s compatible with x, implies that x c(x*) if and only ifx V
sc(x*).

So, the quasi-Condorcet condition, as defined in 2.4 is just the 1/2-Condorcet con-
dition in a median semilattice.

3.4. A characterization of the mr-rule.
THEOREM 26. LetXbe a distributive semilattice, let q(X), be a real number,

and let c be a consensus rule on X. Then c mt ifand only ifc satisfies thefollowingfive
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conditions:
c is efficient.

(ii) c is stable on SIS.
(iii) c is symmetric on SIS.
(iv) c is consistent.
v c is t-Condorcet.

Proof. For any choice of t, mt is obviously efficient and symmetric on SIS. Stability
on SIS comes from the fact that for each x* X *, S(mt, x* { s S: 3"(s, x* _-> t }.
From Lemma 25, mt is consistent, and the t-Condorcet conditions follow directly from
distributivity and the definition of m.

Conversely, suppose that c satisfies (i)-(v). Because of (i) it suffices to show that
for each s S, x* X*, and each x c(x* ):

If 3’(s, x*) > t, then s _-< x.
(2) If 3"(s, x* < t, then s =< x fails.

We have already noted in Remark 24 that is rational, so we write rn ! n as a quotient
in lowest terms of two positive integers, and let x* Xk.

Suppose 3"(s, x*) > and that for some x c(x*), s <= x fails. Suppose that
s <= xi for p components xi of x*, where p/k > m/n, so np > mk. Let y* be x’x*
.-x* (m factors) and z* Y*(X)np-mk. By consistency, c(y*) c(x*) and by

efficiency e((x)np_ mk) { x }. A second application of efficiency now produces c(z*
{x}. Now consider the skeleton profile z*[s]. By the t-Condorcet condition, s
S(c, z*[s] and by stability, s S(c, z* ). But this forces s -< x, a contradiction.

(2) Suppose 3"(s, x*) < t. Assume that s S(c, x*) and consider the induced
skeleton profile x* [s]. By stability on SIS, s S(c, x* [s]). Suppose s occurs p times in
x*[s] where np < mk. Let y* (S)mp(O)(n-m)p, SO 3"(S, y*) t. But by t-Condorcet
and efficiency, 0 c(y*). By efficiency, C(()mk-np) {0). Hence by consistency,
c,(y* (O)mk_np) { }, a contradiction. The point is that x*[s] concatenated with itself
n times is a permutation of y* (0)mk- rip.

1"-]

3.5. Discussion on distributivity. We see from Proposition 20 that the distributivity
of the semilattice X is needed to obtain a characterization of m/2 using consistency.
More generally, when the t-consensus rule mt exists, it is, in fact, monotone neutral on
SIS. In view of this, it seems reasonable to attempt a characterization of the m., rules in
terms of this concept. The first question we shall ask is when there exists a single real
number (0 -< =< such that one of the following conditions hold:

(a) For each profile x* X*,S(c,x*) {sS: 3"(s,x*) >- t);
(b) For each profile x* 6X*,S(c,x*) {sS: 3"(s,x*) > t).

To see the difference between the two conditions, take > 1/2 >_- q(X) to be rational, and
consider the strict consensus methods defined by taking c(x*) ct(x*) and c’(x*)
/3t(x*). The rule c satisfies (b), while c’ satisfies (a). As long as X has more than one
nonzero sup-irreducible element, Proposition 5 is valid, so it is also informative to compare
this with Corollary 6. The idea is that we wish to somehow replace the family { t } with
a single number t. For there to be any hope of doing this, the various order ideals D
must be related to each other. Consistency would of course do this, but it turns out that
we can get by with a much weaker condition.

DEFINITION 16. The consensus rule c is called weakly consistent if c(x*) c((x*))
for all x* X* and all positive integers k. Here (x*) x’x*. x* (k times).

DEFINITION 17. The least index ofthe consensus rule c is defined to be the infimum
of all numbers such that for each profile x*, 3"(s, x*) > implies s S(c, x* ).
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PROPOSITION 27. Let c be a consensus rule on the semilattice X, and let be the
least index ofc. Assume that q(X) <- <-_ 1. Conditions (iii), (iv), and (v) all hold ifand
only ifeither or (ii) is true:

(i) For each profile x * X*,S(c,x*)= {sS: 3"(s, x*) > t}.
(ii) For each profile x* X*, S(c, x* s e S: 3"(s, x* >_- }.
(iii) c is weakly consistent.
(iv) c is monotone neutral on SIS.
(v) c is symmetric on SIS.
Proof. Evidently, either (i) or (ii) will imply the validity of (iii), (iv), and (v). So

let us assume that (iii), (iv), and (v) all hold. Consider x* 6 X*. By construction of t,
s S(c, x*) implies that 3"(s, x*) >_- t. On the other hand, if 3"(s, x*) >_- t, there must
exists’ Sand y* Xk’ such that 3"(s,x*) >= 3"(s’, y*) and s’ S(c, y*). Let v* bex*
concatenated with itself k’ times, and w* the result of concatenating y* with itself k
times. Then v* and w* are both members ofXk’ and

(s,v*)=.r(s,x*)>.r(s’,y*)=.(s, w ).

By c being monotone neutral and symmetric on SIS, this puts s S(c, x*) as desired.
If is less than all 3"(s’, y*) for which s’ S(c, y*), this establishes (i). If

3’(s’, y* for some s’ 6 S(c, y* ), then the argument given above will show that whenever
3’(s, x*) >_- t, it must follow that s S(c, x* ), so that (ii) will hold. U]

With our generalization of consistency, there will always be a "trivial" consensus
rule fulfilling (iii), (iv), and (v) (and, equivalently, (i) or (ii))" namely, the rule s defined
by st(x*) { s e S: 3"(s, x*) > }. Note that st is weakly consistent, but not consistent,
and intuitively, is "far" from mr. In fact we shall see that without consistency, there is
no way to do better than Proposition 27 to get a characterization of consensus rules
similar to mr. To see this consider a number Such that q(X) <- <- 1. For a profile x*,
recall that at (x*) V s S: 3"(s, x* > }.

Let X be a finite semilattice, and let be a number such that q(X) _-< _-< 1. Define
a t-secure consensus rule on X as a consensus rule c with as its least index such that:
for each profile x*, there exists x c(x* such that a’t(x* <= x. We then have Proposi-
tion 28.

PROPOSITION 28. Let X be a semilattice, and let be a real number such that
q(X) <= < 1. Thefollowing two conditions are then equivalent"

X is distributive.
(ii) There exists a t-secure consensus rule on X.
Proof. Assume first that X is distributive. From the proof of Theorem 26, we have

that for each s S and each x* X*:

If 3"(s, x*) > t, then s _-< x for all x mr(x*).
If 3’(s, x* < t, then s _-< x must fail for all x mr(x*).

Hence the result with c
Assume now that X is not distributive. Then there exist compatible elements x,

y X and s S such that s =< x V y with s not bounded above by either x or y. For any
real number such that q(X) =< < 1, it is always possible to consider positive integers
p, q and r such that

p p+r p+2r
-<t< < <1.
q q q
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Set x* (X)p(y)p(X /y)r(O)q-2p-r. Assume for the moment that we can find a t-secure
consensus rule c on X. Each u e S with u =< x has the property that u =< x V y, so
3’(u, x*) > and u _-< ct(x*). So there must exist z c(x*) with x _-< z; similarly,
we may establish that y -< z, whence x V y _-< z; in other words, s S(c, x*). But
3’(s, x*) p/q < t, contrary to the fact that is the least index of c. U]

Remark 29. In case X is distributive and c is consistent, we can easily prove that if
q(X) _-< =< 1, then c mr, if and only if the following conditions are all true:

(i) is the least index of c.
(ii) c is monotone neutral on SIS.
(iii) c is symmetric on SIS.
(iv) c satisfies the t-Condorcet condition.

Note added in proof. A minor modification of the proof of Propositions 20 and 28
will show that three additional conditions can be added to the list of equivalent conditions
in Proposition 28:

(iii) is the least index ofrot.
(iv) is the least index ofa.
v m is consistent.
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A NEW APPROACH TO THE SERVER PROBLEM*

MAREK CHROBAK" AND LAWRENCE L. LARMORE"

Abstract. A new method for dealing with the server problem is proposed. The technique consists ofembed-
ding the given metric space M into a bigger metric space cl(M) called the closure ofM, and allowing our servers
to move in cl(M). How this technique can be applied to give a new optimal algorithm for two servers is shown.

Key words, algorithms, optimization problems, the server problem, competitive analysis
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1. Introduction. The k server problem can be formulated as follows: Let M be a
metric space, in which we have k mobile servers that can occupy points of M. Initially,
all servers are on some k specified points ofM (called the initial configuration). At each
time step we are given a request, specified by a location r 6 M, and we have to choose
which server to move to r to "serve" the request. Our measure of cost is the distance
traveled by our servers, and the task is to design algorithms that minimize that cost.

The problem is that the requests have to be served on-line; that is, the choice of the
server at the current step cannot depend on the future requests. It is known (see [2])
that ifwe were given the whole sequence ofrequests off-line, in advance, then an optimal
schedule can be constructed efficiently in polynomial time. However, as it was shown in
6], no on-line algorithm can guarantee to yield a schedule that is better than k times

the optimal one. Therefore, the on-line restriction is essential.
Recently, the research on on-line algorithms concentrates on so-called competitive

algorithms. Let cOStopt(K, o-) be the optimal cost of servicing the sequence of requests a

when the servers start from configuration K. By cost.u(K, a) we denote the respective
cost ofan on-line algorithm ’. An algorithm is called c-competitive if for every initial
configuration K there is a constant b(K) such that for arbitrary sequence of requests a

we have

cost.u (K, a) < c" coStopt(K, a) + b(K).

(We will often omit the parameters K and a when they are understood. In other words,
for each initial configuration, the ratio cost.u/cOStopt approaches c if cOStopt is large.

It is not known whether there is an on-line algorithm that achieves c k for each
k. The famous "k-server conjecture" of Manasse, McGeoch, and Sleator [6 states that
this is indeed true. Up to now, it has been proven only for k 2 in [6]. Irani and
Rubinfeld [5 proved that a version of a balancing algorithm is 10-competitive for two
servers. Some work has also been done on randomized algorithms. Raghavan and Snir
[7] presented a randomized memoryless algorithm for two servers whose competitiveness
constant is between 3 and 6. Berman, Karloff, and Tardos [1] proved that a similar
algorithm is competitive for three servers, but the competitiveness constant is unknown.

In the general case, the solution is known only for some specific metric spaces. In
3 a k-competitive algorithm is given for trees, and it can be applied to all metric spaces

that can be isometrically embedded in a tree (for example the weighted cache problem,
see 2 ], 7 ). Coppersmith et al. 4 gave a randomized k-competitive algorithm for a
broad class of metric spaces that also includes trees.
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In this note we give a new on-line algorithm for two servers. Our algorithm is 2-
competitive, and thus optimal. We employ some new techniques that we believe can be
extended to three or more servers. Our method allows our servers to move in a bigger
metric space cl(M), called the closure of M. All information about the past that the
algorithm uses is recorded by the current positions of our servers in cl (M). This allows
us to use a simple and intuitive potential argument in the proof of competitiveness.

2. The 2-server algorithm. Let M be the given metric space. For simplicity we
assume that M is finite. At the end of this section, we describe how to implement the
algorithm on infinite metric spaces. By xy we denote the distance between points x,
yrM.

In the proof, we look at the computation as a game between our servers s, s2, and
the adversary’s servers a and a2, and we compare our cost cost. to the adversary’s cost
cOStadv. Our goal is to show that, independently ofthe adversary’s strategy, the inequality
cost < c cOStadv + b holds. Each round is thought of as consisting oftwo steps: first the
adversary moves a server and puts a request on its new position, and then our algorithm
satisfies the request. Note that it is sufficient to show that cost =< c "cOStaav + b holds
for arbitrary sequence ofthe adversary’s moves, since one ofthe adversary schedules will
correspond to the optimal schedule.

First we give an intuitive description of our method. In the algorithm, we visualize
the computation as taking place in a bigger metric space cl(M) called the closure ofM.
Each point u 6 cl(M) is defined by a set of distances between u and the points in M in
such a way that the triangle inequality is preserved. We allow our servers to move through
cl(M), while the requests and the adversary’s servers are always in M. For simplicity,
we also use notation u vii to denote the distance between u, v cl(M).

Our algorithm can be informally described as follows. Given a request on a point
r M, we look at the points s, s2 and r (for simplicity, si and ai are also used to denote
the current position ofthe corresponding server). If Ilrsll / Ilsisjll Ilrsll, for 4: j, then
we move si to r. Otherwise, we do the following: Both servers move at the same speed
toward the request, and simultaneously each of them moves at the same speed toward
the other. Thus, if d is the speed of our servers (distance traveled in a unit oftime), then
after a unit of time both servers will get closer to the request by d, and closer to one
another by 2 d. Eventually, one of our servers will be ahead ofthe other one, in the sense
that the first case considered above will apply.

Formal description ofthe algorithm. By R / we denote the set of nonnegative reals.
For a, b, c 6 R /, we define the predicate A(a, b, c) to mean that the numbers a, b, c
satisfy the triangle inequalities: a + b ->_ c, a + c >= b, and b + c >= a. The closure ofM
is the set of all functions u M R+ such that for any x, y M, A( Ilxy[I, u(x), u(y))
holds. We set Iluv[I maxx4 lu(x) v(x)[, making cl(M) a metric space. M can be
isometrically embedded into cl(M) by mapping each x 6 M to Ux, where Ux(y) Ilxyl[
for each y M. We will abuse notation by identifying x with Ux whenever convenient,
allowing us to think ofM as a subspace of cl (M).

Now we have to formalize the notion of moving a server, or both servers through
cl(M). First we give some intuitive information. Suppose that the current location of si
is u, and we want to move it towards v by some distance d. If u vii e, then for each
x Mwe have u(x) v(x)] =< e, and there is some y M such that u(y) v(y)]
e. Suppose that d is very small. Then, in order to move si as needed, for each such y we
can update si(y) as follows. If u(y) v(y) e then si(y) si(y) d, and if u(y)
v(y) -e then si(y) si(y) + d. Since M is assumed to be finite, and since d is
sufficiently small, all triangle inequalities will be preserved; that is, the new position of



A NEW APPROACH TO THE SERVER PROBLEM 325

S is a valid point in cl (M). And now the distance of si to v decreased by d and its distance
to u is equal to d. If d is larger, then this movement can be divided into a sequence of
steps as described above. At each consecutive step, the set of y’s for which si(y) has to
be updated may vary. In a similar way, it is possible to define the movement of two
servers in the first phase of the algorithm. In both cases, the whole process may be
combined into one step. Since when one server moves, it always moves to a request point
in M, this case is easy to formalize as one step. However, the first phase of our algorithm,
when two servers move, ends when our servers may be in points that are not in M. Below
we describe how those points can be determined.

We define now the function stepa(u, v, w) cl(M), that determines the new posi-
tion of a server whose current position is u and which is to be moved by d simulta-
neously towards v and w. For any x e M, let p(x) be the closest real number to u(x)
such that ]p(x) v(x)] =< Iluvll d and Ip(x) w(x)l -< Iluwll d. Then we set
stepa(u, v, w) p. In Lemma below we show that the function step is well defined
and satisfies the needed properties.

LEMMA 1. Let u, v, w cl(M), and 0 <= d <= 1/2(l[uv[I + Iluw[I Ilvw[I). Also let
p stepa(u, v, w) be defined as above. Then"

a p is a well-defined element ofcl(M),
(b) Ilpull-- d,
(c) Ilpvll Iluvll d, and Ilpwll [luwl[ d.
(d) Suppose that d= k(lluvll / Iluwll- Ilvwll). Then Ilwp[I / Ilpvll Itwvll.
Proof (a) First we show that p(x) is defined for each x M. Let Ix be the intersection

ofthe closed interval ofradius uv d centered at v(x) and the closed interval ofradius
uw][ d centered at w(x). Ix cannot be empty since the distance between those centers

does not exceed the sum of those radii; i.e., Iv(x) w(x)l =< Ilvw[I =< Iluvll / Iluwll
2d, and in fact, Ix must contain a nonnegative real. Thus p(x) exists. Write Ix
[ax, bx]. Next we show that p e cl(M), i.e., Ip(x) p(y)[ =< Ilxyll --< p(x) / p(y) for
all x, y e M. Fix some x, y e M.

CLAIM A: lax- ayl --< [Ixyl[ and bx- by[ -< [Ixyll.
Without loss of generality, ax <= ay and ax v(x) Iluv[I / d >= w(x) Iluwll /

d. If ay v (y) uv / d, then ax ay[ ay ax v (y) v (x) <= xy I1. Otherwise
ay w(y) Iluwll / d, whence lax ayl ay a <= ay (w(x) + Iluwl[ d) _-<
w(y) w(x) <= I[xyl[. The second inequality can be proven in a similar way.

CLmlM B: bx + ay >= Ilxy[I.
Without loss of generality, ay v(y) Iluvl[ / d. If bx v(x) + Iluvll d, then

bx + ay v(x) + v(y) -> Ilxyll. Otherwise, bx w(x) + Iluwl[ d, and then bx + ay ->_
w(x) / Iluwl[ / v(y) >= w(x) / w(y) >= [Ixyll, using the definition of

We now return to the proof of (a). We have established that p is well defined, but
we need to show that p cl(M). Let x, y M. To show that Ip(x) p(y)] -< Ilxyll, it
suffices (by symmetry) to show that p(y) p(x) <= Ilxyll. If p(x) >= u(x) and p(y) <=
u(y) we are done, since p(y) p(x) <- u(y) u(x) <- Ilxyl[. If p(x) < u(x), then
p(x) bxand p(y) <= by. By Claim A, p(y) p(x) <= by bx <= [Ixyl[. Ifp(y) > u(y),
then p(y) ay and p(x) >= ax. By Claim A, p(y) p(x) <= ay ax <= Ilxyll.

We now show that p(x) + p(y) >= xyll. Ifp(x) >- u(x) and p(y) >= u(y), then we
are done, since p(x) + p(y) >= u(x) + u(y) >= I[xyl[. Ifp(x) < u(x), then p(x) bxand
p(y) >= ay; so by Claim B, p(x) + p(y) >= bx + ay >= Ilxyll.

(b) We show first that Ilpul[ =< d. Fix some xM. Without loss ofgenerality assume
that p(x) <= u(x). Then p(x) bx. We can also assume that p(x) v(x) + Iluvll d.
Then [p(x)- u(x)] u(x) -p(x) u(x)- v(x)- Iluvll / d-< d.
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We now show that Ilpull d. Pick x eMsuch that Iv(x) u(x) Iluvll. Suppose
u(x) <= v(x). Then u(x) v(x) Iluvll --< a d; so p(x) a whence p(x) u(x) >=
d, hence Ilpull >-- d. The case u(x) >= p(x) is proved similarly. Thus Ilpull d.

(c) By symmetry it is sufficient to prove only the first inequality. From the triangle
inequality, [Ipvl[ >= uvll Ilpvll uvll d, so we need only show that Ilpvll <-

Iluvll d by showing that Ip(x) v(x)l =< Iluvll d for all x e M. This holds since
p(x) Ix, which is centered at v(x) and has radius Iluvll d.

(d) The proof is by simple calculation, using (c) and the definition of d: Ilwpll /
Ilpvll--Iluwll / Iluvl[- 2d Ilvwl[. v1

Algorithm . Let the request be on r. Let d 1/2 min { Ilsiajll + IIs;rll IIsrll }
where the minimum is over the two choices of assignment of { i, j to { 1, 2 }. For the
sake of exposition, it is convenient to present the move as if consisting of two phases,
each possibly empty.

Phase 1:
(a) Move the first of our servers from S1 to S’l stePd(S, $2, r).
(b) Move the second of our servers from s2 to s stePd(S2, S’, r).

Phase 2:
If IlS’l r -< Ils5 r ll, move the first of our servers from s’ to r. Otherwise,
move the other server from s to r.

Important remark. Recall that we visualize the algorithm in such a way that our
servers move through cl (M), and we can charge our servers their cost in cl(M). In reality,
however, our servers remain in M but only remember their virtual positions in cl (M),
and move to the request point only when they actually serve the request. Thus the cost
we charge to our servers in cl(M) may be different than the real cost. The adversary’s
servers are always on points ofM (although we do not really need it for the proof, we
could as well allow him to request points of cl (M)).

Let cost’. be the cost of our servers in cl (M). By the triangle inequality in cl (M),
and because M

_
cl (M), we have the following fact.

FACT 1. cost.e _--< cost’.e.
In order to prove that Algorithm s is 2-competitive, we define a potential function,

--211Mminll + IIs,szll,

where Mmin is a minimum weight matching in the bipartite graph whose components
are s, s2 }, a, a2 }, where the weights are equal to the distances between the servers.
(Note that q is defined in cl(M).) The same potential function was used in [4]. Recall
now that we view the computation as a game, where each round consists of two steps:
The adversary moves one of his servers to the request point, and then our algorithm
serves the request. Consider a single round. Let AcoStadv, Acost denote the change of
cOStadv and cost’.e in this round. Let also Aadvq’ and A.eq, denote the changes of the
potential, respectively, during the adversary’s and our move.

LEMMA 2. Aadv(I 2" AcoStadv.
Proof When the adversary moves, only one edge in Mmin may change. If al moves

by d, then the distance from al to its mate in Mmin changes by at most d, so the change
ofthe potential is at most 2 d. Therefore Mminll cannot increase by more than 2d. Note
that the other matching may become minimum during the move, but if so, its weight
cannot be greater than the one of Mmin. This implies the lemma.

LEMMA 3. A.q + cost, --< 0.
Proof Consider the first phase, when both of our servers move by d. Suppose that

the request is on a. By Lemma (c) one edge in the minimum matching gets shorter
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by d. But, by Lemma (b) and the triangle inequality, the length of the other cannot
increase by more than d. Thus I]Mmin]l cannot increase. But IIss211 drops by 2d by
applying twice Lemma (c), and our cost is exactly 2 d.

In the second phase, assume that s moves, that is, Ilas / IIss=ll Ilas21l. Then
Itasl[ + IIa2s21[ =< Ilasl[ + [la2sl[ + [Is,s2[I Ila,s2l[ + [la2s,[I. This means that al must
be matched to s in some minimum matching Mmin. Now, if s moves by e, then Ilas
drops by e and IIs,s211 increases by e. Therefore, the potential must decrease by e, equal
to our cost. [3

From Lemmas 2 and 3, by a simple summation, and by application of Fact we
obtain the following theorem.

THEOREM 1. cost _--< 2"cOStopt + 0, where o is the initial potential. Therefore,
Algorithm 1 is 2-competitive.

Implementation. If M is finite and small, then the implementation is easy: After
each round the server that is outside M remembers its position in cl(M). If MI m,
this method uses O(m) space and O(m) time per request.

In cases when Mis large, or even infinite, a more practical approach is to work only
on the portion of M consisting of all the previous request points. If we are given n
requests, this leads to a method that takes O(n) space and O(n) time per request.

We describe now the details ofthis implementation. Let Xo be the initial point where
the servers are located, and let xt be the request point during the tth round, 1,
n. Denote by Mt the subspace ofM induced by x0, xt. Without loss of generality
we can assume that M Mn. We modify Algorithm in such a way that at round it
works in cl (Mr) instead of cl (M), and when the new request xt + appears, cl (Mr) is
embedded isometrically into cl(Mr / 1). Therefore, the whole computation can be in fact
"embedded" into cl(M). This will assure that the cost we charge our servers is at least
the real cost of the algorithm.

The embedding - cl (Mr) cl(M+) is defined as follows:

(ru)(xi)=u(xi), i=0, ,t,

(u)(xt +1) max u(xi)- xx, + III.
=O,. .,t

By a slight abuse of notation, we also refer to -u as u.
We need to show that zu is actually a member ofcl(Mt+ 1), i.e., that A( xy II, u(x),

u(y)) holds for all x, y e Mt /1. The only case we need to check is that y xt /1 itself
andxMt;thatis, lu(x)-//(Xt+I)I Ilxx/,ll =< u(x)/ u(xt+)foranyxeMt. Now
u(xt+) >-_ lu(x)- I[xx+l[I I, which implies Ilxxt+lll =< u(x) + u(x+)and u(x)
u(x + <-_ xx + ll. It remains only to show that u(xt + u(x) <= xxt + ill. Choose
xu such that u(xt+ l) [u(xu) [IXgXt+ 111 I. If u(xt+ ) U(Xg) [[xext+ ill, then
u(xt+ l)= U(Xg) IlXgXt+ lll <= u(x) + I[xxgl[ I[XgXt+ l[ <- u(x) + [Ixx+l[, by two
applications ofthe triangle inequality. On the other hand if u(x + xgxt + 1[ U(Xg),
then u(xt +1 xuxt + U(Xg) <= xx +l + Ilxx[] U(Xg) <= XXl +1 + u(x), again
by two applications of the triangle inequality.

In order to prove that r is indeed an isometry, it is sufficient to show that for any
u, v e cl(Mt) we have ]u(xt+l) v(xt+l)l =< Iluvll. Choose Xg such that u(x+l)
lu(xe)- Ilxex+,lll. Then lu(xt+l)- v(xt+,)l =< ]u(xe)- IlXgXt+llll- Iv(y)-
[IXgX+,[l[ --< I[u(x) v(xe)l =< [luvll (because la cl Ib cl --< la bl for a, b,
cR).
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MIDPOINTS OF DIAGONALS OF CONVEX n-GONS*

PAUL ERDOS’[, PETER FISHBURN, AND ZOLTAN Ff.]REDI

Abstract. Letf(n) be the minimum over all convex planar n-gons of the number of different midpoints
of the () line segments, or diagonals, between distinct vertices. It is proved thatf(n) is between approximately
0.8() and 0.9(). The upper bound uses the fact that the number of multiple midpoints, shared by two or
more diagonals, can be as great as about ()/10. Cases for which the number of midpoints is at least
[n(n 2)/2] + 1, the number for a regular n-gon when n is even, are noted.

Key words, convex n-gons, diagonal midpoints, multiple midpoints

AMS(MOS) subject classifications. 52A 10, 52A25, 51M20

1. Introduction. LetMdenote the set ofmidpoints ofthe () line segments between
distinct vertices of a convex n-gon in the plane. Let f(n) min MI, taken over all
convex n-gons. We prove thatf(n) is between about 0.40n 2 and 0.45n 2.

THEOREM 1. For all n >= 3,

(n)_ln(n+ l)(1-e-1/2)l<=f(n)<(n)_[n2-2n+122 4 2 20

The lower bound proof, in 2, is based in part on the following lemma.
PARALLELOGRAM LEMMA (Euclid). Twofinite crossing line segments in the plane

have the same midpoint if and only if the ends of the segments are the vertices of a
parallelogram.

Section 2 also uses the notion of a multiple midpoint. Call a point in M multiple if
it is the midpoint oftwo or more of the () line segments between vertices of the convex
n.gon. We let M denote the set of multiple midpoints.

Let g(n) max [MI, taken over all convex n-gons. Clearlyf(n) + g(n) =< (). The
upper bound on f(n) in Theorem is a corollary of the following theorem.

THEOREM 2. For all n > 3,

g(n)> [ nZ-2n+ 12
20

This quadratic lower bound on g(n) is the largest lower bound presently known for
n >_- 18, but for most n _-< 17 it is exceeded as follows:

n 5 6 7 8 9 10 11 12 13 14 15 16 17

[ n2-2n+ 12 ]20
1123345679101113

g(n)>= 2 3 3 4 5 6 8 9 10 11 13 14.

The construction for the improved lower bound on g(n) is described in 4.
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Section 5 concludes our study of M with remarks on [MI when the number of
multiple midpoints is small. Its main result, which includes all regular n-gons for even
n, is the following theorem.

THEOREM 3. Ifthe number ofmultiple midpoints is less than 3, or ifone vertex of
the convex n-gon is an endpoint ofdiagonals whose midpoints include all multiple mid-
points, then

n(n-2)]+2

This inequality can fail when MI 3.
We are not aware ofprevious contributions to the problems investigated here. Some

time ago, Behrend looked at sets of integers that contain no element midway between
two others. More recently, Freiman [4 ], [5] obtained many results involving midpoints
in additive number theory. One of these says that if 2 _-< ?, < 2 m, m >_- 2, then there is a
constant c > 0 such that every sufficiently large finite X

_
m whose points determine

no more than IXI midpoints has at least cx[X[ of its points in some hyperplane in
m. Fishburn 2 ], 3 gives an elementary proofofthe planar version ofFreiman’s result
and finds nearly best values of cx for 2 _-< < 4. The latter work uses results in the pres-
ent paper.

2. Lower bounds on f(n). Let f(V) [M[ for a convex n-gon with vertex set V
and nonempty multiple midpoint set M. For each # M let

V(/z) {x V:#=(x+y)/2 for some y V),

E(#) { all diagonals with midpoint #},

D(U) { all diagonals for V(#) except those in E(#) ).
Thus V(#) is the vertex set of E(#), V(#)I 21E(u)[, and D(U) + E(ts)
(I v(2)l). Let u* E(#)]. Then

D(#)I 2t*(u*- 1).

Clearly, E(t) f3 E(X) when # 4: X, #, M, and the same hypotheses and the
Parallelogram Lemma are easily seen to imply D(#) N D() . Obviously,

f(V)=
2

We observe in passing that for n >_- 3

f(V)>(n)-ln2-2n1=2 8

so thatf(n) is at least as great as about ()rt 2. Observe that D(#)I --< () In
since for every x Vthere is a y e V\ {x} across the n-gon from x such that [x, y] is
not a side of a parallelogram on four vertices of V. Therefore

(t._l)=,D(#),<l l{(n) },M 2#* -Z D(#)l--< 2
-[n/2]

and the given inequality for f(V) follows from this and the concluding equality of the
preceding paragraph.
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The rest of this section is devoted to the better lower bound specified in the follow-
ing lemma.

LEMMA 1.

f( V)>=(n )_[ n(n+ 1)(1 e-l/2)]2 4

This shows thatf(n) > 0.4016n 2 for all large n.
A new definition is needed. Let

C(x)={[y,z]eE(#):xeV(#) and x{y,z}}

for each x e V: see Fig. (a). The following result is central.
LEMMA 2. Every two diagonals in C(x) intersect in the interior ofthe n-gon.
Proof. Suppose otherwise for [y, z], [a, b] e C(x). Let u be the midpoint of

[y, z] and of[x, w], let a be the midpoint of[a, b] and [x, c], and suppose with no
loss of generality that a lies in the x direction from [y, z]. Then a and b must lie in the
three-sided dashed regions shown in Fig. (b), one in each region, or else convexity will
be violated.

Assume that a is in the upper dashed region and b is in the lower dashed region.
Suppose a y: see Fig. l(c). Then b 4: z by our initial supposition, and since Ix, y],
[b, c], and [z, w] are mutually parallel by the Parallelogram Lemma, we violate convexity.
Therefore a 4: y. Similarly, b 4: z.

It follows that a and b are interior to their regions. Position a accordingly, anywhere
in its region: see Fig. (d). Then convexity forces b to be interior to the shaded triangular

(a) (b)

FIG.
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region. But c, the fourth vertex of the parallelogram for a, will then lie in the interior of
the hexagon with vertices axbzwy, which gives another violation of convexity.

For each v e V let

cv-- IC(v)l (u*- 1),

and for each diagonal [x, y] of the n-gon define its "length" by

l(x, y)= + min number of V points on one side of xy line,

number of V points on the other side of xy line ),
so that _-< l(x, y) <= [n/2J. If n is odd, there are n diagonals for each { 1,
(n )/2 } if n is even, there are n diagonals for each { 1, (n 2)/2 } and n/
2 diagonals with n2. The following connection between c and l is immediate from
Lemma 2.

COROLLARY 1. C <= I(X, y)for all v V and all [x, y] e C(v).
We now construct an () n 0-1 matrix A(V) that will be manipulated to yield the

conclusion of Lemma 1. The () rows of A(V) are labeled by the diagonals in nonin-
creasing order of their values: the final n rows have 1. The n columns ofA A (V)
are labeled by the vertices in nonincreasing order of their c. Write - [x, y] when row
has label [x, y], and j -- v when column j has label v. We define A’s entries by the

following: when - Ix, y] and j - v,

l if[x,y]eC(v),
A0.=

0 otherwise.

When j -- v, c ,i Ai9 and c 2# (#* ). Let ri , Ai9 for row i. When-- [x, y], ri 0 if [x, y] g t_J E(#), but if [x, y] e E(#) then

ri ]{v:[x,y]eC(v)}] =2(#*- 1).

Since #* rows have labels in E(t),

()ri --M [2(#*--1)] #* (/s*1)=
ri + 2 2#*

Therefore

f(V)=
2 r;+2"

Our lower bound onf(V) is obtained from an upper bound on ri/(ri -t- 2).
Assume until later that n is odd. Then, by Corollary and the nonincreasing order

of rows by 1,

ifAij=l thencj<n-l_li-lj2 n

where cj. is C when j -- v.
Let be the set of all () X n nonnegative integer matrices with column sums

c > c2 => > cn, row sums r, r2, -’", and

cj<=n-1li-112n whenever entry (i, j) 4 0.
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Clearly A (V) 6 d. Suppose B 6 /, < a, j < b, and BibBaj > 0. Let B’ equal B except
on {i, a} {j, b}, where

Bib- 1,

B’ab Bah + 1.

Then B’ d since we have changed neither the column nor row sums, and in going to
B’ we need

cj <n-1 l i-1] and Cb<n--1 [a--1]2 n 2 n

The first of these is true since < a and for B we had cj =< (n / 2 [(a / n 3. The
second is true since j < b cb <= cj.

It follows from a finite sequence of switches as just described that A (V) can be
transformed into A e d so that no positive entry of A is northeast or southwest of
another positive entry. This implies that all positive entries of A lie on a rectilinear
staircase path as shown in Fig. 2 (a). We suppose for convenience that all entries ofA
on the path are positive: this is not needed for the desired conclusion, but it simplifies
calculations by avoiding special notation that would continually refer to the set of all
rows for which r > 0.

Let W , ri/(ri + 2) and let Rj be the set ofrows for which A 0
;j > 0. The staircase

pattern gives R <= R2 <= <= Rn. Also let

A 0

Wj= , j=l,...,n.
ieRj ri + 2

n

n j

A

Ca)

AoS s,l A]i

rs+1

At,l+1

RI= {s, t}

ci= Al+ r/ +...+ r_+ Aq

Ai Aq
d=.-r7 +1+...+1+ r,

(b)

FIG. 2
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Then

(n Atlri ]ririW= ri ,
ri+2 -7 j= +2

j= ieRj r j

We assign a fractional number of rows, dj, to column j in which A 0
ij > 0, as follows:

ieRj

If is the first or last member ofR, 0 < A./ri l, and if is between the first and last
members of Rj then A/ri since the r total for row is all in column j" see
Fig. 2(5).

Suppose max Rj. Then

d, +’" +d t- + Ag/rit
kj

and, by our earlier bound on cj,

n-1
cj <

2 d,+..:+dj-lJ.n
LEMMA 3. For allj, cada >= 2 and

Proof. For each paired piece of ca and ds as shown in Fig. 2(b), Asa=> (A./rs)2,
rs+ >= (2), so summation gives cj >= 2ds. When Rjl m, the inequality

can be put in the form

Wa <= dJ cjlg + 2

m, Pk(Y--rk)/(rk+2)>=O,
k=l

where Pk > 0, Pk and Y Pkrk. When multiplied by the product of the
(rk + 2), this inequality becomes

PiPa[ l’] (rk+2)](ri-ra)2>-0,i<j kt{i,j}

which is true. ff]

By Lemma 3, ,M(#* W <= ’a cadj/(ca + 2d). Denote the latter sum by
F(c, d), c (c, cn) and d (dl, ,dn), and consider the following problem:

maximize F(c, d) cada
j=lCj + 2dj
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subject to c >= c2 >-- >-- cn and, forj 1, n,

dj>0, cj/ dj >=2, cj <n-1 [ dl + + dj-
2 n

We replace the final constraint by the weaker but smooth cj<= (n + 1)/2-
(d + + dj)/n, observe that F increases in each cj, and therefore take cj as large
as possible:

, n+l d+...+dj
cj-

2 n

Thus max F(c, d) =< max F(c*, d) subject to dj. > 0 and cj* >_- 2dj.
LEMMA 4.

maxF(c*,d)<n(n+l)(1 )
Proof. Let co (n + / 2 and omit * on cj. Also let xj c/d >- 2. By the definition

of c[ we have cj [nxj/( + nx)lc_ 1. Therefore
J

iI-I1
flXi

cj Co.= +nxi

nxi n
d= c + nxi + nx’

and

F( c, d) Co , + nxi 2 + xjj=l i=1

with each term in the sum _-< since xj >_- 2. For a, b > 0

+
2+b l+nb l+na 2+a+ha 2+a +ha +rib 2+b >-- +n +

if and only if a >_- b. It follows that F is maximized when Xl >-- x2 >-- >-- x, >_- 2, so
assume the following.

Fix x. through x. Let x x. Then

co +nx 2+x

where S _-< (n )/4. Differentiation shows that the right-hand side decreases when

2 nx2 + S(2 + x) < 0,

which is true when x >- 2 + /n. We may therefore suppose that x < 2 + /n. But then
S is much smaller than n / 4, and the preceding inequality holds for all x >= 2. This implies
that F is maximized at Xl 2, hence at xj 2 for all j, where

F=-g 2n+ + 2n+] +"" +
2n+
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Lemma 4 completes our proof of Lemma when n is odd. When n is even, the
preceding analysis is modified by replacing the bound on cj obtained from Corollary
by

n i+n/2-1]cJ <= - n

which corresponds to the remark on l for n even that precedes Corollary 1. Then c*
preceding Lemma 4 can be replaced by

. n+l d+... +d
cj.

2
+

The only effect this has on the proof of Lemma 4 is to change Co there to Co (n + )/
2 + /n. This changes the final equation in that proof to

F=
n(n+ l)+ 1-5 2n+l

It is easily checked that this is less than n(n + )( e-/2)/4 when n >_- 10. Therefore
Lemma 4 holds for all n >_- 3 except for n e { 4, 6, 8 }. Lemma claims for these three
that f(n 4) >_- 5, f(n 6) >_- 11, and f(n 8) > 21. Sincef(4) 5,f(6) 13, and
f(8) e { 24, 25 }, Lemma holds for all n >_- 3.

3. Lower bound on g(n).
THEOREM 2.

g(n)>[(n2-2n+12)l=20 frn>3"=

Proof. Letak=k2fork=4,5,’’’,3m- andbk= 3k2fork= 1,2,.-.,m
with m >_- 2. Take N> 12m 2 and construct the convex (4m 4)-gon that has m lower-
left vertices (-k, b) for k 1, m, and 3m 4 upper-fight vertices (k, N- a) for
k 4, 3m 1. For every < < j _-< m it is easily checked that

(*) b bi ai + 2j azi + j.

Since j (i + 2j) (2i + j), it follows that [(-j, b), (i + 2j, N ai+2j)] and
[(-i, bi), (2i + j, N- a2i+j)] have the common midpoint

co= (( +j)/2, (N- 2 _j2 4ij)/2).

Moreover, if :/: k, < j, k < l, and + j k + 1, then the vertical components of ci
and c,i are distinct. Therefore every multiple midpoint c0 is distinct, so

g(4m-4)>=
2

The lower bound ratio ofg(n)/n in this case is approximately (m/2)/(4m) 1/32.
We get a larger ratio by deleting vertices at both ends of the upper-right part of the

construction since the a pairs that match the bk pairs as in (,) are denser in the middle
of the a sequence. A crude calculation for the quadratic terms shows that if we delete
K vertices at each end of the a sequence then we lose about K/3 of the c0.. This also
removes 2K points from n, so the new ratio for g(n)/n is approximately

m/2-K/3
(4m 2K)
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which is maximized through differentiation with respect to K at K 3m/4, where the
ratio is / 20.

To be more precise, suppose T vertices are removed from the ak sequence, T2J
at one end and [T2] at the other end. Then, with details omitted, we get

Given n, we then consider the (m, T) pairs that satisfy n 4m 4 T to determine
the pair that maximizes the fight-hand side of the preceding inequality. Further calcu-
lations show that the maximum is l (n 2 2n + 12) / 20 J, as claimed in Theorem 2. [3

4. Another construction for g(n). The ak and b ofthe preceding proofwere chosen
in an attempt to minimize n, given that each of the () pairs from the lower left is
matched by a pair from the upper fight to yield a different multiple midpoint. We ex-
amined variations to this construction, but their lower bounds on g(n)/n 2 were smaller
than / 20.

However, as mentioned earlier, a different construction gives larger lower bounds
on g(n) for most n -< 17. This other construction yields a lower bound on g(n)/n of
approximately 7 / 6 for large n, as compared to n / 20 for the quadratic construction used
to prove Theorem 2, and is therefore much less powerful than the quadratic bound for
large n.

Figure 3 illustrates the other construction that yields the largest lower bounds on
g(n) for small n that are presently known. Its 18 vertices are numbered in the order in
which they enter the construction. We begin with the tall narrow rectangle for vertices

FIG. 3. *’s denote multiple midpoints.
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through 4, then position 5 to the left of 3 so that the horizontal distances from 5 to 3
and from 3 to 4 are equal, with 5 slightly above the line through 3 and 4.

The other points are then positioned by midpoint restrictions and symmetry. Let
#( i, j) denote the midpoint between and j. A complete account of multiple midpoints
is shown in the following construction routine:

5
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:

#(1,4) #(2,3)
position as descfibedabove
u(5,6) u(2,4)
#(5,7) u(3,6)
position horizontally symmetric to 5
u(8,9) u(1,3)
u(8,10) u(4,9)
u(10,11)=u(2,5)
u(7,12)=u(1,8)andu(6,12)=u(9,11)
u(12,13)=#(3,7)
#(11,14)=#(4,10)
u(14,15)=u(2,12)
u(13,16)=#(1,11)and#(7,16)=u(10,15)
#(12, 17) #(5, 13)
#(11,18)=(8,14).

Each equation here identifies a different multiple midpoint. The lower bound on g(n)
is the number of equations in place after point n is added.

The preceding construction shows that every vertex can be at the end of two or
more diagonals whose midpoints are in M. This occurs for the first time in the construction
at n 12. Moreover, by Theorem 2, the smallest n presently known for which g(n) >
n is n 23. We do not know whether a smaller n suffices in either case.

5. Small numbers of multiple midpoints. This section focuses on situations that
force MI to be much larger than the upper bound on f(n) in Theorem 1. For each
# M let V(#) be the set of all vertices at ends of diagonals that have midpoint #. If
t e M then IV(t) e {4, 6, 8, .-.}.

The following lemma is an easy consequence of the Parallelogram Lemma.
LEMMA 5. Ift M then all midpoints ofline segments between points in V(t) that

differfrom t are differentfrom each other. If X, t M, 4: #, and L is the line through
X and #, then L f’l V(X) f’l V(#) , IV(X) 71 V(#)[ _-< 2 and, if IV(X) 71 V(#)[
2, then X or is the midpoint between the points in V( X) 71 V(u).

Let R be a regular n-gon for even n. It follows immediately from the first part of
Lemma 5 that

n(n-2)

An easy proof also shows that the maximum number of parallelograms that can be
formed from the vertices of a convex n-gon for even n occurs at Rn and equals
n(n 2)/4. The two diagonals of each parallelogram cross at the one multiple midpoint
of Rn.

The initial observation in the preceding paragraph generalizes to the following
theorem.
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THEOREM 3. Ifeither M[ -< 2 or fqi V() :/: ; then

IMI->[ n(n-2)2
The conclusion can fail if IMI 3.

Figure 4 verifies the final statement of the theorem. With n 11 and M
{ t,/2, t3 }, we have

V(#I) { 1,2, 3,6, 8,9 },

V(U2) {2,4,6, 11 },

V(#3) 3, 4, 5, 7, 10, 11 }
so that V(#)f) V(#z)= {2, 6}, V(t)f) V(u3)= {4, 11}, and V(#)f3 V(u3)=
{ 3 }. Starting with all diagonals in place, we must remove five (two for , one for u2,

two for/3) to have no multiple midpoint, so [M[ (2 5 50. On the other hand,
[(11)(9)/2] + 51.

The conclusion of Theorem 3 for [MI --< 2 follows from Lemma 5. For example,
ifM= {k,u}and [V()N V(u)[ =2, thenwith2c= [V()[ and2c= IV(u)[ we
have 2 (cx + c.) _-< n + 2. The removal of(cx + (c. diagonals gives a configuration
in which no two remaining diagonals have the same midpoint, so

2
-(cx+c,-2)>= +2-

2 2

n-2)]+2

The following lemma is needed for the fq V(#) 4: part of Theorem 3.
LEMMA 6. Suppose M >- 3 and f)i V(#) 4: . Let ak be the number ofvertices

in exactly k ofthe V(#) for t M. Then at 1, ak 0 for 2 < k < t, and Ol2 1.
Proof. Take x e fqMV(t) and M { #, t2, tt} as shown in Fig. 5(a). If

vertex y 4: x is in at least two V(), say V(ui) and V(j), then Lemma 5 requires y e
{ vi, v }. It follows that at and a 0 for all 2 < k < t.

2

11 4

10 5

8 6

FIG. 4
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x

(a)

violations of convexity

v v
()

FG. 5

Lemma 5 and convexity imply the following: see Fig. 5 (b).
Rule 1. vi V(j) for at most one j 4 i.
Rule 2. vi V(#j), < j] Vp V(t,Zq) if q < < p =< j.
Rule implies O2 t, and it follows easily from Rule 2 and its dual for j < that

c2 =< 2 when 3. We use induction on in what follows.
Suppose c2 _-< for 3, , r with r > 4. Contrary to the lemma, suppose

c2 r when M] r. Suppose then that vi V(U,r) for some < r. By Rule 2, Vp q
V(#q) when q =< < p =< r. Since c2 r and Rule require every Vp to be in a V(q),
q 4: p, it follows that each of vi+ through Vr is in one of V(z/-+ 1) through V(#r) that
has a different index. But this is impossible by the induction hypothesis if < r 2, by
Lemma 2 if r 2, and by definition if r 1. Hence no vi for < r is in V(r),
a contradiction. Therefore a2 --< r- 1.

Proof Completion (Theorem 3). Let M > 3 with M {, m } and
V(z) 2 ck. Suppose OV(#) 4: . Since (a2, ct) _-< (t 1, 0, 0, by
Lemma 6, 22 (2 Ck) ----< n + 2 (t ). Excision of Z (cg diagonals gives a configuration
in which no remaining diagonals have the same midpoint. A calculation similar to that
preceding Lemma 6 yields M[ >= [n(n 2)/2] + 1. U]

6. Discussion. We have shown that f(n) lies between about 0.8() and 0.9(), that
MI can be as large as about 0.1 (), and that if either MI --< 2 or if some vertex lies

at the ends of diagonals whose midpoints cover M, then the corresponding n-gon has
IMI >-- [n(n 2)/2] + 1.

Several open problems, in addition to exact values off(n) and g(n), are suggested
by our study. Does lim f(n)/r/2 exist and, if so, what is its value? We ask a similar
question for g(n)/r/2. Let M3 denote the set of all midpoints shared in common by at



MIDPOINTS OF DIAGONALS OF CONVEX n-GONS 341

least three diagonals, and let h(n) max M3I over all convex n-gons. Does there exist
c > 0 such that h(n) > cn 2 for all large n? If so, does a similar conclusion hold for
midpoints with multiplicities that exceed 3?
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Abstract. The existence of a k-separator in a partial k-tree graph is proved and a linear time algorithm is
constructed that finds such a separator in k-trees. This algorithm can be used to obtain a balanced binary
decomposition of a k-tree in O(n log n) time. Some other separation properties of partial k-trees are derived
and used to construct a balanced decomposition of an embedding of a k-connected partial k-tree when k 2,
3. Finally, NC algorithms are constructed for the recognition of a partial k-tree for k 2, 3. For k 2 and
k 3 these algorithms run in O(log n) time using, respectively, O(1"/3) and O(n4) processors. Thus, the
algorithms for k 2, 3 improve considerably the processor bound of Chandrasekharan and Hedetniemi [Pro-
ceedings ofthe 26th Annual Allerton Conference on Communication, Control and Computing, 1989, pp. 283-
292 general algorithm for the parallel recognition of partial k-trees that would require O(log n) time and,
respectively, O(n) and O(n z) processors in these cases.

Key words, k-tree, partial k-tree, k-separator, parallel algorithm
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1. Introduction. The study of the class of k-trees and their partial graphs was mo-
tivated by some practical questions concerning the reliability of communication networks
in the presence of constrained line-and-site failures (Farley [10 ], Farley and Proskurowski

], Neufeld and Colbourn 15 ], Wald and Colbourn 20 ]), and in view oftheir relevance
in modeling the complexity of queries in data base systems (Arnborg ). Also, the class
of k-trees is special in the sense that many problems that are NP-complete for arbitrary
graphs were shown to be solvable in polynomial time when restricted to this class of
graphs; see, for example, Arnborg and Proskurowski [5], Bodlaender [6], and Granot
and Skorin-Kapov 12 ].

Arnborg, Corneil, and Proskurowski [2] have shown that the problem of finding
the smallest number k, such that a given graph is a partial k-tree, is NP-complete. However,
they also presented therein an O(nk + 2) time algorithm for the recognition of a partial
k-tree when k is fixed. Robertson and Seymour [! 6] proved that there exists an O(n2)
algorithm to recognize partial k-trees, and recently Bodlaender 6] developed an algorithm
for recognizing and embedding a partial k-tree, for a fixed k, in O(n2) time. Wald and
Colbourn [20] and Matousek and Thomas [14] have, respectively, constructed linear
time sequential algorithms for the recognition of partial 2-trees and partial 3-trees. Finally,
Bodlaender [6] and Chandrasekharan and Hedetniemi [9] have constructed NC-algo-
rithms for the recognition of graphs that have a tree width less than k (or, equivalently,
partial k-trees), which run in O(logn) time and use, respectively, O(n 3k+4) and
O(/7 2k + 6 processors.

In this paper we introduce the notion of a k-separator (k >= 2) of an n-vertex graph
G (V, E). Formally, a k-separator is a set of vertices S, SI k, which induces a
partition of V\S into sets V1 and V2 satisfying (i) IVi] <= (k/k + )n, 1, 2, and (ii)
no edge in E connects a vertex in V1 with a vertex in V2. We prove the existence of a k-
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research was supported by Natural Sciences and Engineering Research Council of Canada grant A4181.
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British Columbia, Canada.
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separator for partial k-trees and construct a linear time algorithm for generating such a
separator in k-trees. This algorithm can be used to construct a balanced binary decom-
position tree ofa k-tree in O(n log n) time. We further derive other separation properties
of partial k-trees that are used to construct a balanced decomposition of an embedding
of a k-connected partial k-tree into a k-tree when k 2, 3. Finally, we develop parallel
algorithms for the recognition of partial k-trees when k 2, 3. These algorithms require
O(log2 n) time and use, respectively, O(n 3) and O(n4) processors. For k 2, 3 our
algorithms improve considerably the processor bound of Chandrasekharan and Hedet-
niemi’s 9] general algorithm for the recognition of partial k-trees, which would require,
respectively, O(n 10) and O(n 12) processors for these cases.

The paper is organized as follows. In 2 we present basic definitions and preliminary
results. In 3 we study k-separators ofpartial k-trees and describe an O(n log n) algorithm
for constructing a balanced binary decomposition tree for k-trees. In 4 we obtain ad-
ditional separation properties ofpartial k-trees and show that they can be used to construct
a binary balanced decomposition of an embedding of a k-connected partial k-tree when
k 2, 3. In 5 we develop NC algorithms for the recognition and embedding of 2-
connected (respectively, 3-connected) partial 2-trees (respectively, 3-trees), which could
be extended for recognition of partial 2-trees that are not necessarily 2-connected. In
6 we develop an algorithm for recognizing partial 3-trees that are not necessarily 3-

connected.

2. Definitions and preliminaries. A graph G with vertex set V and edge set E will
be denoted G (V, E). A subgraph of G (V, E) is a graph G’ (V’, E’) such that
V’

__
V and E’

___
E. A partial graph of G is a subgraph of G containing all the vertices

of G and a subset of its edges. We denote by G(V’), V’
_

V, a subgraph of G induced
by V’. A k-clique is defined to be a complete graph on k vertices (it is not a clique in the
Standard terminology, i.e., a maximal completely connected subgraph). A set of vertices
S
_
V is a separator of G (V, E) if the subgraph G(V\S) induced by V\S has two or

more connected components, and such a separator S is said to be minimal if no subset
thereof is a separator of G. A graph G (V, E) is called k-connected if the cardinality of
any minimal separator of G is at least k.

k-trees can be defined as follows. The k-clique is a k-tree, and a k-tree of more than
k-vertices can be constructed by adding a new vertex and new edges connecting it to all
vertices of some k-clique of a smaller k-tree. Partial k-trees are partial graphs of k-trees.
A contraction of an edge e (u, v) in G (V, E) is obtained by removing e (u, v)
from E and identifying the vertices u and v. A graph G is contractible to a graph G’ if G’
can be obtained from G by a sequence of edge contractions in G. Edge extraction of e
in G results in a graph G\e with the same vertex set as G and the edge set E\ {e }. A
graph H is a minor of a graph G if it can be obtained from G by a finite number of
contractions and edge extraction operations. It follows from Arnborg, Proskurowski, and
Corneil [3] that every minor of a partial k-tree is a partial k-tree. Thus, a subgraph of a
partial k-tree is a partial k-tree.

For any vertex v V, the neighborhood of v is defined as the set of all vertices
adjacent to v. The degree of a vertex v is the cardinality of its neighborhood. A k-leafof
a k-tree is a vertex v whose degree is equal to k. Every k-tree has at least two k-leaves,
and we denote by Adj (v) the neighborhood of a k-leaf v. Note that the subgraph of G
induced by Adj(v) is a k-clique. The graph obtained by removing a k-leaf v and its
incident edges from a k-tree is a k-tree itself. This defines a reduction process for k-trees,
and such a reduction process is complete when it ends up with some k-clique, R, the
root of the reduction process.



344 D. GRANOT AND D. SKORIN-KAPOV

A reduction sequence can be thought ofas giving on orientation to a k-tree (Arnborg
and Proskurowski [4]), where vertices are made descendants of k-cliques. Namely, if K
is a k-clique, then v is a descendant of K in a given reduction sequence if and only if,
when v was removed, each vertex of Adj (v) was either a member ofK or a descendant
of it.

3. k-selmrators. Let G (V, E) be a partial k-tree (k > 2) with IV[ n. A k-
separator of G is a set of vertices S, of cardinality IS] k, which induces a partition
V1, V2 } of V\S satisfying

k
(1) Iv.I =k+i n, i:1 2,

and

(2) no edge in E connects a vertex in V1 with a vertex in V2.
Observe that a k-separator extends the notion of a 2-separator defined for series

parallel graphs (i.e., partial 2-trees), see, e.g., Hassin and Tamir [13].
THEOREM 3.1. Every partial k-tree contains a k-separator. Moreover, for a k-tree,

a k-separator can be constructed in linear time.

Proof. Since any k-separator of a k-tree G (V, E) is also a k-separator of every
partial graph of G, it is sufficient to prove the existence of a k-separator for k-trees. For
that purpose, we construct below a linear time algorithm for finding a k-separator of a
k-tree G. The algorithm follows a reduction process until reaching, for the first time, a
k-leaf vertex v for which the corresponding set of descendant vertices, D(Kv), of the k-
clique Kv induced by Adj (v), contains at least n distinct vertices.

Formally, the algorithm has two steps.

Step 1. We initially set D(A) 4 for all k-cliques A of G. In general, let v be a k-
leaf that is currently being considered for elimination in the reduction process. Let
V(K) Adj(v)= {Ul,’", u}, and V(/)= Adj(v)U {v}\{uj},j 1,...,
k, where V(A) denotes the vertex set of a graph A. Then update D(K), the set of
descendant nodes ofK, and D(K)I as follows:

(3) D(Kv)=( 6 D())
k

(4) D(K)I E D(K)I + D(K)I + 1.
j=l

(Observe that the sets D(K) in (3) and (4) are mutually disjoint since all k-cliques Kj.,
j= 1, ,k, are separators and ujD(),j 1, ,k.) If D(K)] < n, we continue
with the reduction process; otherwise, we go to Step 2, where the k-separator is produced.
Observe that Step will terminate whenever n >= 3k. If n < 3k then every minimal
separator of G is a k-separator.

Step 2. We need to distinguish between two cases.
Case 1. E=l IO()l + 1>- n.
Let V D(.),j 1, ..., k, and V+l V\ {(U=l V) U Adj(v) U {v} }, and

let V be such that Vtl maxj= 1,... , +1 VI. We will prove that the set of vertices S,

Adj(v) ifl=k+l
S

V(/) otherwise,



NC ALGORITHMS FOR RECOGNIZING 2- AND 3-TREES 345

is the required k-separator. Furthermore, P,, I7"2}, where 1 gl and 17"2 V\(Vl U
S), is the required partition of V\S satisfying )-(2).

Indeed, by assumption, Z= ]Vj.] 2= ]D()I ->- In 1, which, coupled with
E_-+I IVj[ /’/ (k - 1), implies that

IVk+l I<=n-(k+ 1)-(n- 1)< n.
Moreover, since v is the first node encountered by the reduction process for which

D(K)I >= n, we have that

(6) Vj[ _-< n, j=l, ,k.

Thus, by (5) and (6)

2 k
(7) [IT’,l=]Vll__< n=<k+ln’ fork>_-2.

Furthermore, ’)1 [Vl[ >=- (n (k + ))/(k + ), which implies that

(8) 1I2[<n k_n-(k+l)< k
k+l -k+l

By the definition of 1, 1]’2, and S, we also have that ’1 [’’] r2 1), ’1 U ’2 V\S,
and there is no edge in E with endpoints in I? and I7"2. Thus, S is the required k-separator.

Case 2. E=I [D(/Cj)[ +1< In.
We will prove that if Case 2 holds then S Adj (v) is the required k-separator. Let

/(Kv) denote the set of descendant notes ofKv just before it was updated by 3 ), which
resulted in [D(K)[ >= -n, and construct the new sets V U=I D(/j) tO {v} and
V2 =/(K). By assumption, [VII < no Furthermore, r2l < n, since otherwise Step
would have terminated earlier. Now, let I7" V if V _>- IV2] and I7" V2 otherwise,

and let I72 V\(I?l tO S), where S Adj (v). Since r;I --< n, 1, 2, we have that

2 k117" <n =k+l
< n, k> 2.

Moreover, by (4) gll -- r2l D(K)I >-- n, which implies that IT’ll
max ([ VI, IV21) >-- n. Since 17"11 + 117"21 n k, we derive

k
]lzl<n-k--n<=

k+l
n, k>-2.

Again, by the definition of l), 17"2, and S, we also have that 1 U r2 V\S, z -]

I7"2 4, and there is no edge with endpoints in and .
The above algorithm will produce a k-separator for a k-tree in linear time since Step

will be executed at most n k times, (3) and (4) require constant time for each
iteration, and Step 2 requires constant time.

Let G (V, E) be a k-tree and S a k-separator of G that induces a partition of V\S
into {V1, V2} that satisfies (1) and (2). Then, the subgraphs G(VI U S) and
G(Vz U S) induced, respectively, by V U S and V2 U 5’ are also k-trees that can be
similarly decomposed. We can proceed in this manner to decompose G recursively until
we end up with k-cliques. That entire decomposition can be represented by a balanced
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binary decomposition tree T, which is a rooted binary tree in which the root v represents
the graph G, and if some vertex q is a parent of q and q2 in T, then q and q2 are sub-
k-trees of q obtained by the above decomposition. Observe that guarantees that T is
at most O(log n) deep, i.e., the path from the root of T to any of its leafs contains at
most O(log n)edges. Therefore, in view ofTheorem 3.1 we have the following corollary.

COROLLARY 3.1. Let G V, E) be a k-tree. Then, a balanced binary decomposition
tree T ofG can be constructed in O( n log n) time.

4. Some separation properties of partial k-trees. We derive in this section some
separation properties of partial k-trees that will be used later to develop NC algorithms
for the recognition and embedding of partial k-trees into k-trees when k 2, 3.

LEMMA 4.1. Let G (V, E) be a graph and S a separator of G that induces a
partition of V\S into { V1, V2 such that 0 <- SI _-< k, v SI >= k, 1, 2, and
the subgraph ofG induced by S, G(S), is an l-clique. Then G is a partial k-tree ifand
only if the subgraphs Gl G(V t_J S) and G2 G(V2 (.J S) induced, respectively, by
V tO S and V2 tO S are partial k-trees.

Proof. If G is a partial k-tree then since G and G2 are subgraphs of G they are also
partial k-trees. On the other hand, assume that G and G2 are partial k-trees and
let ( (V tO S,/) and ( (V2 t.J S,/2), respectively, be their embeddings into k-
trees. Clearly, G(S)is a subgraph of ( and (_. Therefore, there exist k-cliques K
and K contained, respectively, in ( and 2 and such that both K and K2 contain the
/-clique G(S). Let v+,..., v and u+,..., u denote the nodes in V(K) and
V(K), respectively, that are not in S, and consider the graph obtained from (
(V,/ tO 2) after the addition of the edges (v,., uj), + 1, k, j l + 1, k,
and j >_- i. Then, it is easy to see that is a k-tree, and since G is a partial graph of
it follows that G is a partial k-tree. (Note that in the degenerate case, when l 0, we
simply choose for K and Kz in the above proof any two k-cliques that are contained in
1 and 2")

We will use the following notation. For a graph G (V, E) and subsets Sl, $2 such
that S $2 V, we will denote by G(S2; K(St )) the subgraph of G induced by S that
is augmented with all arcs between pairs of nodes ofS if they are missing in G.

LEMMA 4.2. Let G (V, E) be a 2-connected graph and S, S { s s2 }, a separator

ofG that induces the partition of V\S into { V V } such that V 4:49 and V t_J SI >= k,
1, 2. Then, G is a partial k-tree if and only if the subgraphs G G(VI t.J S;

K( { s, s2 } )) and G2 G( V2 t.J S; K( { Sl, s2 ) )) are partial k-trees.
Proof. If G(Vi LJ S; K( { s, s2 } )), 1, 2, are partial k-trees then by using Lemma

4.1 we can conclude that G is a partial k-tree. Thus, suppose that G is a partial k-
tree. Since V :/: 4 and G is 2-connected, there exists a vertex v V and two disjoint
paths, p(vl, s and p(v, s2), joining v with s and s2, respectively, in the subgraph
G(VI t_J S). Therefore, p(v, s) and p(v, s2) form a simple path, p(s, s2), between s
and s2 in G(VI tO S), and contracting the edges along p(sl, s2) would yield a 2-clique
with a vertex set S { s, s2 }. Thus, G is contractible to G(V2 t.J S; K( { Sl, s2 ) )), which
implies that G(V2 tO S; K( { Sl, s2 } )) is a partial k-tree. Analogously, we obtain that
G(V11.3 S; K( S1, S2 } )) is a partial k-tree as well.

LEMMA 4.3. Let G (V,E) be a triconnected simple graph and S, S
{ u, u2, u3 ), a separator of G inducing a partition of V\S into { VI, V2 } such that

Similar to Theorem 2.7 in Arnborg and Proskurowski (1986).
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V,.I 2, 1, 2, and Vi tO S >= k, 1, 2. Then, G is a partial k-tree ifand only if
the subgraphs G( Vi tO S; K(S) ), 1, 2, are partial k-trees.

Proof. If G(Vi tO S; K(S)) are partial k-trees then by using Lemma 4.1 we can
conclude that so is G. So, assume that G is a partial k-tree and let v, v2 be in V. By the
triconnectivity of G, there exist at least three vertex disjoint paths between v and v2 in
G, and since S is a separator and SI 3, at least two of these paths are contained in
G(V t3 S). Therefore, since G is assumed to be a simple graph, these two paths form a
cycle c in G(V t3 S) with at least three vertices. By the triconnectivity of G there exist
three vertices, say -1, ’2, and g3, in cg and vertex disjoint paths p(s, ffl), P2($2, if2),
P3($3, if3) (some possibly degenerated to a single vertex) in G(V1 t.3 S), such that
Pi(Si, ) 1, 2, 3, intersect with cg only in nodes /, l, 2, 3, respectively. Clearly,
if we contract edges in the paths pi(si, .), 1, 2, 3, and identify si with /, for
l, 2, 3, respectively, we create a cycle ’ that contains Sl, s2, s3. Again, appropriate
contractions of edges in ’ will create a 3-clique K(S). Thus, G is contractible to
G( V2 to S; K(S)) and we conclude that G(V2 to S; K(S)) is a partial k-tree. Analogously,
we can show that G(V to S; K(S)) is a partial k-tree.

We note that the above separation properties of partial k-trees imply the existence
of a balanced decomposition tree T of an embedding of a biconnected (respectively,
triconnected) partial 2-tree (respectively, 3-tree) G into a 2-tree (respectively, 3-tree).
The root r of T is the graph G, and if q and q2 are sons of r in T then q (respectively,
q2) is the graph G(VI tO S; K(S)) (respectively, G(V2 tO S; K(S))), where S is a 2-
separator (respectively, 3-separator) of G satisfying (1) and (2), and whose existence
follows from Theorem 3.1. The biconnectivity (respectively, triconnectivity) of G imply
that G(V tO S; K(S)) and G(V2 tO S; K(S)) are biconnected (respectively, triconnected).
Thus, if they have a sufficient number of nodes, they can be decomposed in a similar
manner. In general, the leaves ofthe decomposition tree T are biconnected (respectively,
triconnected) 2-trees (respectively, 3-trees) that are not necessarily decomposable in the
same manner if they have less than 9 (respectively, 20) nodes.

10

FIG. 4.1. G V, E) is 4-connected partial 4-tree.
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Apparently, the proofs of Lemmas 4.2 and 4.3 do not carry over for separators of
cardinality 4 or more. Indeed, consider the graph G (V, E) depicted in Fig. 4.1.

Now, G can be easily seen to be a 4-connected partial 4-tree and S { 4, 5, 6, 7 }
is a separator of G, inducing the partition of V\S to V1 { 1, 2, 3 } and V2

{ 8, 9, 10 }. Furthermore, there exists an embedding of G into a 4-tree in which S is a 4-
clique. However, we can verify by inspection that edges in G(V1 tO S) cannot be contracted
so as to make S a 4-clique in the contracted graph.

5. NC algorithms for recognition of k-connected partial k-trees for k 2, 3. In this
section we present NC algorithms for recognizing a partial 2-tree (respectively, 3-connected
partial 3-tree) graph G and finding its embedding into a 2-tree (respectively, 3-tree).
Without loss of generality, we assume here and in 6 that G is a simple graph.

Algorithm 5.1
Procedure BBD(G , L)
Input A 2-connected (respectively, 3-connected) simple graph G (V, E).
Output c if G is a partial 2-tree (respectively, 3-tree), and a 0 otherwise. Fur-

thermore, if a then the output contains an embedding of G into a 2-tree
(respectively, 3-tree).

StepO. Seta= andL=b.
Step 1.

(1.1) If[El > 2n 3 (respectively, 3n 6) set a 0 and exit.
(1.2) Else, if IV[ _-< 9 (respectively, 20) check in constant time whether G is a

partial 2-tree (respectively, 3-tree). If yes, find an embedding, G, of G into
a 2-tree (respectively, 3-tree), let L L tO { G }. Else, set a 0. Exit.

Step 2. Else, for each pair (respectively, triple) of distinct vertices S { sl, s2 } (re-
spectively, S sl, s2, s3 of V, in parallel, find all the connected compo-
nents of G(V\S) and denote their vertex sets by Vf’j 1, rs, for some
rs > 1.

(2.1) If vj.S > V] (respectively, vj.S > V I) for somej 1, rs reject
S. If all the pairs (respectively, triples) S were rejected set a 0 and exit.

(2.2) Else, if 1/2IV] _-< ]VI < lWl (respectively, [V] _-< V] =< ]V]) for
some S and for some j, <= j rs, set M Vj.s tO S and m2 (V\V).

(2.3) Else, for an unrejected S compute ql Zj =< V 1, 1, rs, and apply
a binary search to find r/ for which 1/21vI =< qn <- lVI (respectively,

41-1VI < qn --< ]VI). Set M1 tO:l Vjs tO Sand M2 (V\M1) tO S.
(2.4) Call in parallel BBD(G(M; K(S)), a, L) and BBD(G(M2; K(S)),

c2, L2). If either al 0 or a2 0, set a 0, else, set L L1 tO L2. Exit.

THEOREM 5.1. Algorithm 5.1 recognizes whether a 2-connected (respectively, 3-
connected) simple graph G V, E) with VI n is a partial 2-tree (respectively, 3-tree)
and produces an embedding of G into a 2-tree (respectively, 3-tree) in O(log2 n) time
using O( n 3) (respectively, O( n4)) processors.

Proof. We first show that the steps of Algorithm 5.1 are valid. If 1.1 in Step
holds then, since every 2-tree (respectively, 3-tree) has exactly 2n- 3 (respectively,
2n 6 edges, it follows from Lemma 4.2 (respectively, Lemma 4.3 that G is not a par-
tial 2-tree (respectively, 3-tree). If all pairs (respectively, triples) in Step 2 were re-
jected, G does not contain a 2-separator (respectively, 3-separator) and then, by Theo-
rem 3.1, G is not a partial 2-tree (respectively, 3-tree). The biconnectivity (respectively,
triconnectivity) of G implies the biconnectivity (respectively, triconnectivity) of the
minors G(Mi; K(S)), 1, 2, created in Steps (2.2) and (2.3). Therefore, by Lemma
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4.2 (respectively, Lemma 4.3), G is a partial 2-tree (respectively, 3-tree) if and only if
all the minors G(Mi; K(S)), 1, 2, created in Step 2 are partial 2-trees (respectively,
3-trees).

Next, we will show that Algorithm 5.1 requires O(log2 n) time and O(n 3) (respec-
tively, O(n4))processors. In Step 1, (1.2)can be performed in constant time using, for
example, the sequential algorithm for the recognition and embedding of partial 2-trees
(respectively, 3-trees) into 2-trees (respectively, 3-trees) of Wald and Colbourn 20
(respectively, Matousek and Thomas [14 ]). All connected components of G(V\S) can
be found, by the parallel algorithm of Shiloach and Vishkin [18], in O(log n) time and
using O(n + m) processors, where m EI. Note that in our case m O(n). Since
there are O(n2) (respectively, O(n3)) pairs (respectively, triples) to be considered si-
multaneously, Step 2 requires O(n 3) (respectively, O(n4))processors. Furthermore, in
Step 2, (2.3) takes O(log n) time using O(n2) processors to compute partial sums, qt,

and perform a binary search on them. Since in (2.2) and (2.3) Mil =< V] (respectively,
Mil --< 43-1 V I), 1, 2, Algorithm 5.1 will terminate after performing at most O(log n)

nested calls of Procedure BBD(G, o, L). Thus, our algorithm recognizes whether a 2-
connected respectively, 3-connected) graph G is a partial 2-tree respectively 3-tree) and
delivers in L the leaves of a binary decomposition tree of an embedding of G into a 2-
tree (respectively, 3-tree) in O(log2 n) time using O(r/3) (respectively, 0(/74)) pro-
cessors.

We note that in Algorithm 5.1 we have restricted G to be biconnected (respectively,
triconnected). However, the recognition of partial 2-trees that are not necessarily bicon-
nected can be easily carried out by a slight modification of Algorithm 5.1. Indeed, we
can find all biconnected components of G using the parallel algorithm of Tarjan and
Vishkin [19] in O(log n) time with O(n) processors. If G does not have biconnected
components, then it can be decomposed by zero or one separators into subgraphs of
Cardinality less than or equal to 3. Then, since every graph on three vertices is a partial
2-tree, Lemma 4.1 implies that G is a partial 2-tree. Otherwise, we perform Algorithm
5.1 on all biconnected components of G. By Lemma 4.1, G is a partial 2-tree if and only
if all biconnected components of G are partial 2-trees. Clearly, the modified algorithm
requires O(log2 n) time and O(n 3) processors.

The recognition of partial 3-trees that are not necessarily 3-connected requires a
major modification of Algorithm 5.1, which is developed in the next section.

6. NC algorithm for recognizing partial 3-trees. We develop in this section an NC
algorithm for recognizing a partial 3-tree that is not necessarily 3-connected. The per-
formance of this algorithm is identical to that developed in 5 for recognizing and
embedding 3-connected partial 3-trees. That is, it requires O(log2 n) time and O(n4)
processors. However, its description is somewhat more involved and it depends on some
new separation properties that are developed below. First, we need to introduce a new
definition.

For two disjoint paths Pl p(v, s) and P2 P2(/), $2) in G (V, E), having only
vertex v in common, the path p p(k, l) will be called a bridge path between p and p2

ifp originates at some node k in pl, k 4: v, and terminates at node in P2, 4: v, but p
is otherwise vertex disjoint with p and p.

LEMMA 6.1. Let S { s s2, s3 be a separator ofG V, E) inducing a partition
{ V, V2 } of V\S such that no edge in E connects a vertex in V with a vertex in V2.
Assume that for 1, 2 there exists a vertex vi Vi and three disjoint paths p( vi, sj),
j 1, 2, 3, joining vi with sj, j 1, 2, 3. Iffor 1, 2 there exists a bridge path between
a pair of paths among the paths p(vi, s), j 1, 2, 3, which is contained in
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G( Vi to S), then G is a partial k-tree ifand only ifG( V1 tO S; K(S)) and G( V2 tO S; K(S))
are partial k-trees.

Proof. The existence of a bridge path between some pair of the paths p(vi, sj), j
1, 2, 3, for 1, 2 imply that G is contractible to G(V tO S; K(S)) and G(V2 tO S;
K(S)), see Fig. 6.1. Thus, if G is a partial k-tree, so are G(Vi tO S; K(S)), 1, 2. On
the other hand, Lemma 4.1 implies that if G(Vi tO S; K(S)), 1, 2, are partial k-trees
then G must also be a partial k-tree.

To illustrate the proof of Lemma 6.1 see Fig. 6.1.
S Sl, s2, s3 } is a 3-separator of G (V, E) in Fig. 6.1, V1 { Vl, Ul, u2 }, V2

{ t, t2, v2 }, p(ul, u2) is a bridge path in G(VI tO S) and p(tl, t2) is a bridge path in
G(V2 tO S). Contracting, for example, first edges (u, Sl), (u2, s2), and then (Vl, s3)
would lead to G(V2 to S; K(S)).

LEMMA 6.2. Let S sl, s2, s3 be a 3-separator ofa 2-connected simple graph
G (V, E) that induces a partition { V, V2 of V\S such that 2 <= V,.I <= V[,
1, 2, and no edge in E connects a vertex in Vl with a vertex in V2. Assume that for
1, 2 there exist vertices vi V and three disjoint paths p( vi, sj), j 1, 2, 3, joining
with vertices in S. Iffor or 2 there exists no bridge path between any pair ofpaths
among the paths p(vi, s), j 1, 2, 3, which is contained in G(Vi tA S) then for some
j 1, 2, 3 and 1, 2 }, vi, s } is a separator of G, which induces a partition

{ V’, V’2 of V\ { vi, s} such that V 2 -< [V’[ _-<

Proof. Assume, without loss of generality, that there is no bridge path between any
pair of paths among the paths p(v, sj.), j 1, 2, 3, see Fig. 6.2. Since G is connected,
for any v e V1 there exists a node s(v), s(v) e S, and a path from v to s(v), p(v, s(v)),
in G that does not pass through nodes in S\ { s(v)}. Now, any node v, v
v, must be in some connected component of G(V\ s(v), v }) that does not contain
S\ { s(v) }. Indeed, otherwise there must exist a path, p(v, Y(v)), in G from v to a node
Y(v), Y(v) S\ s(v)}, which does not pass through either v or s(v). But the paths
p(v, s(v)) and p(v, Y(v)) in G induce a bridge path in G(V1 to S) between p(vl, s(v))
and p(vl, Y(v)), which is a contradiction.

Next, for 1, 2, 3 let Ct denote, respectively, the union of all connected compo-
nents of G(V\ { Vl, st that do not contain any node in S\ { st }. We claim that the

FIG. 6.1. G (V, E).
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v

FIG. 6.2. G (V, E).

sets Ct, e 1, 2, 3 }, are mutually exclusive. Indeed, from the 2-connectivity of G
and the definition of the sets Ct it follows that if v Ci, { 1, 2, 3 } and v 4 Vl, then
there exists a path p(v, si), si S, which does not pass through { Vl U S\ si }. Thus, if
v Ci fq C, i, j e { 1, 2, 3 }, and 4 j, the paths p(v, si) and p(v, sj) in G would induce
a bridge path between p( Vl, si) and p( Vl, sj-), which is a contradiction. Thus, we have that
3__ V(Ct)I Vii where V(Ct) denotes the set of nodes in Ct Let V(C)I
max {Iv(ct)l "t= 1, 2, 3}, and set V’l V(C)and V= V\(V’l to {Vl, s}). Since
S is a 3-separator, V1 >-- V 3 and thus, V’l >= 21 V 2. Clearly, V(Ct)

_
V1,

1, 2, 3, and thus V’ll =< 43-1 VI.
For an illustration of Lemma 6.2 see Fig. 6.2.
S= {Sl,Sz, S3} is a 3-separator of G=(V,E) in Fig. 6.2, VleVl,vzeV2;

there are bridge paths in G(V2 tO S) but there is no bridge path in G(V1 tO S). The
set Vl, Sl}, for example, is the required separator, whose existence is proved in
Lemma 6.2.

We use the separation results derived in Lemmas 6.1 and 6.2 and earlier to construct
an NC-algorithm for recognizing a partial 3-tree.

Algorithm 6.1
Procedure REC(G )
Input A simple graph G (V, E).
Output a if G is a partial 3-tree and a 0 otherwise.
Step 1. Find all biconnected components of G. If G has no biconnected components,

set a and exit. Otherwise, perform in parallel procedure REC (Gi, i) for
all biconnected components Gi (l/i, Ei) of G. If any O 0, set a 0 and
exit.

Procedure RECI (G )
Input A simple biconnected graph G (V, E).
Output a if G is a partial 3-tree and a 0 otherwise.
Step O. 1.
Step 1.

(1.1) If lEI > 3n 6, set a 0 and exit.
(1.2) Else, if IV < 36 check, in constant time, whether G is a partial 3-tree. If

G is not a partial 3-tree, set a 0. Exit.
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Step 2. Else, for each triple of distinct vertices S { S1, $2, S } of V, in parallel, find
all connected components of G(V\S) and denote their vertex sets by Vj-s, j 1,
rs, for some rs >= 1.

(2.1) If vs.S > ] V for somej 1, rs, reject S. If all triples S are rejected,
set a 0 and exit.

(2.2) Else, if lVI --< vj-S --< lVI for some s and for some j, =< j _-< rs, set
M, Vj.s tO S and M2 (V\V).

(2.3) Else, for an unrejected S and for all j 1,..., rs, compute ql

Zj =l vj.Sl, 1, rs, and apply a binary search to find an rt for which

-1 V[ _-< q, _-< ]IVI. Set M1 S CJ (tor "j =< r/) and M2 (V\M1) U S.
Step3. Find, in parallel, connected components of G(Mt\ { si, sj } that do not contain

S\ si, sj- for 1, 2, 4 j, i, j e { 1, 2, 3 }. Denote by C}, the union of all
such connected components, and let C, Ci, U Ci2,j for all i, j e 1, 2, 3 },
i4=j.

(3.1) If C,2 4 4, C2,3 4 4, and C1, @ (]), let G1 G(M1;K(S)) and G2
G(M_; K(S)).

(3.2) Else, if there exist at least two distinct pairs { i, j } and {p, q }, { i, j tO
{ p, q } 1, 2, 3 such that Ci, 4 and Cp,q 4 ch proceed as follows:

(a) If ]V(CI,2)l / ]V(C,3)[ / ]V(CI,3)[ < ]MI\SI and r(c,2)l /

v(c22,3)1 / v(c21,3)1 < [M2\S], where V(C},)is the vertex set of com-
ponent C},j., then let G1 G(M K(S)) and G2 G(M; K(S)).

(b) Else, ifforsome te {1,2}, Iv(c5,2)1 / ]v(cI,3)l + Ir(c,3)[- IMt\SI
find [V(C},,)] =max{]V(C’,2)], ]V(C],3)], ]V(CI,3)]} and let Gl=
G(V(C},,) tO sk, s}’, K( { sk, s})) and G_ G((V\ V(C,I)’ tO s, s}’,
/(({ s, s})).

(3.3) Else, if Cl,2 4, Cz,3 4, and C1,3 4, find, in parallel, connected compo-
nents of G(V\ { st, v } ), for all e 1, 2, 3 } and v e V, and denote their
vertex sets by V(v, st), j 1, rn(v, st), for some rn(v, st) > 1. If
V(v, st)[ > 11 / 12] V[ for some j, j 1, m(v, st) }, reject the pair

{v,s,}.
(a) If all pairs { v, st }, e l, 2, 3 } and v e V, were rejected let G1 G(M K(S))

and G2 G(M2; K(S)).
(b) Else, if 1/12lvI 2 _-< IV(v, st)l for some j e {1,..., m(v, st))},

set M’ V(v, st) U v, st } and Mi V\ Vj.(v, st) and let G1 G(M’I;
K( { v, st } )) and G2 G(M’2; K( v, s, )).

(c) Else, for an unrejected pair v, st } compute q Eiz V,-(v, st)l, l,
re(v, st), and apply a binary search to find r/for which 21vI 2 _-< q, =<
1/41 vI. Set M’ {v, st} U (tOV(v, st) "j <-- n), M’2 (V\M’I) tO {v, st},
GI G(M’; K({v, st}))and G2 G(M’2; K({v,s,})).

(3.4) Call in parallel REC (GI, 19/1 and REC (G2, c2). If either c 0 or c2
0, set c 0. Exit.

THEOREM 6.1. Algorithm 6.1 recognizes whether a simple graph G V, E) with
ff’l n is a partial 3-tree in O(log2 n) time using O(n4) processes.

Proof. We will first prove the validity of Algorithm 6.1. If, in Procedure
REC(G, ), G is found not to contain biconnected components, then it could be de-
composed by zero or one separators into subgraphs of cardinality less than or equal to
4. Since every graph on four nodes is a partial 3-tree, Lemma 4.1 implies that G is a par-
tial 3-tree. The validity of Step in REC (G, ) was explained in Algorithm 5.1. If
all triples were rejected in Step 2, G does not contain a 3-separator and by Theorem
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3.1, G is not a partial 3-tree. Otherwise, in Step 2, Algorithm 6.1 finds a 3-separator. In
Step 3, if Ct.,j 4: 4 for some i, j, 4: j, then st., sj is a separator of G, and by the bi-
connectivity of G and Lemma 4.2 it follows that G is a partial 3-tree if and only if G,
augmented with edge (si, s), is a partial 3-tree. Thus, by Lemma 4.3, if (3.1) holds,
then G is a partial 3-tree if and only if G(M; K(S)) and G(M2; K(S)) are partial
3-trees. If (3.2) holds then, by Lemma 4.2, we can augment G with edge (p, q). There-
fore, if (3.2a) is valid, there must exist vertices vi, vi Mi\S, 1, 2, and three disjoint
paths from vi to all s S in G(Mi), 1, 2. Thus, by Lemma 6.1, since (p, q) is a
bridge path both in G(M) and G(M2), G is a partial 3-tree if and only if G(M K(S))
and G(M2; K(S)) are partial 3-trees. On the other hand, if (3.2b) holds then, by
Lemma 4.2, G is a partial 3-tree if and only if G(V(C,t) t2 sk, st} K( sk, st)))
and G((V\V(C,t)) U {s, st}; K({s, st})) are partial 3-trees. If(3.3) holds, then for
each 1, 2 and for each v Mi, there exist three disjoint paths in G(Mt.) from v to
all nodes in S. Therefore, by Lemma 6.2, if all pairs are rejected in (3.3a), there must
exist a bridge path both in G(M) and G(M2) satisfying the stipulations in Lemma
6.2. Then, by Lemma 6.1, G is a partial 3-tree if and only if G(M;K(S)) and
G(M2; K(S)) are partial 3-trees. Otherwise, by Lemma 4.2, G is a partial 3-tree if and
only if G(M’ K({v, st})) and G(M’2; K({v, st))) are partial 3-trees.

Next, we will show that Algorithm 6.1 requires O(log 2 n) time using O(n4) pro-
cessors. All biconnected components can be found in Step 0, using the parallel algorithm
of Tarjan and Vishkin [19 ], in O(log n) time using O(n) processors. In Step 1, (1.2)
can be carried out in constant time using, for example, the sequential algorithm for
recognizing partial 3-trees of Matousek and Thomas [14]. The connected components
in Step 2 can be found by the parallel algorithm of Shiloach and Vishkin [18] in O(log n)
time with O(n + rn) processors. Since there are O(n 3) triples S to be considered simul-
taneously, Step 2 requires O(log n) time and O(n4) processors. It takes O(log n) time
using O( n 2) processors to compute, in Step (2.3), partial sums qt and perform a binary
search on them. In Step 3, connected components ofG(Mt\ { st., sj. that do not contain
S\{ si, s } can be found in O(log n) time using O(n) processors. Similarly, connected
components of G(V\ st, v }) can be found in O(log n) time using O(n) processors,
and since there are O(n) pairs st, v to be considered simultaneously, Step 3.3 requires
O(log n) time and O(n 2) processors. Furthermore, (3.3c) takes O(log n) time using
O(n) processors. Finally, observe that in (2.2) IVI >-- IVI, in (2.3) q, > IVI
and, since S is a 3-separator, in Step (3.2b) V(C,t)I >= l VI. Furthermore, in Step
(3.3), Vj-(v, st)l > 21 V 2 and q, > 21 V 2. Therefore, we can have at most
O(log n) nested calls ofREC G, ), and Algorithm 6.1 would terminate in O(log2 n)
time using O(n 4) processors. []
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Abstract. This paper begins with a short discussion of the general principles of Rigidity Theory. The main
interest is the combinatorial part ofthis subject: generic rigidity. While generic rigidity has several combinatorial
characterizations in dimensions one and two, these characterizations have not been able to be extended to
characterizations of generic rigidity in higher dimensions. In fact, no "purely combinatorial" characterization
is presently known for generic rigidity in dimensions three and up. The concept of an abstract rigidity matroid
is introduced and, in the context of matroid theory, the present status ofthe characterization problem is discussed.
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1. Introduction to rigidity matroids. We will use the term framework to denote a
triple (V, E, p) where (V, E) is a finite graph and p is an embedding (injection) of V
into real d-space. We will identify Vwith the set of the first n positive integers and write
p; instead of p(i). Given a framework in d-space for d equal to 1, 2, or 3, we could
construct a physical model by actually joining the pairs of points which correspond to
the edges by rods hinged at their endpoints. The resulting physical model will either be
rigid or admit some motion which alters the distance between some pair of points. The
fundamental problem in rigidity theory is developing a method for predicting rigidity
without building a model. The concept of rigidity is partly combinatorial and partly
geometric in nature. In this paper we will concentrate on the combinatorial aspects of
this concept.

Keeping the physical model in mind, it is very easy to see that a framework
V, E, p) in dimension one is rigid ifand only ifthe graph V, E) is connected. Throughout

the paper, we will use the one-dimensional case to illustrate our definitions and results.
Let (V, E, p) be a framework in d-space with [VI n. A direct attack on the

rigidity question for this framework could be carried out as follows: coordinatize d-space,
write down the distance equations for the pairs of points given by E with the coordinates
ofthe points replaced by dn distinct variables, and then ask if all other "nearby" solutions
to this system are congruent to the original framework. Clearly, if the framework admits
a deformation, there will be arbitrarily close frameworks which are solutions to this
system of quadratic equations but which are not congruent to the original framework.
Quadratic systems are not easy to work with, and the problem is often linearized by
considering the initial velocity vectors of a deformation at vertices of the framework.
This leads to the concept of infinitesimal rigidity. While rigidity and infinitesimal rigidity
are not identical concepts, they are closely related and, most importantly for us, the
combinatorial aspects of each are identical. Hence, while rigidity is the more natural of
the two concepts, we will take the computationally simpler infinitesimal approach in
this paper.

Let V, E, p) be a framework in d-space with V n. A second function u mapping
V into a is called a loading of (V, E, p) and we interpret ui u (i) as a vector attached
to the point Pi. We think of the image of u as the set of initial velocities of some motion
ofthe set ofpoints p(V). Ofparticular interest are those u which correspond to the initial
velocities of motions ofp(V) which do not stretch or compress the "rods" corresponding

Received by the editors October 18, 1989; accepted for publication (in revised form) September 26, 1990.

f Department of Mathematics, Syracuse University, Syracuse, New York 13244-1150.

355



356 j.E. GRAVER

to E. We define u to be an infinitesimal motion of (V, E, p) if, for every pair i, j) in E,
we have

(Pi-- Pj) * (Ui-- Uj) 0,

where denotes the usual inner product in real d-space. This is precisely the condition
that the components of ui and uj in the direction p. pj are identical, and therefore,
do not stretch or compress the rod joining Di and pj.. Clearly V, the collection of all
infinitesimal motions of a framework (V, E, p), is the solution set of a system of EI
homogeneous linear equations in dn variables and hence is a subspace of real dn-space.
Replacing E by the set K, the edge set ofthe complete graph on V, yields a second solution
set. Obviously, this second solution set, which we will denote by D, is a subspace of V.
It is not difficult to show that the vector assignments in D correspond to the initial
velocities of the points in p under the direct isometries or rigid motions of d-space.
The vector assignments in D are called the trivial infinitesimal motions of (V, E, p).
An infinitesimal motion of (V, E, p) that is not in D is called an infinitesimal flex of
(V, E, p). We say that a framework (V, E, p) is infinitesimally rigid if the two sub-
spaces V and D are equal. That is to say, (V, E, p) is rigid if each infinitesimal motion
of (V, E, p) is trivial.

It is not our purpose in this paper to give a general introduction to infinitesimal
rigidity. There are several fine papers that do this. The interested reader might start by
reading Roth 8 ]. In this section we will state and prove those results about infinitesimal
rigidity that motivate the definition of an abstract rigidity matroid. In the next section,
we will usually state, without proof, the standard results about infinitesimal and generic
rigidity that relate to the characterization problem. The few proofs that are included are
mentioned because they indicate how we may generalize the results to higher dimensions.

Before we go on, we must introduce some additional notation. Given the vertex set
V { 1, 2, n }, we will, as previously stated, let Kdenote the edge set ofthe complete
graph on V. For any subset U

___
V, and any subset E

___
K, we use E(U) to denote the

set of edges in E with both endpoints in U; for any subset E
_
K, we use V(E) to denote

the support of E, i.e., the set of all vertices that is an endpoint of some edge in E. Thus,
U, K(U)) is the complete subgraph on the vertex set U and (V(E), E) is the subgraph

of (V, K) induced by the edge set E.
Consider an embedding p of Vin a. Each edge ij in Kdetermines a linear functional

(1) (-), (u;- u)
on the dn-dimensional space of loadings. Thinking of the coordinates of a vector in
as the concatenation of n banks of d coordinates each, we may associate the edge ij with
the vectors having all banks zero except the th bank which is occupied by Pi Pj and
thejth bank which is occupied by p: Pi. We could then rewrite as an inner product
in

(2) (0, ,0, pi-p-,0, ,0, p;-pi,0, ,0),(u, ,ui, ,Un).

The embedding p may then be represented by the (n(n )/2) by (dn) matrix whose
rows, indexed by the edges in K, are the left-hand vectors of (2). This matrix R(p) is
called the rigidity matrix ofthe embedding p. We note that the space D is the orthogonal
complement of the space spanned by the rows of R(p) and that V is the orthogonal
complement of the space spanned by the rows of R(p) corresponding to the edges of E.
Consider the determinant of each minor of R(p) as p varies over all of a,. A specific
embedding p is defined as generic if all the nontrivial minors of R(p), i.e., the minors
with determinants that are not identically zero, have nonzero determinants. It is obvious
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from this definition that the generic embeddings form a dense open subset of dn. The
next result is also obvious from these definitions.

LEMMA 1. Let a graph V, E) and a positive integer d be given, and let p and 1 be
any two generic embeddings of V into d-space. Then either (V, E, I) and (V, E, 1) are
both either rigid or not rigid.

Another important, but not so obvious, fact is that if 1 is a genetic embedding of
V into d-space, then the concepts of rigidity and infinitesimal rigidity coincide for all
frameworks (V, E, 1) (Asmow and Roth [1 ], [2 ]). In light of Lemma and this fact,
we define an edge set E

_
Kto be d-rigid (or simply rigid, ifthe value ofd is understood)

when the frameworks corresponding to E under the genetic embeddings of V(E) into
d-space are rigid. It is clear from Lemma that the concept of d-rigid is a "purely
combinatorial" concept in that it depends only on the structure ofthe graph (V(E), E).
However it is only for d equal to one or two that d-rigid has a "purely combinatorial"
characterization, i.e., a characterization in terms ofthe structure of the graph (V(E), E)
alone. The purpose of this paper is to describe the major attempts that have been made
to find a purely combinatorial characterization of "d-rigid" for higher dimensions. We
will be particularly interested in dimension three.

We begin our investigation by taking a careful look at infinitesimal rigidity. Actually
it is the concept of infinitesimal independents that will play the more fundamental role.
Given a finite set V and an embedding 1 of V into d-space, a subset E

_
K is said to be

infinitesimally independent (relative to 1) ifthe corresponding functionals are independent
(or, equivalently, if the corresponding rows of R(I) are independent). Clearly the infin-
itesimally independent sets relative to 1 are the independent set of a matroid on the set
K. We call this matroid a d-dimensional infinitesimal rigidity matroid on Kor, specifically,
the infinitesimal rigidity matroid on K defined by . We denote the infinitesimal rigidity
matroid on K defined by 1 by (1). If 1 is a genetic embedding, the structure of/(1)
is uniquely determined by the dimension d and the cardinality of V. In the genetic
case, we call (1) the generic rigidity matroid on K of dimension d and denote it by

(d, n). A set E Kthat is an independent set of (d, n) is said to be d-independent.
There is one important relation between the infinitesimal rigidity matroid on K

given by an arbitrary embedding 1 of V into d-space and the genetic rigidity matroid on
K of dimension d: Clearly if a set of rows of R(I) is independent for some embedding
1 then that set of rows is independent for all genetic embeddings. Thus, we have the
following lemma.

LEMMA 2. Let V be afinite set and let E
_
K. If, for any embedding of V in ,

E is infinitesimally independent, then E is d-independent.
In dimension one it is not difficult to show that all embeddings are genetic: Let A

be the edge-vertex adjacency matrix ofthe direct graph (V, K) where the edge ij is directed
from to j when < j. The rigidity matrix of an embedding 1 is obtained from A by
multiplying the ij row by the constant li lj. Since this is an embedding, 1; lj 4 0,
and the nonzero determinants of R(I) correspond to the nonzero determinants of A,
independent of the choice of 1. It follows from this observation that there is only one 1-
dimensional infinitesimal rigidity matroid on K, namely, the genetic rigidity matroid on
K of dimension one. We easily check that an independent set of rows of A, and hence
R(I), corresponds to a set of edges which is circuit-free in the undirected graph. Hence
the independent sets of 1, n) are the forests of (V, K) and 1, n) is the usual (cycle)
matroid on (V, K).

We will not need to refer to the rigidity matrix any further and, in order to facilitate
our remaining computations, we will again re-interpret the expressions in above. We
interpret the points 1 ofI(V) as d-dimensional column vectors and the vectors t,
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un of a loading u of p(V) as row vectors. Thus the inner products in and (2) above
may be replaced by the matrix product (uj uk)(pj pk). This product may be thought
of as the strain induced on the edge jk by the loading u; when this product is positive,
we think of the edge jk as being stretched by the loading and, when it is negative, we
think of the edge as being compressed by the loading. When p is fixed, we will denote
this induced strain by u:
(3) u (u-u)(-).

Given any matroid on K, we have the following usual matroid concepts:
For E c_ Kthe rank ofE, r(E), is the cardinality of a maximum independent subset

of E;
For E

___
K the span or closure of E, c(E), is defined by

c(E)= { UKIr(EU { ij} )= r(E) }.
The next lemma contains a useful characterization of the closure operator for the infin-
itesimal rigidity matroid defined by an embedding p.

LEMMA 3. Let p be an embedding of V 1, 2, n } into Nd and consider the
closure operator c ofthe infinitesimal rigidity matroid defined by p.

a IfE
_
K and hk K, then hk is not in the closure ofE ifand only ifthere exists

an infinitesimalflex u ofE such that uh 4: O.
(b) IfE c_ K, then c(E) c_ K(V(E)).
Proof To prove part (a), assume first that the edge hk is in c(E) and let u by any

infinitesimal motion of E. Since hk c(E), the linear functional associated with hk is a
linear combination ofthe linear functionals associated with the edges in E. Thus for any
loading u, uh, the value of the linear functional associated with hk at u is a linear
combination of the values u0 of the linear functionals associated with the edges ij in E.
But u0 0, for ij E, and we conclude that u 0.

Conversely, assume that hk is not in (E). Since the linear functional associated
with hk is not in the span of the linear functionals associated with the edges in E, there
exists a loading u in Nan at which all the functionals associated with E are zero and at
which the functional associated with hk is not zero. This loading is then an infinitesimal
flex ofE with uk 4 0.

Turning to part (b), suppose that hk does not belong to K(V(E)). Without loss of
generality, we may assume that h is not in V(E). We define the loading u on I(V) to
be the zero vector at all points of I(V) except h and to be u at h where u is any nonzero
vector not perpendicular to (lh 1). Clearly, u is an infinitesimal flex of E with
u 4: 0. By part (a), hk is not in c(E).

We may now characterize infinitesimal rigidity in terms of the closure operator.
THEOREM 1. Let p be an embedding of V 1, 2, n } into d and let c be the

closure operator of/g (p). Then E
_
K is infinitesimally rigid with respect to p if and

only ifc(E) K(V(E)).
Proof Assume that c(E) K(V(E)) and let u be any infinitesimal motion of E.

Next, let hk be any edge in K(V(E)); it follows from Lemma 3(a) that u 0. Thus,
u is trivial and we conclude that E is infinitesimally rigid.

Conversely, assume that c(E) 4: K(V(E)). We conclude from Lemma 3(b) that
c(E) is a proper subset ofK(V(E)). Let hk belong to K(V(E)) c(E) and apply Lemma
3(a) to get a loading u of p(V) which is an infinitesimal motion of E and for which
uh 4: O, i.e., an infinitesimal flex of E. Thus, E is not infinitesimally rigid.

In order to avoid many special cases, we will now restrict our discussion to frame-
works (V, E, p) where the points p(V) are in general position. An embedding p of V is
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said to be general if the set p(V) is in general position, i.e., no three points of p(V) lie
on a line, no four lie on a plane,..., no set ofd + points lie on a (d- )-dimensional
hyperplane. It is not difficult to show that all genetic embeddings are general embeddings.
Hence, this restriction will not affect our consideration of genetic rigidity.

THEOREM 2. Let p be a general embedding of V { 1, 2, n } in a and let c
denote the closure operator ofthe infinitesimal matroid determined by p. Let E, F

_
K

and suppose that IV(E) f3 V( F)[ < d. Then c(E t_J F)
_
K(V(E)) t_J K(V( F)).

Proof Let S V(E) f3 V(F). If SI < (d- 1) we may add d- SI points
to p(V) to get a larger set, also in general position. LetHbe the unique (d 2)-dimensional
hyperplane that contains S and the additional points. We note that, since the enlarged
set is in general position, any (d- )-dimensional hyperplane which contains H can
contain at most one other point of p(V).

Consider a direction of rotation about H. Let U denote the vector field that assigns
to each point q ofa the vector U(q) which is perpendicular to the (d- )-dimensional
hyperplane containing H and q in the direction of rotation and having length equal to
the distance from q to H. The vector field U may be thought of as the initial velocities
of a rotation ofd with H as axis. We note that, for any q and q2 in d, we have

(4) (U(q)- U(q2))(q -q2) O,

where qi is written as a column vector while U(qi) is written as a row vector. Define the
loading u by setting U to be the zero vector for all in V- V(F) and setting ui equal to
U(pi) for all in V(F). By above, u is an infinitesimal motion of F. Since U assigns
the zero vector to each point in H, u assigns the zero vector to each point in V(E) and
is, therefore, an infinitesimal motion ofE. We conclude that u is an infinitesimal motion
of EtO F.

Suppose hk does not belong to K(V(E)) U K(V( F)); then either hk does not belong
to K(V(E) U V(F)) or either h or k belongs to V(E) S while the other belongs to
V(F) S. In the former case, we may apply Lemma 3(b) and the fact that V(E)
V(F) V(E LI F) to conclude that hk does not belong to c(E t_J F). Turning to the
second case, we assume that h (V(E) S) and k (V(F) S). Since uh is the zero
vector, since uk is perpendicular to the (d )-dimensional hyperplane containing H
and pk, and since ph does not lie in that hyperplane,

uh: (p p:) (u u) 4 O.

Thus by Lemma 3 (a), hk does not belong to c(E F). []

THEOREM 3. Let a finite set V and a general embedding p be given. Let F, E be a
subsets ofK. IfE and F are infinitesimally rigid and if V(E) f3 V( F) >- d, then E
F is infinitesimally rigid.

Proof We have that c(E) K(V(E)), c(F) K(V(F)), and we must show that
c(E F) K( V(E t_J F)). One ofthe standard results about the closure operator is that
it preserves inclusion. Thus

K( V(E) t3 K( V( F) c(E) l,_J c( F)
_

c(EF).

Hence ifj, k V(E) or j, k V(F), thenjk 6 c(E t F). We also have that

K(V(EUF))=K(V(E)U V(F)).

Clearly then, it remains only to show that, ifj (V(E) S) and k (V(F) S) where
S V(E) f3 V(F), then jk c(E F).

Without loss of generality, we may assume that V= {0, 1,..., n}, S
{ 1, d}, j 0, and k n. Let u be any infinitesimal motion of E U F. Since E is
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rigid, u is a trivial infinitesimal motion when restricted to V(E). Hence u agrees with
the vector field of a rigid motion of d-space on V(E). Subtracting the value of this
vector field from u at all points in V(E) V(F), we may assume that ui is the zero vec-
tor for all in V(E). To apply Lemma 3(a) to deduce that 0, e C(E t.J F), we must
show that u0n 0. Since 0 V(E), u0 0. Since 1, d, n }

__
V(F) and U

for each 1, d, we have that un must be perpendicular to each of the vectors
p/.- p,, for 1, d. Since p(V) is in general position, these vectors are independent
and span d-space; thus, u must be the zero vector.

Let (V, K) be a complete graph; a matroid on K is a d-dimensional abstract
rigidity matroid on K if its closure operator satisfies the following two conditions. For
E,F_K:

(a) if IV(E) f3 V(F)] < d, then c(E kJ F)
_
K(V(E)) U K(V(F));

(b) if ]V(E) f3V(F)] >=d, c(E)=K(V(E)), and c(F)=K(V(F)), then
c(E F) K(V(E t_) F)).
Given the complete graph (V, K) and an abstract rigidity matroid on K, note that,
by taking F in (a), we have that c(E)

_
K(V(E)). We define a set E

_
K to be

rigid (in the matroid /) if c(E) K(V(E)). Having made this definition, condition
(b) could be restated:

(b) Ifboth E and Fare rigid and IV(E) f-) V(F)] >_- d, thenE Fis rigid.
Let the finite set Vand any general embedding p of Vinto d be given. By Theorem

1, the concept of rigidity as defined above for abstract rigidity matroids coincides with
the original definition of infinitesimal rigidity for infinitesimal rigidity matroids. By
Theorems 3 and 4, (p) is a d-dimensional abstract rigidity matroid on K. It is interesting
to note that there are examples of abstract rigidity matroids which are not infinitesimal
rigidity matroids. Such examples arise in the theory of splines and in the theory of hy-
perconnectivity (see Whiteley [10] and Kalai [5]). Also, there are matroids that arise
elsewhere in rigidity theory which are not abstract rigidity matroids; for example, the
matroids which correspond to bar and body frameworks (see Whiteley [9]).

Our purpose in the remainder of this paper is to prove some fundamental results
valid for all d-dimensional abstract rigidity matroids and to try to discover further prop
erties which may be used to characterize the d-dimensional genetic rigidity matroids.
The natural problem of characterizing the d-dimensional infinitesimal rigidity matroids
will not be considered in this paper.

2. Properties of rigidity matroids. We begin this section with two fundamental
results about abstract rigidity matroids. These are generalizations to abstract rigidity
matroids of well-known results for infinitesimal rigidity.

THEOREM 4. Let be a d-dimensional abstract rigidity matroid for V and let
EK.

(a) Ifthe graph (V(E), E) has a vertex ofvalence d or less and ifF is the edge set

of the subgraph obtained by deleting that vertex and the edges containing it, then E is
independent ifand only ifF is independent.

(b) If V(E)[ <= (d + 1), then E is independent.
Proof. (a) Clearly if E is independent, then F is independent. Assume then that F

is independent. We denote the vertices in Vby 1, n; we assume that n is the vertex
of valence d or less; and we assume that n is adjacent to vertices 1, e (e _-< d).
Assume that e >_- and let G E { ne }. If e 1, then G equals F and is independent;
otherwise we assume by the induction hypothesis that G is independent. Note that G
FUH, whereH= {nl,...,n(e- 1)},andthat [V(F) f3 V(H) =(e- 1)<d. By
part (a) of the definition of an abstract rigidity matroid, c(G)

_
K(V(F)) K(V(H))
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and, since ne K(V(F)) tO K(V(H)), ne c(G). We conclude that E G tO {ne} is
independent.

Turning to part (b), we note that since the empty edge set is independent, K(U),
where ]U] _-< is independent. If we assume that U {1, ..., j} where 2 _-< j -<
(d + ), we note that the vertex j of U, K(U)) has valence less than or equal to d and
that edge set of the subgraph obtained by deleting j is K( { 1, (j } ). Thus part
(b) of this Theorem follows by induction from part (a). V1

THEOREM 5. Let 1 be a d-dimensional abstract rigidity matroidfor V. Let U
_

V and let E co_ K. Then"

Ul(I uI 1)/2, ifl uI <=(d+ 1),
(a) r(K(U))=

dlUI -d(d+ 1)/2, ifluI >=d;

(b) If E is independent, then for all F
_
E with ]V( F)] >= d we have ]F[ =<

d] V(F)] d(d+ 1)/2.
Proof If U] =< (d + ), we conclude from Theorem 4(b) that K(U) is independent.

Thus r(K(U)) [K( U)] Ul(I uI )/2. Next assume that U S t_J { 1, ..., k
where S (q (1, ..., k} and SI d. Let Ui S O (i}, let K,. K(U,.), and let
E K LJ K. Since E can be partitioned into K(S) and K K(S), ...,
K- K(S), we have

EI ISI / dk=(d(d 1)/2)+ d(I UI -d)= dl UI -d(d+ 1)/2.

The second line of part (a) will follow if we can show that E is both independent and
rigid. To this end let Ei K1 tO tO Ki, for 1, k; note that E1 K1 and E
Ek. Also note that E is rigid by definition and independent by Theorem 4(b). We
proceed by induction to show that E,. is both rigid and independent and rigid for

Assume then that > and that Ei-) is both rigid and independent. First note
that Ei E<i-) tO Ki and that E<,._) (’1K;] d; thus by part (a) of the definition
of an abstract rigidity matroid, E is rigid. Second, note that the vertex has valence d in
(V(E,.), E) and that the edge set of the subgraph obtained by deleting this vertex and
the edges containing it is Ei-); thus by Theorem 4(a), E is independent.

Turning to part (b), we note that ifE is independent then any subset F ofE is also
independent. If IV(F)] >= d, we then have

]El =r(F)<=r(K(V(F)))=d] V(F)]-d(d+ 1)/2. U]

Next we state, without proof, two standard results on infinitesimal and genetic
rigidity. The first is a useful extension ofLemma 2 relating infinitesimal rigidity matroids
and genetic rigidity matroids.

THEOREM 6. Let the finite set V be given and let E c_ K. If, for some general
embedding p of V, E is independent respectively, rigid) in (p), then E is independent
(respectively, rigid) in /g (d, V I).

The next result is a first step toward finding additional conditions which may serve
to distinguish the generic rigidity matroid among the abstract rigidity matroids.

THEOREM 7. Let the complete graph V, K) be given and consider g d, IV[) on
K. Let E co_ K and suppose that (V(E), E) has a vertex ofvalence d + 1, let S be the set

of vertices adjacent to that vertex and, finally, let F be the edge set of the subgraph
obtained by deleting that vertex and the d + edges containing it. Then E is independent
in//g d, [V[) ifand only ifthere is a pairjk ofverticesfrom S so that the edgejk is not
in F and the set F tO {jk } is independent in ll d, ]V[ ).
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These fundamental results give the background needed to discuss the various attacks
on the problem of characterizing genetic rigidity. In the remainder of this section, we
will consider four characterizations of genetic rigidity in dimension two. The first of
these characterizations is due to Laman 6 and was the first to be proved. Unfortunately,
of the four characterizations that we will discuss, it is the only one which is known not
to generalize to higher dimensions.

Consider the condition stated in Theorem 5 (b). Let d be a fixed positive integer
and let V be a fixed finite set. An edge set E

_
K K(V) is said to satisfy Laman’s

condition (for dimension d) if, for each subset F E with IV( F)[ >_- d, we have

]F[ <=d[V(F)[-d(d+ 1)/2.

Theorem 5 (b) states that the independent sets ofa d-dimensional abstract rigidity matroid
satisfy Laman’s condition for dimension d. In 1970 Laman [6] gave the first character-
ization of genetic rigidity in dimension two. We restate his result in our terminology.

LAMAN’S THEOREM. Let the complete graph (V, K) be given. Then, E K is 2-
independent ifand only ire satisfies Laman’s condition for dimension two.

The analogous result is valid in dimension one; it is easy to see that E satisfies
Laman’s condition for dimension one if and only if it contains no cycle, i.e., if and only
if it is the edge set of a forest.

As we indicated, Laman’s result does not extend to dimension three or higher.
Consider the graph (V, E) illustrated in Fig. l, and assume that is any three-dimensional
abstract rigidity matroid for V. We easily check that E satisfies Laman’s condition for
dimension three and the equality E[ 3] V(E)I 6. On the other hand, since E is
the union of two edge sets whose supports intersect in a set of two vertices, E is not rigid
(in particular, the pair consisting of the rightmost and leftmost vertices is not in the
closure of E). Thus,

r(E)<r(K(V(E)))= 3[ V(E)[-6 [El;

and hence E is not independent. By adding d-3 vertices to V and all edges between any
two of these new vertices or between a new vertex and an old vertex, we get a graph
which shows that Laman’s Theorem could not extend to d-space, for any d greater
than three.

The remaining characterization of genetic rigidity in 2-space which we will discuss
here may be extendible to 3-space. That is, there are no known examples analogous to
the one in Fig. that show the extensions to 3-space to be false.

The next characterization of the two-dimensional genetic rigidity matroids was
given by Henneberg [7]. Before we can state the Henneberg result, we must intro-
duce the concept of isostatic sets: an edge set E

_
K is d-isostatic if it is both d-inde-

pendent and d-rigid. We easily verify that each d-independent set is a subset of some

FIG.
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d-isostatic set with the same support. Thus the d-isostatic sets of (d, n) completely
determine //(d, n). Another important observation is that, if E is d-isostatic, then
EI dl V(E)I d(d + )/2. A simple counting argument then gives that the average

valence in the graph (V(E), E) is less than 2 d. On the other hand if VI > d, it follows
from the fact that E is d-rigid and from condition (a) of the definition of an abstract
rigidity matroid that every vertex of (V(E), E) has valence at least d. We have proved
the following lemma.

LEMMA 4. Let the finite set V be given and let E K be d-isostatic. Then either
E K(U)for some U

_
V with uI <= d or the graph (V(E), E) contains only vertices

with valence d or more and at least one vertex with valence less than 2d.
In 1911 Henneberg [4] described a method for constructing all 2-isostatic sets.

A sequence of graphs (V, E1 ), (Vn, En) is called a 2-dimensional Henneberg se-
quence if (V, El) consists of a single edge and its endpoints and if, for each index
j (2 _-< j _-< n), (V, E.) is obtained from (V._ 1, E;_ 1) by attaching a new vertex by two
edges, or by deleting an edge from (V-_ 1, E._ l) and attaching a new vertex by three
edges in such a way that both endpoints of the deleted edge are adjacent to the new
vertex.

THEOREM 8. Let the complete graph V, K) be given. An edge set E
_
K is 2-isostatic

if and only if there is a two-dimensional Henneberg sequence (Vt, E), (V, E)
such that (V(E), E) (Vn, E).

We include a proof of this result since it contains the ideas necessary to consider
extending this construction to higher dimensions.

Proof Assume that there is a two-dimensional Henneberg sequence (V, E1 ),
(V, E) with (V(E), E) (V, En). We prove inductively that the edge set ofeach graph
in the sequence is 2-isostatic. Clearly, E is 2-isostatic. Assume, then, that E is 2-isostatic
and apply either Theorem 4(a) or Theorem 7 to conclude that E/1 is 2-isostatic.

Conversely, assume that E is 2-isostatic and prove inductively that any edge set with
smaller support and which is 2-isostatic is the edge set of a terminal graph in a two-
dimensional Henneberg sequence. By Lemma 4, (V(E), E) contains a vertex n ofvalence
two or three. If the valence is two, let F be the edge set obtained by deleting the two
edges containing the vertex n. By Theorem 4(a) F is 2-independent. If the valence is
three, apply Theorem 7 and let F be the 2-independent set obtained by deleting the three
edges containing the vertex n and adding the appropriate edge between neighbors of n.
By a simple counting argument, we see that FI 21(V(F))I 3 and, hence, that F
is actually 2-isostatic. Applying the induction hypothesis to (V(F), F) and appending
(V(E), E) yields the required sequence.

We should note that the Henneberg approach does work for dimension one: The
1-isostatic sets are simply the edge set oftrees and a one-dimensional Henneberg sequence
starts with an isolated vertex and attaches a pendant vertex at each stage.

The next characterization of genetic rigidity in dimension two is due to Dress and
is based on properties of closed sets. If E is any edge set, the cliques of E are the edge
sets of the maximal complete subgraphs of the graph (V(E), E).

LEMMA 5. Let be any abstract rigidity matroid ofdimension d. IfE is a closed
set in /l and ifKl, K are the cliques ofE, then

(1) E= K (.J 1.3Kk;
(2) I/r(E) l,z(KI) I,..J [,.J l,z(Kk);
3 V(Ki) f3 V(K) < d, for all distinct andj.
Proof Conclusions and 2 are easily seen to be true for any graph (V(E), E).

Now suppose that, for and j distinct, we have V(K) f’l V( K.)I ->- d. Since Ki and K-
are rigid we have, by part (b) of the definition of an abstract rigidity matroid, that K
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/ is rigid. Thus K(V(Ki) U V()) is a subset of E, contradicting the assumption that
Ki and Kj- are distinct cliques of E.

At a conference in Montreal in 1987, Dress pointed out that, if d is one or two and
//is genetic, then we have the formula r(E) r( K1 + + r(K), for any closed set
E. He also pointed out that the natural extension of this formula to higher dimensions
avoids the difficulties which occur in attempting to extend Laman’s characterization,
and he conjectured that the natural extension of this formula would hold in dimension
three. A counterexample to the natural extension of this formula to dimension four was
produced at the conference. We will discuss in detail the extensions of this formula to
higher dimensions in the next section. Here we show that this formula is not only valid
in dimension two but actually characterizes genetic rigidity in 2-space.

THEOREM 9. Let be a 2-dimensional abstract rigidity matroid on K. t is generic
ifand only if, for every closed set E oft,

r(E) r( K1 )+’’" + r(K),

where K1, Kk are the cliques ofE.
Proof Assume that //is generic. Let E be a closed set and let K1, Kk be its

cliques. For each index i, let Fi be a maximal independent set in K; and let F F1 U
U Fk. Since F E and c(Fi) Ki, for each index i, we conclude that c(F) E. So

r(E) r(F). Furthermore,

IFI IFll +"" + levi =r(K1)+ +r(Kt:).

It remains only to show that r(F) IF], i.e., that F is independent.
Suppose that F is dependent and let H be a minimal dependent subset of F

(i.e., a cycle). We have by Laman’s Theorem that IN] > 2IV(H)[ 3 and [G] -<
2]V(G)] 3, for each proper subset G of H. Taking G H- { hi}, for some edge
hj in H, we may conclude from the two inequalities that V(G) V(H) and ]G]
2 V(G) 3. Thus, G is rigid and both G and H lie entirely within some K(Ui). But
then H c__ Fi, which is impossible.

Conversely, assume that for every closed set of////, r(E) r(K1) -]- d- r(Kk).
We wish to prove that every set which satisfies Laman’s condition is independent. Assume
that F is such a set; we proceed by induction on ]El. Since single edges are independent,
we assume that ]F] > 2 and, inductively, that all proper subsets of F are independent.
Let E c(F) and let K1, Kk be the cliques of E. If k 1, we note that E K1
K(V(F)). Thus we have: r(F) r(E) r(K1) 21V(F)] 3 >= FI. But [FI >-- r(F)
with equality only if F is independent. Hence F is independent. Now assume that k >
and let F; F ffl Ki, for all i. Since by (3) of Lemma 5 the K; are disjoint, the F; are
pairwise disjoint. Therefore each Fi is a proper subset ofF and hence independent. Thus
for each we have that r(K;) >_- r(Fi) IFi[. We then have

r(F)=r(E)=r(K1)+... +r(K)>= IF, +"" + levi IFI.
And, as above, we conclude that F is independent. U]

The last characterization that we will consider is based on Theorem 6. If /1 and
2 are both matroids on K, we say that 1 majorizes /2 and write /1 > /2 if each
independent set in / is also independent in /. Theorem 6 characterizes /(d, n) as
the unique maximal d-dimensional infinitesimal rigidity matroid on K (where V

1, ..., n } relative to the relation ">." Since the concept of an infinitesimal rigidity
matroid has not been characterized combinatorially, Theorem 6 does not yield a com-
binatorial characterization of genetic rigidity. However as a trivial corollary to Laman’s
Theorem, we have the following characterization of genetic rigidity in dimension two.
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COROLLARY TO LAMAN’S THEOREM. ///(2, n) is the unique maximal two-dimen-
sional abstract rigidity matroid on K (where V { 1, n }) under the relation of
majorization

We now consider generalizations ofthese characterizations to dimensions three and
higher.

3. Generic rigidity in higher dimensions. Ifwe analyze the proof of Theorem 8, we
see that Henneberg sequences were defined to reflect the results of Lemma 4, namely,
that each 2-isotropic set (excepting a single edge) has either a vertex of valence two or a
vertex of valence three. Thus in defining three-dimensional Henneberg sequences, we
must take into account the fact that a 3-isotropic set must have a vertex with valance
equal to three, four, or five. In 3-space, Theorem 4 (a) tells us that we may attach a vertex
of valence three to any 3-isostatic set to get another 3-isostatic set. Theorem 7 describes
just how to attach a vertex of valence four. What is needed is a set of conditions under
which we may attach a vertex of valence five. If we are to extend the Henneberg con-
struction to higher dimensions, we need necessary and sufficient conditions under which
we can attach vertices of valence k for any k (d _-< k < 2d). A natural set of necessary
conditions is easy to describe.

Let the complete graph (V, K) be given and let / be a d-dimensional abstract
rigidity matroid on K and let F and G be subsets ofK. We say that G is independent over
F if r( F tO G) r(F) + [G[. Note that if G is independent over F, then G f-) F
and G is independent; furthermore, ifF is independent then so is F G. Let S

_
V(F).

We say that S is free in F if, for any U S with UI > d, there exists a set G
_
K(U)

such that GI U] d and G is independent over F. Note that, if SI --< d, then S is
trivially free in F.

THEOREM 10. Let the complete graph V, K) be given and let be a d-dimensional
abstract rigidity matroid on K. Let E

_
K, let h V(E), let S be the set ofneighbors of

h, let H be the set ofedges with h as endpoint and let F E- H. Then ifH is independent
over F., S is free in F.

Proof As noted above, the result is trivially valid if the valence of h is d or less.
The special case where the valence of h is d + and E is independent follows from
Theorem 7. However, we do not need that special case here. We assume that h has
valence at least d + and proceed by induction on the valence of h. In showing that S
is free in F, we need only consider the case U S, with the cases with U a proper subset
of S being taken care of by the induction hypothesis.

Choose k 6 S, let E’ E hk }, let S’ S { k } and let H’ H hk }. Clearly,
H’ is independent over F and hk c(E’). Our first task is to show that K(S) is not a
subset of c(E’). Suppose that it is. We would then have that K(S’ t.) { h } is a subset of
c(E’), and that V(K(S)) f3 V(K(S’U h }))l S’I > d. But this would imply

hk6c(K(S)UK(S’U { h )Gc(E’).

We conclude that there is an edge 0" K(S) so that q is not in c(E’). Let E" E’U { ij }
and note that r(E") r(E). Let F’ F U { 0" }. Since

r(E") r(E’)+ r(F)+ IH’I / r(F’)+ IH’I,
we conclude that H’ is independent over F’. By the induction hypothesis, there is a set
G’
_
K(S’) so that G’I S’l d and G’ is independent over F’. We easily check then

that G G’ U { ij has the correct cardinality and is independent over F, thus demon-
strating that S is free in F. U]

Let the complete graph (V, K) be given and let be a d-dimensional abstract
rigidity matroid on K. Let E

_
K, let h V(E), let S be the set of neighbors of h,
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let H be the set of edges with h as an endpoint and let F E- H. If S is free in F
and G

_
K(S) such that al SI -d and G is independent over F, then we say

that (V(E), E) is a (d, k)- extension of (V(F t.J G), F tO G). A sequence of graphs
(Vl, El ), (Vn, En) is called a d-dimensional Henneberg sequence if (V1, El is a
complete graph on d + vertices and if, for each index 2 =< j -< n, (V, Ej.) is a (d, k)-
extension of (V_ 1, Ej_ l) with d =< k < 2d. We easily verify the following corollary to
Theorem 10.

COROLLARY. Let1 be a d-dimensional abstract rigidity matroidfor V. Ifthe edge
set E

_
K is isostatic, then there is a d-dimensional Henneberg sequence V1, E1 ),

(V, E) such that (V, En) (V(E), E).
We could use Henneberg sequences to characterize genetic rigidity in d-space, ifwe

could prove that every d-dimensional Henneberg sequence ends with a d-isostatic edge
set, i.e., that for k d, 2d- 1, a (d, k)-extension of a d-isostatic set is d-isostatic.
By Theorem 4(a) we know this to be true for k d, and Theorem 7 states that it is true
for k (d + ). Hence in dimension three, only the step that attaches a vertex ofvalence
five is in doubt. In general we wish to know ifthe necessary conditions given in Theorem
10 are sufficient, specifically, the following: Given the complete graph (V, K), E K
and a vertex h of valence d + k in (V(E), E) such that F (the set of edges in E not
containing h) is d-independent and S (the set of neighbors of h in (V(E), E)) is free in
F, may we conclude that E is d-independent? Actually, the only case for which the
answer to this question is not known is the case d 3 and k 2, i.e., the case needed
to attach a vertex of valence five in dimension three. The answers to this question are
listed in Table below.

The "Yes" entries in the first column follow from Theorem 4(a), those in the
second column from Theorem 7. The "Yes" answers in the first and second rows follow
from the Laman characterization in dimensions one and two. The example in Fig.
shows that a (3, 3)-extension of a 3-isostatic set need not be 3-isostatic: We easily verify
that the set of neighbors of a vertex of valence six in this graph is free in the edge set
obtained by deleting the six edges containing that vertex. This example may be altered
as follows: Replace the rightmost triangle by a k-circuit and add d-3 vertices attached to
all other vertices in the graph. The resulting family of graphs demonstrate that, for d >=
3 and k >_- 3, a (d, k)-extension of a d-isostatic set need not be d-isostatic. This accounts
for all of the "No" entries except those in the second column.

The "No" in the (4, 2) position was demonstrated by Maehara [7] and Woodall
[11 ]. The relevant example is easy to describe. Start with the edge set of the complete
graph on six vertices from which one edge has been deleted. This edge set is easily seen
to be 4-isostatic. Then we can make seven (4, 2 )-extensions deleting the fourteen original

TABLE
Is a (d, k)-extension ofa d-isostatic set always d-isostatic?

0 2 3 k

Yes Yes Yes Yes Yes
Yes Yes Yes Yes Yes
Yes Yes ??? No No
Yes Yes No No No

Yes Yes No No No
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edges and ending with the complete bipartite graph K6,7o Bloker and Roth 3 have shown
that K6,7 is not 4-isostatic, so at some step in the construction, a (4, 2)-extension of a 4-
isostatic set did not result in a 4-isostatic set. By attaching additional vertices this example
may be extended to higher dimensions. Hence the only open case is the one which would
enable us to deduce that each 3-dimensional Henneberg sequence ends in a 3-isostatic
set. Henneberg believed this to be true but did not prove it; hence we have the following
conjecture.

TIqE HErqNBR CONFCa’tR. Any (3, 2)-extension ofa 3-isostatic set is 3-iso-
static and, therefore, any three-dimensional Henneberg sequence terminates in an edge
set which is 3-isostatic.

We turn next to the Dress conjecture in dimension three and higher. As stated in
the previous section, this conjecture was put forward by Dress at the 1987 Montreal
Conference. Dress pointed out that, for a closed set E with cliques K, Km, the rank
of E seems to be given by the "inclusion-exclusion" formula based on rank instead
of cardinality:

In particular, if we consider tlae closure of the edge set of the "standard counter example
graph" in Fig. equality does hold. However, it was discovered at the meeting that the
edge set E ofthe complete bipartite graph K6,7 does not satisfy this equality in dimension
four: As we noted above, this graph is not 4-isostatic even though it has 42 4(13)
10 edges. Thus it is not rigid. By symmetry, if one of the edges between two vertices of
one of the verte set were to belong to the closure of E, then all of the edges between
vertices in this vertex set would have to belong to c(E), which would imply that E were
rigid. We conclude that E is closed and that the cliques ofE are its individual edges. In
this case then, the right-hand side of sums to 42 while r(E) is less than 42. Thus it
is in dimension three that the Dress conjecture is of interest, and in dimension three it
has a simpler form.

Let (V, K) be given and consider /g (3, IV] ). Let E
_
K be a closed set and let

Ki, Km be the cliques of E. Then by Lemma 5, any two cliques ofE are disjoint or
meet in exactly one edge. For each edge ij in E, let/e (ij) denote one less than the number
of cliques containing ij. Reformulating we have the following conjecture.

TIqE DRFSS CoY(Ttrt. Let V, K) be given and consider the matroid (3, n)
on K. Let E

_
K be a closed set and let Ki, Km be the cliques ofE. Then

r(E) i 1,... ,mr(Ki) Z,j E/e (ij).

The third and final conjectured characterization that we discuss here follows.
THE MAXIMAL CONJECTURE..///[ d, n) is the unique maximal d-dimensional ab-

stract rigidity matroid on K where V 1, n } under the relation ofmajorization.
It follows directly from the corollary to Theorem 10 that the Henneberg conjecture

implies the maximal conjecture for dimension three. But the maximal conjecture could
be valid in dimension three even if the Henneberg conjecture were false.

In spite of considerable effort on the part of several researchers, the Henneberg,
Dress, and maximal conjectures remain unresolved. We do not yet have a "combinatorial"
definition for the matroid //(3, n). While resolving these conjectures is the central
problem in this area, there are several other interesting questions to consider:

How are the Henneberg and Dress conjectures related?
(2) What are the appropriate necessary and sufficient conditions for (d, k)-extend-

ibility, for d >_- 3 and k >_- 2?
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3 Is the Maerhara counterexample due to the structure of 4-dimensional abstract
matroids or to the structure of real 4-space?

(4) Is there a d-dimensional abstract rigidity matroid (d >_- 3) for which the Dress
(inclusion-exclusion) formula holds?

(5) Is there a unique maximal d-dimensional abstract rigidity matroid, perhaps
other than /(d, n), for d >- 3?
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DYNAMIC STEINER TREE PROBLEM*
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Abstract. This paper proposes a new problem called the dynamic Steiner tree problem. Interest in the
dynamic Steiner tree problem is motivated by multipoint routing in communication networks, where the set
of nodes in the connection changes over time. This problem, which has its basis in the Steiner tree problem on
graphs, can be divided into two cases: one in which rearrangement ofexisting routes is not allowed, and a second
in which rearrangement is allowed.

For the nonrearrangeable version, it is shown that the worst-case performance for any algorithm is at least
lg n times the cost of an optimum solution with complete rearrangement. Here n is the maximum number

of nodes to be connected. In addition, a simple, polynomial time algorithm is present that has worst-case
performance within two times this bound. In the rearrangeable case, a polynomial time algorithm is presented
with worst-case performance bounded by a constant times optimum.

Key words. Steiner tree problem, multipoint connection, multipoint routing, approximation algorithm,
worst case, communication networks
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I. Introduction.
I.I. Background and motivation. With the growth of interest in flexible multipoint

communication networks supporting a wide class of applications, the importance of
routing techniques for multipoint connections is being emphasized [9 ], [10]. Routing
a multipoint connection is typically treated as the problem of finding a minimum cost
tree connecting a set of nodes. This set ofnodes is called the terminal set, and the elements
of the terminal set are called terminal nodes. If the terminal set is known in advance,
this problem is the classical problem in graph theory known as the Steiner tree problem
on graphs (ST). ST has been studied extensively 4 ], 13 including the investigation of
distributed algorithms 5 ].

To support some services, for example, video broadcasts and multiperson conferences
[9], we need facilities for adapting to changes in the terminal set. There are relatively
few studies dealing with this problem [1 1] in spite of its practical importance.

The model for multipoint routing assumed in this paper is a connection oriented
communication network that can be represented by an undirected graph with edge costs.
In addition, since bandwidth is reserved for each connection, communication delay is
not the main consideration, but instead the main criteria for route selection is the minimal
usage of network resources.

The graph theoretic version of the multipoint routing problem, called the dynamic
Steiner tree problem (DST), comes in two flavors. In the first version, as new nodes are
either added to or removed from a connection, rearrangement of existing routes is not
allowed. In the second version, rearrangement is allowed, and we consider not only the
cost of the trees generated by an algorithm, but also the number of rearrangements. Of
course, if complete rearrangement is allowed whenever the terminal set changes, DST
reduces to ST. For the nonrearrangeable version, when a node is removed from a con-
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Corporation, and National Science Foundation grant DCI-8600947.

" NTT Laboratories, Tokyo, Japan.
$ Department of Computer Science, Southern Illinois University at Edwardsville, Edwardsville, Illinois

62026-1653.

369



370 M. IMASE AND B. M. WAXMAN

nection, no link may be added to the connection, and when a node is added, no link
may be removed. If rearrangements are allowed, we use a measure ofthe deviation from
the nonrearrangeable case. This measure, called the number of rearrangements, will be
made precise in the next section.

In a connection oriented network, it is important to limit rearrangements as a con-
nection evolves. For example, rearranging a large multipoint connection may be time
consuming and may require significant use of network resources in the form of CPU
time, especially if an attempt is made to reroute the entire connection. Another problem
occurs when the network is heavily loaded. In a large network, we assume that control
and routing functions will be distributed as opposed to centralized. Thus, rearrangement
of a connection may result in the blocking of some parts of the connection as rearrange-
ment proceeds. Note that blocking occurs when there is insufficient bandwidth to support
a branch of the connection.

1.2. Overview. Section 2 gives formal definitions for the two versions of DST as
well as a definition for the worst-case performance ratio. The definition of worst-case
performance presented in this paper is based on the usage of the term worst-case perfor-
mance as applied to approximation algorithms. This measure of performance has been
selected not only because it is useful, but also because worst-case measures are generally
easier to evaluate than average-case or other probabilistic measures.

Section 3 presents results for the nonrearrangeable version of DST. The primary
result presented in this section is given by Theorems and 3. Let n be the maximum
cardinality of the terminal sets for an instance of the nonrearrangeable version of DST.
If only add requests are allowed, any algorithm, not just polynomial time algorithms,
for this problem will have a worst-case performance ratio that is at least 1/2 lg n times the
cost of an optimum solution, i.e., 1/2 lg n times the cost of a minimum Steiner tree. If, in
addition, remove requests are allowed, thenno upper bound on the worst-case perfor-
mance ratio exists. This section also presents a greedy algorithm which has performance
within two times the best possible bound for nonrearrangeable algorithms.

Section 4 presents results for the rearrangeable version of DST. A class of algorithms,
based on the concept of an edge-bounded tree, is presented here. An algorithm based on
two edge-bounded trees is presented and is shown to have a worst-case performance ratio
ofeight. In addition, this algorithm reduces the number ofrearrangements required when
compared to standard ST approximation algorithms.

A briefdiscussion ofopen questions and areas for further investigation are presented
in the concluding section.

2. Definitions. In this paper, all graphs G (V, E) are both undirected and con-
nected. When it is necessary for clarity, we use the notation V(G) and E(G) to indicate
the nodes and edges of graph G. Associated with each graph G is a cost function cost:
E -- + (positive reals), and the distance function dist V V- + mapping each
pair of nodes from V into +. The function dist returns the length of a shortest path
between each pair of nodes in V.

An instance of DST consists of a graph G (V, E) with a cost function and a
sequence of requests R r0, r, rc} where each ri is a pair (vi, Pi), l)i U= V, Pi E

add, remove}. Request ri may be viewed as a call of the form add(vi) or remove(vi).
We let

S/= { vl(v, add)= rj for some j,O<=j<=i and (v, remove)’/= rz for all l,j<l <- i}.
The set Si, called the terminal set at step i, is simply the collection of nodes which are
to be connected with a Steiner tree after request ri.
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The objective of DST is to find a minimum cost tree connecting each terminal set
Si without knowledge of request rj- for any j > i. Thus, DST belongs to the category of
on-line problems, which have recently attracted significant interest. DST is divided into
two cases. In the first case, once a particular set of edges has been used in a route, no
rearrangement is allowed as the algorithm proceeds, while in the second case, rearrange-
ment is allowed.

For the remainder of this paper we let To { v0 }, ).
PROBLEM (DST-N). Given an instance I G, cost, R ), find a sequence oftrees

{ T1, T2,’", TI} satisfying the following conditions and minimizing a function of
{cost Ti)li 1, 2, K}. Here cost Ti) is 2;eE(T) cost (e).

1. Each Ti spans Si.
2. Ifri is an add request, Ti includes Ti-1 as a subgraph.
3. If ri is a remove request, Ti-1 includes Ti as a subgraph.
Conditions 2 and 3 imply that edges and nodes are added to a tree only for an add

request and that they are removed only for a remove request. Even though we will use
a specific function, the definition given for DST does not specify this function since there
are several which are appropriate. The function used here has been chosen based on
its simplicity and its relationship to the usual measure of worst-case performance for
approximation algorithms. Given an instance I of DST-N and an algorithm A, let A (Si)
be the cost of the tree generated by algorithm A for terminal set Si and let OPT(Si) be
the cost of a minimum Steiner tree for Si. Then the performance of algorithm A on
instance I is given by

A(Si)
A (I) max

0 <= K OPT(Si

For all instances I, where the maximum terminal set size II is equal to n, we define
the worst-case performance ratio of algorithm A to be

CA (n) sup A (1) over all instance 1, 11 n }.
In the rearrangeable dynamic Steiner tree problem (DST-R), the restrictions on the

relationship between T;_ and Ti is relaxed. Instead, the number of rearrangements
required to derive Ti from T;_ is restricted. The number of rearrangements ci is the
number of connected components in Ti-1 (’ Ti less one, i.e., comp (Ti-1 f"l Ti) 1.
(Graph intersection is defined in the obvious way.) This definition is motivated by the
concept of point-to-point routing. Informally, O is the number of point-to-point con-
nections required to derive Ti from Ti-1. The network resources required to rearrange
a connection are likely to be related to the number of new point-to-point like connections.
In addition, this is a reasonable method for measuring the difference between two con-
secutive trees.

We note that there is a variant of DST which allows cycles in a connection. Even
though we do not consider this problem here, the definition for the number ofrearrange-
ments has a simple extension to this problem [12].

To summarize we give the following definition for DST-R.
PROBLEM 2 (DST-R). Given an instance G, cost, R) of DST, find a sequence

of trees { T1, T2,’", TI} where each Ti spans Si and minimize a function of
{ cost Ti)li 1, 2, ..., K while not exceeding an upper bound B on the number ofre-
arrangements.

In 4, we consider algorithms where an upper bound B is established for the value
of :=1 ci. In 5, we suggest an open question regarding algorithms where each O is
bounded above by a constant, for example, O 2 for all i. Depending on the requirements
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of a specific application, it is possible to first fix an upper bound on the worst-case
performance ratio and then consider bounds achievable on the number ofrearrangements,
or to first fix an upper bound on the number ofrearrangements and then try to minimize
the worst-case performance ratio. For example, with polynomial time algorithms it is
possible to achieve a worst-case performance ratio of two if no restriction is placed on
rearrangements. (Apply one of the well-known Steiner tree heuristics.) It is an open
question whether or not this worst-case performance is still achievable while at the same
time restricting the number of rearrangements.

3. Nonrearrangeable case. In this section, we consider the worst-case performance
ratio for DST-N. Most of the analysis deals with the restriction of DST-N to the case
where each request ri is an add operation. In the more general case, as will be shown in
Theorem 3, the worst-case performance of any algorithm for DST-N is unbounded. We
should note that in spite of the results presented in this section, experimental studies
11 ], 12 indicate that the algorithm presented here yields reasonably good average-case

performance.

3.1. Performance with add requests. In Theorem we prove that +
/2l lg (n )1 is a lower bound on CA (n) for any algorithm A for DST-N ifeach request

r; is an add request. We prove this result by creating a sequence of instances Ik based on
a sequence of graphs Gk. We use an adversary argument to show that instances I can
be created to yield this result for any algorithm A.

We begin by defining graphs G (V, E), k Z (nonnegative integers) and a
constant cost function ck on the edges of G. Go is the complete graph with two nodes
and single edge with cost equal to one. The two nodes in Go, v0 and Vl, are called level
zero nodes. Graph G, for k > 0, is defined recursively in terms of G_ 1. For each edge
u, v) in G_ l, a distinct pair of nodes a,/3, is introduced, and the edge u, v) is replaced

with two paths (u, a, v) and (u,/3, v). We refer to the nodes a and/3 as level k sister
nodes. Each edge in Gk is then assigned a cost of2 -. Note that v0 and vl will be connected
by (simple) paths of cost 1. (See Fig. .)

We say that two nodes u, v V are/-adjacent, 0 =< _-< k if the level of both u and
v is no more than and there is a path from u to v which has no intermediate node from
level j, j =< i. That is, the corresponding nodes in graph Gi would actually be adjacent.
Note that exactly one oftwo/-adjacent nodes must be a level node and that the distance
between./-adjacent nodes is 2-;.

Vo

Level

0

Level

o

I

FIG. 1. Example ofGk.
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LEMMA 1. In graph Gi, > 1,
Each level node x is adjacent to exactly two nodes, node v at level and

node u at levelj, 0 <= j < 1. In addition node x has a sister node y at level which is
also adjacent to both u and v.

(ii) Each level node v is adjacent to exactly four level nodes, consisting of
two sister pairs.
Thus, in graph Gk, k >= i, (i) and ii hold ifthe term adjacent is replaced by i-adjacent.

Proof. This lemma follows by a simple induction on i. Figure 2 illustrates the prop-
erties described here for two sister pairs a,/3 and a’,/3’ in graph Gi. [-1

A sequence of node sets N { No, N1, NK } is called a k-sequence for graph GK
if there exists a path p between v0 and v such that each Ni is the set of level nodes in
path p. Note that No { v0, vl }, that ]Nil 2 i- for 0 < < k, and that ui=koi Ni
V(p). Here V(p) is used to denote the nodes in path p.

We are now ready to present an informal explanation for the main result of this
section. The graphs Gk will be used to demonstrate the existence of instances of DST-N
which give a lower bound on the worst-case performance for any arbitrary algorithm. As
an algorithm A for DST-N proceeds, a k-sequence is generated in a way that will force
the cost of a final solution to be as large as possible. More formally, given an instance of
DST-N with Gk as the underlying graph, we prove the existence of a k-sequence Nwhich
yields the required result.

Finally, we give the definition of a minimal tree sequence i? { 0, /%1, /%k }
for graph GK, with respect to a k-sequence N. ]00 is any tree that spans the nodes in No
such that no proper subgraph of ]00 also spans No. 50i, 0 < =< k must contain tree i-1
as a subgraph and span all of the nodes in Ni from the k-sequence N. The requirement
that ]?i is minimal means that no subgraph of i also satisfies these properties.

In Lemma 2, we consider a minimal tree sequence 5? that is constructed by an
algorithm A which generates each i based only on knowledge of i?i-1 and Ni. is a
subsequence of the entire sequences of trees generated by A.) We show the existence of
node sets Ni, based on ]?i-l, > 0, which force the cost of each i to be large enough to
prove Lemma 2. Restricting N to a k-sequence insures that there exists a minimum
Steiner tree for the entire terminal set with cost one.

LEMMA 2. Given the graph Gk, k Z, ifalgorithm A constructs a minimal tree
sequence { o, l, } for any instance ofDST-N based on Gk, then there exists a

Level j (< i- 1)

Level

v Level i-

/3’ Level

u’ Level j’ (< i- 1)

FIG. 2. Level sister nodes.
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sequence ofrequests on Gk corresponding to a k-sequence N such that

cost f’i)>= + 1/2

for all i, 0 <= <= k.
Proof. We prove this lemma for each 7i, 0 =< _-< k by induction on i. Inequality

clearly holds for 0. If we choose N so that it contains the level one node not in
0, then cost (7) >_- 1.5. Note that there is a path of cost one in Gk that contains all
nodes in No and NI, so that { No, N } is an initial segment of some k-sequence.

Informally what follows can be couched in terms of an adversary which selects
nodes for Ni based on the choice made by algorithm A in order to ensure the desired
result. Assume that holds for every j, 0 =< j < i, where < =< k, and assume that
No, N1, Ni- is an initial segment for some k-sequence. Since 7i is a minimal

tree, each leaf node must be in one of the Nj-, and there are no cycles in 7i 1. Consider
a node v from N;_ 1. Node v is/-adjacent to exactly four nodes at level consisting of
two sister pairs by Lemma (ii). If 7i_ contains both nodes of a level sister pair then
7;_ has a cycle or a leaf node at a level greater than 1. But this contradicts the
minimality of 7, 1, hence 7;_ can contain at most one of the nodes from each sister
pair/-adjacent to v.

For each node v Ni- we select one node from each sister pair of v, that is not in
7; 1, to place in N;. Note that if there is a path of cost one which contains all nodes
from every N, 0 < j < then there is a path of cost one which also contains the nodes
in Ni. Furthermore, Ni will contain all level nodes in this path by Lemma (i). Thus,
{ No, N, Ni is an initial segment for some k-sequence.

The cost of a shortest path from each of the nodes in Ni to a node in T;_ will be
2-i. Since INi-1[ 2 i-2, we will have selected 2 i- level nodes to include in Ni. Thus,
it follows that cost (7i) >= cost (i-1)

Using Lemma 2 we derive a lower bound for the best possible worst-case performance
ratio given any algorithm for DST-N.

THEOREM 1. Given any algorithm A for DST-N, there is an instance G, cost, R)
such that for all i, 0 < <= K

(2)
A(Si) >_ + _- [lg (ni- )j

OPT(Si) Z

where ni Sil. Furthermore, this bound holds even ifeach request is restricted to node
addition.

Proof. Consider an instance of DST-N (G, c, R), where R { ui, add), 0 < <=
K 2 }, all ui are distinct with u0 v0, u v and for > 1, ui e N, j [lg i] for a
k-sequence N. Then, by Lemma 2, there exists a k-sequence N which yields the result
in (2). []

3.2. Dynamic greedy algorithm. Next, we present the dynamic greedy algorithm
(DGA) for DST-N that has performance within two times the best possible bound in
the case where each request is restricted to node addition. For each add request, DGA
joins the new node by a shortest path to a nearest node already in the connection. In the
case of a remove request, a terminal node is dropped by simply deleting the portion of
the connection which serves only that terminal node. See Fig. 3 for complete details.

Theorem 2 along with Theorem implies that DGA has a worst-case performance
ratio within two of an optimal algorithm for DST-N. In order to prove Theorem 2, we
use the following lemma which follows directly from a result due to Rosenkrantz, Stearns,
and Lewis 8, Lemma ].



DYNAMIC STEINER PROBLEM 375

To:=({v0},,(); So: {v0};
for _-< K

if h is an add request
Choose the shortest path pj from vj to T_
T := T,_I U p
S, := S_I U {v,}
rj is a remove request
s, := s_ {v}
T := T_
do V (T) S contains node w with degree
T := Tj- w

od
fi

rof

FIG. 3. Dynamic greedy algorithm DGA ).

LEMMA 3. Let G(V, E) be a complete graph with a cost fitnction C: E -- +satisfying the triangle inequality, and let S be any nonempty subset of V with SI i. If
2P is the cost of an optimal tour for S and is a function l: V 1 + satisfying the
following conditions:

1. dist (u, v) >= min l( u), l( v) for all nodes u, v S, and
2. l( v <= Pfor all v S,

then

(vsl( V) ) maxvEs /( v) --< ([lg i])P.

Proof. This lemma follows from an intermediate result that is derived in the proof
of Lemma of[8] since the proof holds not only when S V, but for any nonempty
subset S

THEOREM 2. Let I be any instance ofDST-N with requests R { ro, r, rE
and let ni IS for each terminal set Si. Ifeach ri is an add request, then

(3)
DGA(Si)

=<[lg (ni)]
OPT(S)

holdsfor all i, 0 < <= K.
Proof. In the construction of tree Ti for terminal set S, node v; is connected by a

shortest path from vi to a node in Ti-. Thus, if we let l(vi) min0=<y<i dist (vi, vy) for
<-< <= K, then the cost of the path selected by DGA to join vi to T_ is less than or

equal to l(vi). Let l(vo) max__<y__<Kdist (Vo, vy), so that l(vo) >= max0=<y=<i l(vy). Note
that l(vy) <= OPT(S) for all j, 0 =<j =< i, and that DGA(Si) =< (i=0 l(vy)) l(vo).

Now consider any pair ofnodes vh, vy in tree Ti and assume, without loss ofgenerality,
that h < j. It then follows that l(vj) <- dist (vh, vj), so that (1) of Lemma 3 holds.
Note that a tour of set Si can be constructed from a Steiner tree for S such that the cost
of the tour is no more than twice the cost of the Steiner tree. Thus P <= OPT(Si).
Since l(v)<= P for all j, 0 =< j =< k, (2) of Lemma 3 also holds, and the theorem
follows.

A slightly better bound of lg (n) can be proved [3] at the expense of a more com-
plex proof.

3.3. Performance with remove requests. We now consider the general case of
DST-N where we allow both the addition and removal of nodes. We show that any



376 M. IMASE AND B. M. WAXMAN

algorithm for DST-N has worst-case performance that is unbounded as a function ofthe
number of terminal nodes in the solution tree.

THEOREM 3. Let A be an algorithm for DST-N. For any pair M, Z +, there
exists an instance G, cost, R) of DST-N and a positive integerj such that

A(Si) >M(4)
OtT(S)

forj < <= j + independent ofthe number ofterminal nodes in Si.
Proof. Let graph G contain, as a subgraph, an M + 2 node cycle CM+ 2 where each

edge has cost 1, and let each of the remaining M + 2 nodes be connected to a distinct
node in cycle Ct + 2 by an edge of cost e. Let the set R consist of an initial sequence of
M + 2 add requests, one for each node in C4+ 2. Thus, Tt+ will be a path containing
exactly those nodes in the cycle Ct+ 2. Let the next M steps remove each node of degree
two in T+ to create Tzm+ 1. Then, TM+ T4+ 2 T2t+ so that the cost of
T2t+ is M + 1. Since $24+ contains only two nodes from C4+ the cost of an optimal
solution is just one. For the remaining steps, alternately add and remove one ofthe nodes
connected to a leaf node of TZM+ , i.e., one of the nodes in G connected by edge of cost
e to CM+ 2. The value of e can be made sufficiently small so that (4) holds. [-3

4. Rearrangeable ease. In this section, we present a class of algorithm for
DST-R, called edge bounded algorithms. Each specific algorithm (EBA(6)) is deter-
mined by a positive real value 6 >_- 1. We prove that, for 6 > 2, each algorithm has
a worst-case performance ratio bounded above by 26, and given a sequence of requests
{ r0, r, r/(}, the total number of rearrangements is 0(K3/2). For any algorithm
which allows complete rearrangement, the total number rearrangements may be as large
as ft(KZ). In constructing EBA(6), we first established a bound on the worst-case per-
formance ratio and then attempted to minimize the number of rearrangements.

4.1. Edge-bounded trees and extension trees. If the number of rearrangements is
not restricted, DST-R is equivalent to ST for each instance (G, cost, S;). As a starting
point, we apply the minimum spanning tree approximation algorithm (MSTA) for ST
[6 ]. MSTA is one of the most well-known approximation algorithms for ST, because,
in spite of its simplicity, it has the best worst-case behavior among all known polynomial
time approximation algorithms. The cost, MSTA(S), of TMsv, a tree generated by MSTA
for node set S, is never more than twice optimal. However, if we apply MSTA to
DST-R, the number of rearrangements can be very large. For the graph shown in
Fig. 4, the number of rearrangements for each step is 1, which yields (K2) rear-
rangements.

The proposed algorithm is based on properties of both the 6 edge-bounded trees
and the extension trees defined below.

DEFIYTOY 1. Let u and v be nodes in tree T. If u and v satisfy the following
condition, they are called a 6 edge-bounded pair. For any e p(u, v, T),

cost (e) =< 6. dist u, v),

where p(u, v, T) is the set of edges on the path between u and v in T. Furthermore, if
every pair of nodes in T is 6 edge-bounded, T is called a 6 edge-bounded tree.

The trees TMsv generated by MSTA are edge-bounded trees. Thus, the 6 edge-
bounded tree can be considered to be a generalization of Tsv.

In order to simplify the proofs that follow, for the remainder of this section, we
restrict the underlying graph G to a distance graph, i.e., a complete graph with a cost
function obeying the triangle inequality. For a given graph G’ (V’, E’) and a cost
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31 34

3e

-e
v 2e v3

cost(vi,vj) (i 1)e where > and << 1.

R (vo, add), (v, add) (VK, add).

FIG. 4. Examplefor maximum number ofrearrangements.

function cost’, we can construct a distance graph G (V, E). In G, let V V’, E
{ u, v)[ u, v e V } and cost (( u, v)) dist (u, v, G’), the distance between u and v in
G’. (Since G is a complete graph we will use the notation cost (u, v) to indicate the cost
ofthe edge joining the pair u, v in G.) Even though we assume that the underlying graph
G is a distance graph, the results obtained in this section remain valid in general.

Note that the cost of an optimum Steiner tree for a node set S
_
Vin G is the same

as cost of an optimum Steiner tree for S in G’, and that, in G, MSTA simply constructs
a minimum spanning tree for the subgraph induced by S.

DEFINITION 2. For a node set S, iftree T (V, E) satisfies the following conditions,
T is called an extension tree for S.

.Sc_V.
For any node x in V- S, the degree, in T, of x is greater than two.

LEMMA 4. If T S, E) is a 6 edge-bounded tree, then

(6) cost (T) =< 6. MSTA(S) <= 26. OPT(S).
Proof. In (6) the fight inequality is valid from [6]. Let TMsv (S, Er,sx be the

tree generated by MSTA for set S. Since T and Tsx are trees and their node sets are
the same, [E[ Esv [. Assume that there exists a one-to-one function ffrom Esx
to E such that iff(e) e’, the edge e’ is contained in p(u, v, T), where u and v are the
two endpoints of e. Since T is a 6 edge-bounded tree, cost (f(e)) _-< 6.cost (e). Thus,

(7) cost(T)= Z cost(e’)= Z cost (f( e) =<
e’ E EMST EMST

6. cost (e) 6. MSTA(S).

We complete this proof by showing the existence off.
For an edge e (u, v) e EMSV, let I’(e) be the set of edges on the path between u

and v in T, that is, p(u, v, T). From Hall’s theorem [2, Thm. 5.1.1, p. 45], there exists
a one-to-one function f if and only if

(8) Ir(x)l Ixl, VXEMsT,

where I’(X U x I’(e).
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Let Xbe an arbitrary subset ofEMST. Then V(X) _-< V(r(x)) since every node
in V(X) is in V(I’(X)), where V(X) is the set of nodes incident with an edge in X.
Every pair of nodes u, v V(X), connected by an edge in X, is also connected by a
path consisting of edges in I’(X). Hence, (8) holds, since neither set of edges contains
any cycles.

LZMMn 5. If T (1/, E) is a edge-bounded extension treefor S, then thefollow-
ing holds:

(9) cost (T) =< 2/. MSTA(S) -< 4/. OPT(S).

Proof. Let Tsx (S, Esx be the tree generated by MSTA for set S, and assume
that there exists a function g from Esx to the power set 2 e satisfying the following three
conditions.

1. If e’ g((a, b)), then e’ p(a, b, T).
2. For all e Esx, g(e) -< 2.
3. For all e’ E, there is some e Esx such that e’ g(e).

If e’ g(e), then cost (e’) =</.cost (e) follows from condition and the fact that T is a
/ edge-bounded tree. Let cost (g(e)) e’g(e)cost (e’), then cost (g(e)) <= 2/5.cost (e)
follows from condition 2. In addition, E_ t_Jesg(e) follows from condition
3. Therefore,

(10) cost(T)= cost(e’)=< cost(g(e)) < 2i.cost(e) =2b.MSTA(S).
E EMST EMST

Next, we now show the existence of a function g by induction on SI.
If SI 2, ZMs has only one edge, denoted by e. It is clear that T Tsv by

Definition 2. Thus, g(e) {e satisfies conditions 1, 2, and 3.
Let SI n + >= 3 and let T (V, E) be a 6 edge-bounded extension tree for S.

Then, there is a node v S with degree one in Tsv(deg (v, Ts ). Let S’ S
{ v }, T’ (V’, E’) be a 6 edge-bounded extension tree for S’, and Thsx (S’, Elsv)
be an MSTA tree for S’. We show how to construct T’ for S’, and a function g mapping
EMST to 2 " from a function g’ mapping E’MSV to 2 There are three cases to consider
depending on deg (v, T). Without loss of generality, assume that Elsv EMsv
{ (V, w)} where w is the unique node adjacent to v in TMsv. (The tree with the edge set
Eksv can be generated by MSTA.)

Case (deg (v, T)> 2). Since u V- S implies that deg (u, T)> 2 and since
deg (v, T) > 2, it follows that T’ T is an extension tree for S’. From the inductive
hypothesis, there exists a function g" Elsv -- 2 e. The function g" EMsv -- 2F is

g’(e) if e4=(v, w),
g(e)=

ife=(v,w).

Case 2 (deg (v, T) 2). Let x and y be the nodes adjacent to v in T. Without
loss of generality, assume that the path from v to w goes through x. (It is possible
that x=w.) Let V’=V-{v} and E’=(E-{(v,x),(v,y)})U{(x,y)}. Thus,
deg (u, T’) > 2 for every node u V’- S’ since V’- S’ V- S and deg (u, T’)
deg (u, T). It follows that T’ is an extension tree for S’, and there exists a function g’:
Esv -- 2 E’. Now define the function g as follows:

g’(e) if e4= (v, w) and (x,y)g’(e),

g(e)= {(v,x)} ife=(v,w),

(g’(e)-{(x,y)})U{(v,y)} if(x,y)eg’(e).
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Function g clearly satisfies conditions 2 and 3 since each of the three cases in the
definition of g are mutually exclusive. If e (v, w), condition is satisfied, since the
path between v and w goes through x. If a path p(s, v, T’) contains edge (x, y), then
p(s, v, T) contains (v, x) and (v, y). Thus, condition holds when (x, y) g’(e).
Condition holds in the remaining case when g(e) g’(e).

Case 3 (deg (v, T) ). Let x be the node adjacent to v in T. If x S’, then x
S which implies deg (x, T) > 2. We proceed by considering two subcases.

Case 3.1 (xS’ordeg(x, T) >_- 4). Let V’= V- {v},E’ E- {(v,x)},
and let

g’(e) if e4:(v, w),
g(e)=

{(v,x)}ife=(v,w).
Case 3.2 (x S’ and deg (x, T) 3). Let y, z be the two nodes adjacent to x in

addition to v, and assume that the path between v and w goes through y. Let V’ V-
{ v, x}, E’ (E { (v, x), (x, y), (x, z) } { (y, z) }, and let

g’(e) if e4: (v, w) or (y,z)gg’(e),

g(e) { (v,x), (x, y) } if e (v, w),

(g’(e)- { (y,z) } )t_J { (x,z) } if(y,z)rg’(e).

We can verify that g satisfies conditions 1, 2, and 3 in a manner similar to that used
for Case 2. E3

4.2. Algorithm. This section presents the algorithm EBA() for DST-R which gen-
erates 6 edge-bounded extension trees for each Si. Figure 5 presents the details ofEBA(6).
We remind the reader that the underlying graph G is a distance graph so that G is a
complete graph. To apply EBA(6) to an instance on an arbitrary graph G’, first construct
the equivalent distance graph G, apply EBA(6) to the instance based on G, and then
convert the solution trees in G to solution trees in G’ by converting each edge (u, v) to
a shortest path from u to v in G’. (This is reminiscent of MSTA [6].)

For a remove request (vi, remove), if deg (vi, Ti-1) > 2, then Ti Ti-1. Otherwise
vi is deleted from Ti- to form T. If deg (vi, Ti- 1) all remaining leaf nodes of T not
in Si are also deleted from T. If deg (v, Ti-1) 2, then the two components of T are
joined by adding an edge e to T. The edge e is selected to minimize the cost of the
maximum cost edge in p(w0, w, T) where w0 and w are the nodes adjacent to v; in
T;_ 1. Furthermore, ifthe resulting tree Thas a nonterminal node with degree two, delete
one of these nodes, and repeat the step for the case deg (v;, T;_ 1) 2. Continue until
all nonterminal nodes have degree three or more.

For an add request (v, add), EBA(6) joins vi to Ti- by a shortest edge to create
T. Then it determines if every pair vi and u V( Ti- 1) is 6 edge-bounded in T. If not,
the maximum cost edge in p(u, v, T) is replaced by the edge (u, vi). If, at this point,
tree T is not an extension tree for S, T is modified by the remove procedure above.

The trees generated by EBA(6) at each step are extension trees for S. Thus, if we
can show that these trees are 6 edge-bounded trees, Lemma 5 will give us an upper bound
of 46 on the worst-case performance ratio for EBA(6).

LEMMA 6. For any a >- and 6 >-_ 1, ifa pair ofnodes x, y S is a edge-bounded
in an intermediate tree T generated by EBA (6), then the pair is a edge-bounded in any
intermediate tree generated after T as EBA(6) constructs Tifrom Ti- 1.

Proof. Let T be an intermediate tree, and let T’ be the tree constructed from T by
one of the four elementary operations performed by EBA() on the intermediate tree T
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EBA()(G, cost, R)
T0:=({v0},);S0:= {v0};andi=
for _-< K

if h is an add request
S, := S,_ LJ vj Tj :=add (v,, T_ 1, S,)
r is a remove request
S := Sj_ v} T :=remove(T_l,S)

fi
rof

end EBA()

add(v,T,S)
Let U be the set of edges between v and T.
Select the minimum cost edge (u, v) from U
T:= T+(u,v) and U := U (u, v)
do U =/= ,

Select the minimum cost edge (u, v) from U
U := U- (u, v)
Find a maximum cost edge, d, in p(u, v, T)
if cost(d) > .cost(u, v) T := T- d + (u, v) fi

od
return( remove(T,S))

end add

remove(T,S)
W := V(T) S where V(T)is the node set of T
for w E W

if deg(w,T)= T := T-w
deg(w,T)= 2
Let w0 and w be the nodes adjacent to w
Let Co and C1 be the connected components of T w
Select two nodes u0 E Co and’u1 E C1 which minimizes h(uo, Ul)*
T:= T-w+(uo, ul)

fi

rof

return(T)
end remove

h(u0, ul) max{cost(e)le

FIG. 5. Edge-bounded algorithm EBA )).

during step i. Note that elementary operations and 2 may be executed only in response
to an add request, while elementary operations 3 and 4 may be executed in response to
either an add or remove request.

1. Add the node vi to T by joining v; to T with a minimum cost edge e.
2. If a pair of nodes Uo, Ul is not 6 edge-bounded in T, remove a maximum cost

edge d (do, d) in p(uo, u, T) and join the two components by the edge e
(Uo, u ). (One of the nodes Uo, or u will be/)i’)

3. Remove node v, with deg (v, T) 1, along with the incident edge. (The first
time this operation is performed in response to a remove request v will be v;.)

4. Remove node v with deg (v, T) 2 and the two incident edges, (v, Wo) and
(v, w). Then join the two components created, by an edge e (Uo, u) that mini-
mizes h(uo, u where the function h(uo, u returns the cost of the maximum edge in
p(wo, w, T- v + (Uo, u)). (The first time this operation is performed in response to
a remove request, v will be node vi.)
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FIG. 6. Elementary operation 2.

We assume that x and y form an a edge-bounded pair in T and that both nodes are
in T’. We then show that they form an a edge-bounded pair in T’ for each of the ele-
mentary operations.

Operation 1. Since the path between x and y in T’ is unchanged, x and y form an
a edge-bounded pair in T’.

Operation 2. If d p(x, y, T) the path remains unchanged. If d e p(x, y, T), then
p(x, y, T’) is a subset ofp(x, y, T) tO p(uo, u, T) tO {e} (see Fig. 6). It suffices to show
that for any edge z in p(x, y, T) tO p( uo, u, T) tO {e},
(11) cost z -< a" cost (x, y).

If z e p(x, y, T), 11 holds since the pair x and y is a edge-bounded in T. If z e
p(uo, u, T), 11 holds since d is the maximum cost edge in p(uo, Ul, T). Finally, 11
holds for edge e since 6. cost (e) < cost (d).

Operation 3. As in the case of Operation 1, the path between x and y is unchanged.
Operation 4. The two components of T- v are denoted by Co and Cl. If nodes x

and y are in the same component, the path from x to y is unchanged and we are done.
Ifx and y are in different components, we can assume that x, w0, and Uo are contained
in Co and y, w, and u are contained in C (see Fig. 7).

Wo/ &,qeted p

/
/

/

Uo ldded ed,

Edge

Path

T=CoUCU{(wo, v),(v,w,)} T’=CoUC, U(uo, u,)

FIG. 7. Elementary operation 4.
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From the choice of (u0, u ), the following inequality holds:

(12)
max { cost (b) b ep w0, w, T’)

_-<max { cost (b)[bp(x, wo, Co)LJ (x, y) } LJp(y, w,, C, }.
Since x and y form an a edge-bounded pair in T, the fight side of (12) is not larger than
a.cost (x, y). Thus, cost (b) _-< a.cost (x, y) for any

bp(wo, w, T’)kJp(x, w0; Co)Up(y, w, C).

On the other hand, p(x, y, T’) is a subset ofp( w0, w, T’) LJ p(x, w0; C0) L3 p(y, w; C ).
Consequently, any edge in p(x, y, T’) is not larger than a.cost (x, y). E3

Lemma 6 is useful for estimating the number of rearrangements in addition to
showing the following theorems. In the theorems and lemmas that follow r, assume that
an instance of DST-R is given with R r0, r, r/}.

THEOREM 4. Any tree Tg generated by EBA(6) is a 6 edge-bounded extension tree
for Sg. Hence the inequality

(13) cost (Ti)<=26.(MSTA(Si))<=46.(OPT(Si))

forO<=i<=K.
Proof. Since Tg is clearly an extension tree for S;, it is sufficient to show that T; is

6 edge-bounded. Certainly To is 6 edge-bounded. Assume that Ti- is 6 edge-bounded.
From Lemma 6, every pair of nodes in Tg which are also in T;_ is 6 edge-bounded. Now
considered a node pairs vg and w Ti- when rg (vi, add). EBA(6) examines each of
these pairs. If a pair vg, w is not 6 edge-bounded, then EBA(6) modifies the tree so that
the pair becomes edge-bounded. Thus, Tg is a 6 edge-bounded tree and the theorem
follows from Lemma 5.

THEOREM 5. Ifevery rg is an add request, then every tree Tg generated by EBA(6)
satisfies the inequality

(14) cost (Tg) _-< 6. (MSTA(Si)) =< 26.(OPT(Sg)).
Proof. If every request is an add request, the set of nodes in

edge-bounded, the theorem follows from Lemma 4.

4.3. Total number of changes. We now determine an upper bound on the total
number ofrearrangements for EBA(6) when 6 >= 2. Note that ifan edge u, v) is contained
in Ti, then the pair u and v is a edge-bounded pair in Ti since the path from u to v is
just (u, v). We proceed by finding other edge-bounded pairs.

If ri is an add request, let Li be the set of endpoints for the edges added at step
incident with vi. The cardinality ofLg is one more than the number of edges added since
vi is one of the endpoints for each edge. Therefore, the number of rearrangements/g at
step due to elementary operation 2 is Lil 2. If ri is a remove request, let Lg .

LEMMA 7. Every pair ofnodes in Lg is edge-bounded in T, <= j <= K, as long as
neither node has been removed by any request rm, < rn <= j.

Proof. Let L; { v;, w, w2, wl }. Since Tg contains edge (vg, w) for all w L;,
each pair vg, w is edge-bounded in all T, j >_- i, from Lemma 6 (assuming neither node
has been removed). Next consider a pair w, w’ in L;, and assume that cost (vg, w) _-<
cost (v;, w’). Let T and T’ be the intermediate trees just before and after the edge
(vi, w’) is added by elementary operation 2. Then T’ T- { d} + (v;, w’) where d is
the edge deleted. Note that T and T’ both contain the edge (vi, w).

Since the pair of w and w’ is 6 edge-bounded in T and d is an edge in p(w, w’, T),
cost(d)_-< 6.cost(w, w’). Since d is replaced with (vg, w’), it follows that 6.
cost (v;, w’) < cost (d). Hence both cost (vg, w’) < cost (w, w’) and cost (vg, w) <
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COSt (W, w’) hold. Since the path from w to w’ in Ti is (w, v;, w’), the pair of nodes w
and w’ is edge-bounded in all T, j >= i. [3

LEMMA 8. If >= 2, for all and j, 0 < < j <= K and each add request adds a

different node, thefollowing holds"

LifqLjl <= 1.

Proof. We assume L LI >-- 2 and derive a contradiction. If either r or rj is a
remove request the intersection is empty. Assume both r and rj are add requests. Let w
and w’ be nodes in L Lj, and assume j > i. Note that edges (vj, w) and (vj, w’) are
added at step j since rj (vj, add). Without loss of generality, we can assume that

15 cost vj, w) =< cost vj, w’).

Then from the triangle inequality, cost (w, w’) =< cost (w, vj.) + cost (w’, v) =<
2 cost w’, v). Consider the elementary operation which adds (v, w’) to an intermediate
tree T. It is clear that

(16) p(vj, w’, T)c_ { (v, w) } Up(w, w’, T).

Since w, w’ Li, the pair w, w’ is edge-bounded by Lemma 7. Thus, for any e
p(w, w’, T),

17 cost (e) _-< cost w, w’) <- 2 cost v, w’).

From 15 ), (16), and (17), pair v and w’ is 2 edge-bounded, which is a contradiction
since EBA(2) adds edge (vj., w’) only if (vj, w’) is not 2 edge-bounded. [3

The next theorem derives the bound O(K3/2) on the number of rearrangements
needed by EBA() for 6 >= 2. In this theorem, let Ka be the number of add requests in
R and Kr be that of remove requests.

THEOREM 6. For any instance G, cost, R ), if6 >= 2, then the upper bound on the
total number ofrearrangements required by EBA(6) is given by

i

(18) Z Oi <
/=0

=-Ka( /4Ka- 3 3 + Kr.

Proof. Let Ra and Rr be the sets of add and remove requests in R, respectively. The
total number of rearrangements due to elementary operations 3 and 4 is bounded above
by the number of remove requests, i.e., Kr Rrl, since one of these rearrangements
occurs only for those nodes deleted from tree Ti- in generating T;. A node is deleted
only if it is a node in one of the remove requests r, 0 < j =< i.

In order to determine riR i, the number of rearrangements due to elementary
operation 2, we consider the bipartite graph B (V, V2; E) where V Ra, V2
(.j 1= Li and E { (ri, I)) 11) Li, <- =< K}. It is clear that V V2 Ka. From
Lemma 8, this graph does not contain a complete bipartite graph K,, i.e., a cycle of
length four. We assume, without loss of generality, that each add request is for a dis-
tinct node in order to apply Lemma 8. From Theorem 10 of[l, p. 74] we have that
z(n, n) _-< 1/2 n( + /4n- 3 where z(n, n) is the maximum number ofedges in a bipartite
graph with n nodes in each partition and with no 4-cycles. Since the number of edges in
G is equal to Lil and since each/i Lil 2,

(19) , ii <= 1/2 Ka( ]/4Ka- 3 3 ). [3

ri6Ra

We suspect that O(K3/2) growth given by Theorem 6 is not tight, and conjecture
that the total number of rearrangements is not larger than K Ka + Kr.
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5. Conclusions. In this paper we have presented a new problem called the dynamic
Steiner tree problem. For the nonrearrangeable version (DST-N), we have presented the
polynomial time algorithm DGA with worst-case performance within two times optimal
of any nonrearrangeable algorithm. For the rearrangeable problem (DST-R), we have
presented a polynomial time algorithm EBA(2) whose performance is within eight times
optimal.

Numerous questions related to DST still remain open. For example, is DGA optimal
among all algorithms for DST-N? We guess that it is, and that its worst-case performance
ratio is actually 1/2 lg n. In the case of the rearrangeable version, EBA(6) has relatively
good performance, but it potentially requires a large number of rearrangements. Is the
bound given in this paper for the maximum number of rearrangements tight? We do not
believe that it is. An open problem here is to find an algorithm for DST-R where the
number of rearrangements at each step is bound above by a small constant, e.g., two,
and yet has a worst-case bound within a constant of optimal. Another interesting question
involves the extension of DST to a problem in which the interconnections are allowed
to contain cycles. With this extension, does there exist an algorithm with worst-case
performance bounded above by a function of n in the case where remove operations are
allowed?

Other areas of interest include: average case, and probabilistic performance of al-
gorithms for DST, distributed implementation of algorithms for DST, and the application
of these algorithms to multipoint communication networks. Finally, since algorithms
for DST can be classified as on-line algorithms, it would be of interest to cast DST in a
form so that it could be analyzed using the concept of competitive algorithms [7].
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OPTIMAL PARALLEL ALGORITHMS FOR REGION LABELING AND
MEDIAL AXIS TRANSFORM OF BINARY IMAGES*

SUNG KWON KIM

Abstract. Given a f- f binary image, region labeling labels each of the image so that two l’s have
the same label if and only if they are in the same region (i.e., connected) and medial axis transform finds for
each of the image the largest square subimage having it as top-left corner and consisting only of l’s. Both can
be solved in 0(n) sequential time. O(log n) time, n/log n processor parallel algorithms for both problems in the
EREW PRAM are presented.

Key words, binary image, EREW PRAM, medial axis transform, parallel algorithm, region labeling

1. Introduction. This paper addresses two problems on binary images, namely, re-
gion labeling and medial axis transform, and presents optimal parallel algorithms for
them. Given a V fn binary image, region labeling is to label each of the image so
that two l’s have the same label if and only if they are in the same region. We say that
two l’s are neighboring if one is immediately above or to the left of the other and that
two l’s are in the same region (or connected) if there is a path of l’s between them in
which every two consecutive l’s are neighboring. Region labeling is often called the
connectivity problem for binary images. Medial axis transform (MAT) is defined as
finding for each of the image the largest square subimage having it as top left corner
and consisting entirely of l’s. We present parallel algorithms for these two problems.
Our model of parallel computation is the EREW PRAM (exclusive-read exclusive-write
parallel random access machine), which is a shared memory machine with no two pro-
cessors simultaneously allowed to access (read from or write into) the same memory
location. Our parallel algorithms are optimal in the sense that their processor-time products
equal the sequential lower bound, 2(n), of the problems.

Region labeling can be solved in 0(n) sequential time by applying graph connectivity
algorithms such as depth first search [! ]. Various parallel connectivity algorithms can
be used to solve it in parallel (e.g., Shiloach and Vishkin [16 ]). Agrawal, Nekludova,
and Lim [2] and Cypher, Sanz, and Snyder [10] directly solved the problem to give
O(log n) time, n processor EREW PRAM algorithms. Phillips [15] solved it indirectly
by presenting a randomized O(log n) time, n/log n processor EREW PRAM algorithm
for connectivity of bounded-degree planar graphs. We give an optimal O(log n) time,
n/log n processor EREW PRAM algorithm for region labeling. We actually solve a more
general problem for computing connectivity of planar straight-line graphs (PSLGs) in
O(log n) time using n processors (using n/log n processors if PSLGs are of bounded-
degree or if adjacency lists of vertices are circularly presorted by angles). A PSLG is a
planar graph embedded on the plane so that each edge is a straight line segment and no
two edges intersect. Recently, Alnuweiri and Kumar [3 independently gave a region
labeling algorithm that matches our algorithm in performance (ours is more general).

For the MAT, Guibas and Lipton 11 posted a restricted problem open, in which
only the largest square subimage consisting only of l’s was to be computed. Vo 9 gave
an algorithm with running time O(kn), where k k is the size ofthe largest such square
image, and then Stout [17] presented a linear time algorithm. Both algorithms solved
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1990. This research was supported in part by National Science Foundation grants CCR-8703196 and CCR-
8907960.
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the MAT problem and then found the maximum of these squares obtained. We give
another linear time algorithm and show that it can be implemented in the EREW PRAM
to run in O(log n) time using n/log n processors. Chandran and Mount [6] claimed to
give an O(log n log log n) time, n processor CREW PRAM algorithm for the MAT prob-
lem. Unfortunately, their algorithm appears to have serious errors.

In the next section, we briefly review some useful parallel techniques. Sections 3
and 4 discuss the region labeling and MAT problems, respectively.

2. Preliminaries. We review some parallel techniques published in the literature.
Prefix Computation. Given an array of numbers a, ---, an and an associative

operation *, compute bj a *..-, aj for =< j -< n. See Kruskal, Rudolph, and Snir
[13] and Ladner and Fisher [14] for O(log n) time, n/log n processor EREW PRAM
algorithms. Note that * may be + and MIN among others.

List Ranking. Given a linear linked list of length n, compute the rank (the distance
from the end of the list) of each cell. Anderson and Miller 4 and Cole and Vishkin 8
gave O(log n) time, n/log n processor EREW PRAM algorithms. List ranking can be
used to do prefix computations over a linear linked list by using the ranks to reorganize
the list into an array and applying known prefix computation algorithms on the array.

Extended List Ranking. Given several linear linked lists with a total of n cells,
compute the rank ofeach cell in its own list. Cole and Vishkin 9 introduced the problem
and showed that the list ranking algorithms by Anderson and Miller [4 and by Cole
and Vishkin [8] could be used within the same bounds.

Cycle Cutting. Given several circular linked lists (i.e., disjoint cycles), find a rep-
resentative cell for each cycle. Each cell v has a field NEXT (v), which points to the next
cell in its cycle. The significance of this problem is that if a representative for each cycle
is known, then we can cut each cycle to obtain the same number of linear linked lists
and apply extended list ranking algorithms to compute some functions on the cycles.

Since Anderson and Miller’s list ranking algorithm can easily be adapted to solve
the cycle cutting problem, we first briefly look at their algorithm. It is composed of three
major steps.

1. Remove cells from the list so that only O(n/log n) cells remain. This step is
central and rather involved; we refer the reader to their paper [4 for details.

2. Apply Wyllie’s standard list ranking algorithm [22] to the reduced list of length
O(n/log n).

3. Compute the ranks of cells that were removed by backtracking the operations
performed by each processor at step 1.

Our algorithm for cycle cutting has two steps that are similar to the first two of
Anderson and Miller’s.

1. Remove cells until O(n/log n) cells remain. Whenever a cell v is removed, we
check to see if NEXT (v) v (i.e., if v is the last cell remaining in its list). If so,
mark v. Note that values of NEXT (v) vary as the algorithm proceeds and thus
cells are removed. After this step, fewer cycles of possibly shorter lengths remain
(some cycles may entirely disappear) and a representative cell ofeach disappeared
cycle is marked.

2. Apply pointer doubling [22 to the remaining cycles to mark a representative
cell of each cycle surviving step 1. Since there are only O(n/log n) cells and the
same number of processors, this step can be done in O(log n) time.

Euler Tour Technique. The Euler tour technique of Tarjan and Vishkin I18] has
many applications for computing simple tree functions such as pre-order and postorder
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numberings, the level or height of each vertex, and the number of descendants of each
vertex. An Euler tour of a tree with n vertices can be found in O(log n) time using n
processors if each vertex knows its parent only or using n/log n processors if each vertex
knows its children as well as its parent. The technique computes these functions by
reducing the problems to list ranking, for which O(log n) time, n/log n processor EREW
PRAM algorithms are known [4 ], 7 ].

3. Region labeling. Recall that region labeling assigns a label to each ofthe image
so that two l’s are assigned the same label if and only if they are in a common region.
In 3.1, we introduce some definitions. Section 3.2 presents a parallel connectivity al-
gorithm for PSLGs and 3.3 discusses its applications to related problems, including
region labeling.

3.1. Definitions. A line will refer to an undirected edge, while an edge will refer to
a directed edge. A circuit will refer to an undirected cycle, while a cycle will refer to a
directed cycle. A vertex will be used in both directed and undirected graphs. Given two
vertices u and v, u, v denotes the line between them, while (u, v) denotes the edge
from u to v and (v, u) the edge from v to u. We say that (u, v) and (v, u) are the
antiparallel edges of u, v }.

A vertex v of a PSLG is assumed to be associated with a coordinate (x(v), y(v)).
A vertex u is lower (respectively, higher) than another vertex v ify(u) < y(v) (respectively,
y(u) > y(v)). Given a vertex v, a line u, v } is a lower (respectively, higher) line of v
if u is lower (respectively, higher) than v. Given a vertex v and its lower edges, draw a
horizontal line, not passing through v, intersecting all lower edges of v. A lower line
{ Ul, v } is to the left (respectively, right) of another line { u2, v } if the intersection of
{ u, v } with the horizontal line is to the left (respectively, fight) of that of { u2, v }.
Similar definitions are made for edges.

A PSLG partitions the plane into several faces. The PSLG in Fig. has four faces;
three of them are bounded and the remaining one is unbounded. Any PSLG has exactly
one unbounded face, called the externalface (all other faces are called internalfaces).

Two vertices in an undirected graph are said to be connected if there is a path
between them. The problem of computing connectivity of an undirected graph is to
assign a label to each vertex so that every two vertices in the same connected component
have the same label. Our example PSLG has two connected components.

3.2. Connectivity of PSLGs. We give a parallel algorithm for the following problem:
Given a PSLG G with n vertices, compute its connectivity.

FIG. 1. An example PSLG.
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We begin by replacing each line of G by its antiparallel edges to obtain a directed
graph G’. For each vertex v G’, order its incident edges in clockwise order. Let ev,,
ev,2, e,aeg() be the ordered incoming edges to v and 8,, 8,2, 8v,aeg(), the
ordered outgoing edges from v, where e,; and 8,i are antiparallel. Assign for each vertex
v G’ in parallel,

and

SUCC (e,i) 8v,i + for _-< =< deg (v) 1,

SUCC (ev,aeg(v) - (,.

Each incoming edge e,i points to the clockwise next outgoing edge By,i+1. We call this
procedure the circular assignment. Figure 2 illustrates this procedure. Then SUCC (-)’s
partition the edges of G’ into cycles. See Fig. 3.

Circular assignment can easily be done in O(log n) time with n/log n processors if
for each vertex its adjacency list is presorted by angles or if G is of bounded degree. If
this is not the case, n processors are needed to sort the adjacent edges of each vertex.

There are two types of cycles according to their orientation, namely clockwise (CW)
cycles and counterclockwise (CCW) cycles. If the interior of a cycle is on the fight-hand
side when one walks along the cycle, then it is CW. Otherwise, it is CCW. It is easy to
see that there is a CCW cycle for each internal face and a CW cycle for each connected
component. In Fig. 3 we have three CCW and two CW cycles.

Let the head vertex of a cycle be the highest vertex on the cycle. If there is more
than one highest vertex, then choose one with minimum x-coordinate. To find the head
vertex for each cycle, we apply cycle cutting of 2 to the cycles to obtain the same number
of linear lists and then apply extended list ranking to the resulting lists. This can be done
in O(log n) time using n/log n processors.

Consider a vertex v and its lower edges. Let e,l and Y,r be the leftmost lower incoming
edge and rightmost lower outgoing edge of v, respectively. The following lemma distin-
guishes two types of cycles.

,’ \ \ //’,,, ",,

FG. 2. Dashed arrows indicate that e,, points to e, by SUCC (.).
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FIG. 3. After the circular assignment.

LEMMA 3.1. A cycle C with head vertex v is CW ifand only ifSUCC (e,) v,r
and e, is on C.

Proof. Since C is a CW cycle and v is its head vertex, all edges incident to v are
lower edges of v. Otherwise, C would contain higher edges of v, which would imply that
v is not the head vertex of C. We have SUCC (e,) Y,r because e,l and , are circularly
consecutive. If e, were not on C, then C could not orient CW. So, e, is on C.

If C oriented CCW, then there would be a vertex in C that is higher than v.
This is a contradiction to the definition of head vertex. So, C orients CW. []

Find all CCW cycles by Lemma 3.1. For each CCW cycle C with head vertex v, let
the head edge of C be the rightmost lower incoming edge of v which is on C. Find head
edges of all CCW cycles. Undirect them to get head lines in G. Delete all head lines from
G. Let F be the resulting graph. The following lemma shows that F is a spanning tree
of G.

LEMMA 3.2. F is a forest that preserves the connectivity ofG.
Proof. Let R be the set of head lines obtained above. We will show that the head

lines are all distinct. Consider two CCW cycles C and C2 in G’. Suppose that their
corresponding circuits in G share a head line r and a head vertex v. Consider two anti-
parallel edges of r. One of them is incoming to and the other outgoing from v. By
definition, a head edge is an incoming edge to a head vertex. Since C1 and C2 are disjoint,
one ofthem has to have an outgoing edge from v as its head edge. This is a contradiction.
So, all head lines are distinct. Thus [RI f, where fis the number ofCCW cycles (i.e.,
internal faces) of G.

Next, we will show that connectivity is preserved. Let R { r, rj ). Let C,
C- be the circuits obtained by undirecting the CCW cycles. Let ri be the head line of Ci
for =< _-< f. Suppose that we delete ri one by one. Let Gi be the resulting graph after
deleting r, ri- from G for =<i =< f+ 1. We show by induction on that rj for

_-< j =< f is contained in a circuit of Gi.
(i G has Cj., which contains r for =< j =< f.
Induction step. Assume that the claim holds for =< =< j 1. Let Dk, j =<

k =< f, be a circuit of Gj._ containing rk. Define, for j =< k =< f,

I Dk ifrj._ is not contained in
D

D_ )Dk otherwise,
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where Dj_ (R) Dk is the exclusive OR of Dj_ and Dk, i.e., Dj_ U Dk (Dj-l f’) Dk).
Then D forj -_< k _-< f has a circuit of Gj. containing rk. Note that D_ (Dmay consist
of several circuits of G.

Consider Euler’s formula n e +f= c for a PSLG with n vertices, e lines, f internal
faces, and c connected components. Note that deletion of any ri causes both e and fto
decrease by one, because each Gi has a circuit containing it and, thus, deletion of ri joins
either two internal faces or an internal face to the external face. Since n remains unchanged,
so does c. Thus connectivity is preserved.

Letf’ be the number of internal faces in F. Since F has n vertices, e f lines, and
c connected components, we have n (e -f) + f’ c, which gives f’ 0. Therefore,
F has no internal faces; so F is a forest.

Identifying all CCW cycles can be done in O(log n) time. Finding a head edge for
each CCW cycle can also be done in O(log n) time. Both can be done with n/log n
processors if each of the adjacency lists of G is presorted by angles or if G is of bounded-
degree.

The connected components of F can be found in O(log n) time as follows. We
already know that F is a spanning forest of G. The problem now is how to assign a label
CC(v) to each vertex v so that the vertices in the same component have the same label.
Replacing each line of F by two antiparallel edges, we apply the circular assignment to
the resulting graph F’. Then each connected component of F is associated with a CW
cycle. Let C be a cycle. Compute a label D(e) - MIN { v lv is a vertex in C for every
edge e e C. Then all edges in the same connected component have the same label. Finally,
assign CC(v) -- D(ev,1 for each vortex v, where e, is the first incoming edge to v. Then
CC(v) is the smallest vertex in the connected component to which v belongs. Computing
D(. for each vertex of each cycle in F’ can be done by cycle cutting.

THEOREM 3.1. Given a PSLG with n vertices, its connected components can be
computed in O(log n) time using n processors in the EREW PRAM. If the PSLG is of
bounded degree or iffor each vertex its adjacency list is presorted by angles, then n/log n
processors suffice.

3.3. Applications. Since a in a binary image can have at most four neighbors,
our PSLG connectivity algorithm solves the region labeling problem in O(log n) time
using n/ log n processors in the EREW PRAM, which is optimal and deterministic 15
gave a randomized algorithm with the same bounds) and is a log n processor factor
improvement over 2 and 10 ].

THEOREM 3.2. Given a Vn f binary image, its region labeling can be done in
O(log n) time using n/log n processors in the EREW PRAM.

Our algorithm also provides solutions for some related problems such as finding a
spanning forest and the bridges of PSLGs. Note that F in our connectivity algorithm is
a spanning forest of G. To find the bridges of G, we apply the following lemma, which
can be checked in O(log n) time.

LEMMA 3.3. A line in G is a bridge ifand only if its two antiparallel edges are on
a common cycle in G’ after the circular assignment.

Proof. Let b be a bridge. Let e and 4 be its antiparallel edges. Suppose that e is
on a cycle C and 4 is not. Then the undirected version of C has a circuit containing b,
contradicting the definition of a bridge.

Suppose that a line b is not a bridge, i.e., that b is on a circuit in G. Let e and
4be two antiparallel edges of b. Two different faces are incident to b. One ofthem must
be an internal face and must be entirely contained in the polygon determined by the
circuit. Since the CCW cycle of the internal face contains only one of e and 4, no cycle
contains both e and 4.
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4. Medial axis transform. The MAT is an important representation of binary im-
ages. Wu, Bhaskar, and Rosenfeld [20], [21] gave sequential and parallel algorithms for
computing several geometric properties from the MAT. In 4.1, a problem called the
all nearest blue dominators (ANBD) is defined and a parallel algorithm for the problem
is given. Section 4.2 gives our linear time sequential algorithm for the MAT. In 4.3,
we implement the sequential algorithm in the EREW PRAM using our parallel algorithm
for the ANBD problem. Section 4.4 discusses applications of our algorithm.

4.1. The ANBD problem. The ANBD problem is formally defined as follows. Let
‘4 (a, an) and B (b, bn) be two arrays of real numbers, where 0 < a <

< an and bi > 0 for all i. The problem is to find for each the smallest index j >- i,
if one exists, such that ai --< b. and bk < ai for all k where _-< k < j.

Geometrically, this problem can be interpreted as follows: Draw a red vertical line
segment connecting two points (2i 1, ai) and (2i 1, 0) for each ai and a blue vertical
line segment connecting (2i, bi) and (2i, 0) for each bi and find for each red segment its
nearest blue dominator, i.e., the first blue segment to its fight that is taller than it.

In the following, ai (respectively, bi) will be used to denote the red (respectively,
blue) segment as well as its height. We denote by ALTa,B (ai) the nearest blue dominator
in B of ai in .4. If no such blue dominator exists, ALTA,B (ai) 0. ALT implies that the
red and blue segments are alternating.

A simple linear time algorithm works as follows: Assume that an+l bn+l. Initially, set p - q -- 1. If ap <= bq, then ALTA, (ap) -- bq’, p -- p + and ifp
q + then q - q + 1. Otherwise, q -- q + 1. Repeat this until p > n. After this, if
ALTA, (ai) bn+ , then set ALTA, (ai) -- O.

Following is a variation of the ANBD problem that will appear in the description
of our parallel algorithm for the ANBD problem. In this problem, the red segments ai
are entirely to the left of the blue segments bi and both sets of segments are increasing
in height. This problem can be solved by merging two sets according to height. We use
SEPA, (ai) to denote the nearest blue dominator in B of ai in A in this problem. SEP
implies that the red and blue segments are separate.

Another problem appearing in our algorithm is, given the blue segments bi only, to
compute the nearest dominator of each segment. This problem is called the all tallest
neighbors problem and can be solved in O(log n) time using n/log n processors in the
EREW PRAM 12]. NB(bi) will be used to denote the nearest dominator of bi - B in
this problem. Let T be the tree whose vertex set is B and in which bj is the parent of bi if
bj N(bi). It can be assumed that T is a tree. Otherwise, introduce bn+ .

An O(log n) time, n/log n processor EREW PRAM algorithm for the ANBD prob-
lem will be presented. We first give an O(log n) time, n processor algorithm and then
reduce the processor bound to O(n/log n).

4.1.1. n Processor algorithm. The fn-divide-and-conquer approach is used. From
now on, ALT (-) will replace ALTA, (.). We begin by partitioning A into A,
Av7 and B into Bl_... Bvg, each of size Vn, where A {a(i_l)+l, ain} and
Bi { b(i_)+ , bi }. Recursively solve the problem for each pair of Ai and Bi
in parallel. The "marriage" starts. After the recursive calls, each aj Ai has ALTAi, (aj),
its nearest blue dominator in Bi. If ALTA, (aj) :/: 0, then it is the final solution, i.e.,
ALT (aj.) ALTa,B (aj.). If ALTA,, (aj.) 0, then we need to check to see if ni+l IO

tO B contains the nearest blue dominator of a and, if so, compute it. Below, we
show how the "marriage" can be done in O(log n) time using n processors.

Let Ci { a Ail ALTAi, (aj) 0 }, the set of segments in Ai which have no blue
dominator in Bi. Since Ai is increasing in heig_h Ci is a suffix of Ai, i.e., either Ci
or Ci { ak, ak / ai } for some (i Vn + <= k <= ivan. In other words, for ax
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and ay in Ai with x < y, if ALTAi,Bi (ax) 0 then ALTA,,Bi (ay) 0. Let q; aiN, the
tallest segment in A;. Let Q (ql, q). Let Pi be the shortest segment in Ci if Ci 4. If Ci lZl, then Pi qi. Let P (Pl, Pff). Let ri be the tallest segment in Bi.
Let R (rl, rff). Note that since A is increasing in height, Pl -< ql < < P =<
qN and the intervals [p, ql], [P, q] are disjoint.

Solve the ANBD problem for P and R and for Q and R, i.e., compute ALTe,R (Pi)
and ALTo,R (qi) for each i. Since P Q[ R Vn and n processors are available,
this can be done in O(log n) time in the EREW PRAM.

Currently, only ALTe,g (Pi) and ALTe,g (qi) are known. We show how this infor-
mation can be used to determine ALT (Pi) and ALT (qi). Once ALT (Pi) and ALT (qi)
are determined, computing ALT (ay) for ay Ci { Pi, q; } becomes rather easy. Note
that Pi and qi are the first and last segments in Ci.

Consider Pi for some i. Let ALTe,g (p;) ry. Then it is clear that ALT (Pi) c= Bj,
because no segment in B; to tO By_ is taller than Pi. Note that Pi is taller than rg,
ry_ and shorter than ry. More precisely, ALT (Pi) - Bj where

B’y= { b(j_l)+l,NB(b(j_l)!fn+l),NB(NB(b(j_l)n+l)), ,ry}.

B
__

By consists ofblue segments on the path of T, starting at the first segment of By and
ending at the tallest segment in By. See Fig. 4.

To compute ALT (Pi) for all p; P, divide P into fn subsets P1, PC, where
Py P; e PI ALTp,R (pg) ry }, the set of segments in P having the same ALTe,R (")
ry, which can easily be obtained from P. This is because p’s having the same
ALTe,R (’) appear consecutively in P, which is due to the increase property of P. Since
Py and B} are separate and both increasing in height, we have ALT (Pi) SEPe.,Bj (Pi)
for all p; e P, which can be obtained by merging Py and B} according to the height of
the segments in P tO B}. This can be done in O(log n) time using Pyl + Bj processors.
Similarly, compute ALT (qi) for qi Q.

Having determined ALT (Pi) and ALT (qi), we explain how to use these to compute
ALT (ay) for ay Ci p, qi }. Note that either ALT (qi) ALT (Pi) or ALT (q) is an
ancestor ofALT (Pi) in T, i.e., that ALT (q;) N(k)(ALT (Pi)) for k >= 0, where

N(Bk) x) NB(NB( NB(X) ).

k

Let I {ALT (pi), NB(ALT (Pi)), NB(NB(ALT (p;))), "-, ALT (qi)} for =< -_<

b(j- 1)qrff+ rj bjv

FIG. 4. B has 11 segments and Bj has 5 segments, each ofwhich has a dashed arrow.
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V-n, the set of blue segments on the path of T between ALT (Pi) and ALT (qi). Then
ALT (aj) Ii for all aj C {p;, qi ). Again, since Pi and Ii are separate and both
increasing in height, it is clear that ALT (aj.) SEPci,/i (aj) for a Ci { Pi, qi }.

Since computing SEPc;,i (’) is easy once Ii is known, we describe how to compute
Ii for all i. If ALT (Pi) ALT (qi), then ALT (a) ALT (Pi) for all aj Ci. So, we can
exclude such i’s from further consideration. We can now assume that lil >-- 2 for all i.
Then [Ii fl Ii+ 11 and Ii fl I for [i j[ > 1. To prove this, we first show that
[Ii A/[ -< for any and j. Suppose that [Ii f’l/[ >_- 2 for some and j. Since Ii and/
are paths in T, Ii fl I is also a path in T. Then, I; fl I is a prefix of either Ii or I, which
implies either q; e [p, qj] or qj. e [pi, qi], which in turn implies that [Pi, qi] and [pj, q]
are not disjoint. Therefore, [Ii VI/j.[ _-< for any and j. Next, we show that I; fl/j.
for [i -j[ > 1. Suppose that Ii VI I 4: for some and j > + 1. Then [Ii VI/[ 1,
as proved above, which implies that [I;+l[ 1. This contradicts our assumption that
[Ii[ >-- 2 for all i. We have’ proven that [I VI I+ 1[ --< and Ii fl/j. for [i j[ > 1.
Furthermore, if Ii VI Ii / l[ 1, then Ii VIIi + { ALT (pg / }.

Define I}- Ii- ALT (pg)} for =< _-< n. Then I}’s are mutually disjoint.
To compute I}, we partition T into fn + trees TI, TN/I, by deleting edges
between ALT (q;) and its parent. If the root of T is ALT (qg) for some i, then TN/I

because in this case only f edges are removed. Assume that ALT (q;) is the root
of T; for _-< _-< fn. Then I} is a path in T between N(ALT (pi)) and the root of Tg.
It is easy to find I} from T; in O(log n) time using [Ti] processors in the EREW PRAM
by the Euler tour technique as in 12 ]. Compute Ig I} U { ALT (Pi) for all i.

We have shown that each step of the "marriage" runs in O(log n) time using n
processors. Let T(n) be the running time of our algorithm on problems of size n. Then
T(n) <= T(fn) + O(log n), which gives T(n) O(log n).

THEOREM 4.1. The ANBDproblem can be solved in O(log n) time using n processors
in the EREW PRAM.

4.1.2. n/log n processor algorithm. Partition A into A1, An/logn and B into
BI, "", Bn/ogn, each of size logn, where Ai {a(i-l)logn+l, "", ailog,} and Bi
{ b(i- 1)log + 1, b/log }. Solve the problem for each pair ofAi and Bi simultaneously
with one processor per pair by our linear time sequential algorithm (it takes O(log n)
time). Compute Ci for =< _-< n/log n. Compute P, Q, and R. Note that el QI
IRI n/log n. Compute ALTp,R (Pi) and ALTQm (qi) for all i. Since n/log n processors
are available, this can be done in O(log n) time by our linear processor parallel algorithm.

Compute Pj and B { bs_ 1)og, + 1, N.(bs_ 1)log + ), rs } for =< =< n/log n.
Compute ALT (Pi) for all Pi Ps by merging PJ and B, which can be done in O(log n)
time using Ps] processors 5 ]. Since Zs [Ps[ n/log n, we have enough processors for
these mergings. Similarly, compute ALT (qi) for qi Q.

Ii is defined as before for _-< =< n/log n. We show how to compute I/- for all in
O(log n) time using only n/log n processors. Solve the all tallest neighbors problem for
R, i.e., compute N(r;) for all r; R. This can be done in O(log n) time because R is of
size n/log n and n/log n processors are available. Let

Ji { ALTpm (pi),Ng(ALTe,n (Pi)), ALTQm (qi) } for _-< i_-< n/log n.

Then J; for all can be found in O(log n) time (in a similar way as we found the Ii’s in
4.1.1 by constructing a tree T’ with vertex set R and edge set { (ri, r)lrj Ng(ri)}.

We can easily prove that [Ji fq J[ =< for any and j by a similar technique used to
prove [Ii fq Ill -< for any and j in 4.1.1. Therefore, Zi Ji[ <- 2n/log n.
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Now we compute Ii from Ji. Assume Ji { rai(l), rai([Ji[) } Then ALT (Pi) E

B’i(l and ALT (qi) B’i(lJl). Let

Ki,1 { ALT (pi), N(ALT (Pi)), G,( },

Ki, { t.(;), NB(t.(;)), r.() } for 2 Nj Ji[ 1, and

Ki, Igil { tai(Igil),NB(tai(Igil)), ,ALT (qi) },

where t() is the shoest segment in B’.() that is taller than r.(_ 1). Recall that
r is the tallest segment in Bi and B}. Then I= K, U U K,j, because

To compute Ifs, assign a processor to each member of r(;) of & (a total of [&[
processors to Jg). A processor assigned to r(;) sequentially scans B’g() to determine Kg,.
Note that Ki c B’ This clearly takes O(log n) time using n/log n processors because

Jg[ 2n/log n. A problem here is that there may be read conflicts, i.e., more than
one processor may be assigned to the same r and these processors may simultaneously
scan the same B. This is because Jfs may not be disjoint.

One way to avoid these potential read conflicts is to assign a copy of B(;) to r(;)
and for the processor assigned to r(;) to scan its own copy of B,(;) to determine Ki,;.
To do this, let fig be the number ofrfs in J J,/og,, where is the set concatenation
(i.e., duplicate elements are allowed). This can be done by soing and applying parallel
prefix computation in O(log n) time, because there are no more than 2n/log n items.
Assign i processors to B and make fl copies of B, which can be done in O(log n)
time, because [B[ log n. Finally, assign a copy of B to each of the ri’s.

Compute ALT (aj) SEPG,/ (aj) for all a; 6 G {P, q by merging G and I,
which can be done in O(log n) time using J[ processors 5 ], because G[ log n and
I/gl J, ,og n.

THeOReM 4.2. The ANBD problem can be solved in O(log n) time using n/log n
processors in the EREW PRAM.

4.2. Sequential algorithm. This section presents a linear time algorithm for the
MAT representation of a fn Vn binary image H (hi,j), <= i, j <= n, where hl, is
top-left, h,c top-fight, hc, bottom-left, and hC,C bottom-fight. We first give the
basic idea behind our algorithm. The MAT problem can be interpreted as follows:
Given a Vn fn grid, H, with grid points labeled either 0 or 1, compute for
each grid point hi,j the Lo-distance z;,j to a nearest grid point labeled 0 lying in
the southeast quadrant of h;,j. Recall that the L distance between two points is
max { x x2 [, y Y2 }. A southeast quadrant is divided into an east-southeast (ESE)
octant and a south-southeast (SSE) octant by a line of slope -45. Finding a nearest 0
in the southeast quadrant of a is equivalent to finding a nearest 0 in its ESE octant and
a nearest 0 in its SSE octant and taking the nearer one. Quadrants and octants are
assumed to include their boundaries. Note that the L-distance between two points, one
lying in the other’s ESE (respectively, SSE) octant, is x x2[ (respectively, y Y2[).

We now present our algorithm. Augment H by adding a 0-column vector to its left
and fight and a 0-row vector above and below it. This augmentation increases the input
size by 4fn + 4 and the asymptotic behavior of our algorithm does not change.

Compute x;,j for all andj, where x;,j is the integer such that hi,x, 0 is the nearest
0 in the ith row to the left of h;,j (i.e., hg,k for all k where xi,j + <= k <= j). If hi,j
0 then xg,j j. Similarly, compute y,j for all and j where yi,j is the integer such that
hy,,;,j 0 is the nearest 0 in the jth column above h;,j (i.e., h,j for all k where yg,j +

_-< k -< i). It is easy to compute all xg,j and y;,j in linear time. Following is a simple
lemma that is crucial to our algorithm.
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j j+k

i+k
i+k,j+k

Yi+k,j+k

FIG. 5. An illustration for a proofofLemma 4.1.

LEMMA 4.1. Given andj,
(i) the(j + k)th column ofHfor k >= has aO in the ESE octant ofhi,j ifand only

ifyi+k,j+k >= i’, and
(ii) the (i + k)th row ofHfor k >= has a 0 in the SSE octant ofhi,j ifand only if

Xi+k,j+k >=j.
See Fig. 5 for a proof idea.
By Lemma 4.1, the L-distance of hg,j to an ESE-nearest 0 (i.e., a nearest 0 in

the ESE octant of h,j.) is

mxi,j min { k yi + k,j + k,>- for k >- }.
Analogously, the Lo-distance of hi,j to an SSE-nearest 0 is

Ayi,j min { k lxi + k,j + >=j for k >= }.
Then the L-distance of hi,j to an SE-nearest 0 is

Zi,j min { AXi,j, Ayi,j }.
To show how to compute Axi,j for all and j in linear time, consider a diagonal

h,i, h2,i + h_i+ ,n for some i.

Solve the ANBD problem with

(a,a2, "-,aff_i+)=(1,2, ..., fn-i+ 1),

and

(bl,b2, ,b_i+l)=(yl,i,y2,i+l, ,Y-i+I,)-
Then /Xx,i+

_
m k if ALT (a) bm for =< k =< Vn + 1, which can be

computed in O( i) time. Similarly, Axj +_ , for --< k =< fn -j + can be
computed in O( fn -j) time. Therefore, Axi,j for all and j can be computed in linear
time. In an analogous manner, Ayg,j for all and j can be computed in linear time.

Finally, computing z;,y for all and j is trivial. So, we have a linear time algorithm
for the MAT problem.

4.3. Parallel implementation. This section implements our sequential algorithm in
the EREW PRAM to run in O(log n) time using n/log n processors. Computing xi, and
Yi,j for all andj can be done in O(log n) time using n/log n processors by parallel prefix
computations. Computing Axg,j and Ayi,y for all and j are instances of the ANBD
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problem as explained in 4.2, which can be solved in O(log n) time using n/log n
processors.

THEOREM 4.3. Given a f fn binary image, its MAT representation can be
computed in O(log n) time using n/log n processors in the EREW PRAM.

4.4. Applications. Our MAT algorithm can be used to solve the problem offinding
for each of the image the largest L- (L-) disk centered at it. Recall that an Ll-disk
is a rhombus and an L-disk is a square. For each hi,j l, find the nearest 0 in each of
its four quadrants and take the nearest one. Finding an L-nearest 0 in a quadrant has
already been explained in previous subsections. It can easily be modified to find an L-
nearest 0.
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ON THE COMPLEXITY OF COLOURING BY VERTEX-TRANSITIVE
AND ARC-TRANSITIVE DIGRAPHS*
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Abstract. Let H be a fixed directed graph whose vertices are called colours. An H-colouring of a digraph
G is an assignment of these colours to the vertices of G such that if x is adjacent to y in G, then colour (x) is
adjacent to colour (y) in H (i.e., a homomorphism G H). In this paper the complexity of the H-colouring
problem, when the directed graph H is vertex-transitive or arc-transitive, is investigated. In both instances a
complete classification is obtained.

Key words, graph colouring, graph homomorphism, complexity, NP-completeness, polynomial algorithm,
vertex-transitive graphs
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1. Introduction. Let D and H be directed graphs (respectively, graphs). A homo-
morphism olD to H is a function f:V( D) - V( H) such that f( x)f(y) is an arc (re-
spectively, edge) ofH whenever xy is an arc (respectively, edge) of D. Observe that an
n-colouring ofa graph G is a homomorphism ofG to Kn. In analogy with this terminology,
the term H-colouring of G has been used to describe a homomorphism of a digraph
(respectively, graph) G to a fixed digraph (respectively, graph) H.

The H-colouring problem may be formally stated as follows:
H-COL (H-colouring)
Instance: A digraph (respectively, graph) D.
Question: Does there exist an H-colouring of D?

The H-colouring problem clearly belongs to NP for any fixed digraph (respectively,
graph) H.

The complexity of the H-colouring problem has received considerable attention in
the literature 2 ]- 6 ], 10 ]- 12 ], 14 ]- 16 ]. Several developments are worthy of special
attention. Hell and Ne,eff’il [14] have settled the undirected case by proving that the H-
colouring problem is NP-complete for any fixed graph H that contains an odd cycle, and
is polynomial otherwise. When H is a directed graph the "dividing line" does not seem
clear. The H-colouring problem is polynomial ifH is an oriented path, but there is an
oriented tree T for which the T-colouring problem is NP-complete 10 ]- 12 ]. The prob-
lem is known to be NP-complete for a large collection of digraphs with at least two
directed cycles [3 ]-[6], [15 ], [16]. It has been conjectured that if H is a connected
digraph in which each vertex has in-degree at least one and out-degree at least one, then
the H-colouring problem is NP-hard unless H admits a retraction to a directed cycle 3 ].
Another formulation ofthis conjecture is given in 5 ], where it is proved to be equivalent
to the following statement. IfG is a connected digraph in which each vertex has in-degree
at least one and out-degree at least one, and which does not admit a homomorphism to
a directed cycle, then the H-colouring problem is NP-hard whenever G is a subdigraph
ofH. The reader is referred to [2] for a survey of results in direction H-colouring.

In this paper we prove that the aforementioned conjecture of Hell and Bang-Jensen
is true for vertex-transitive digraphs, and arc-transitive digraphs. For vertex-transitive
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digraphs we prove that the H-colouring problem is NP-complete unless H admits a
retraction to a directed cycle, and is polynomial otherwise (cf. Theorem 3.4). As a cor-
ollary, we deduce a similar classification of arc-transitive digraphs (cf. Corollary 3.5).
We also give necessary and sufficient conditions for a Cayley graph of a finite group to
admit a retraction to a directed cycle (i.e., for the associated H-colouring problem to be
polynomial).

2. Preliminaries. The purpose of this section is to review the background material
needed for 3.

We use the terminology of[8 ], with a few exceptions and additions. Let D be a
directed graph, and let x, y be vertices of D. If both xy and yx are arcs. ofD, we say that
x and y are joined by a double-edge, and denote this situation by [x, y]. The undirected
part of D, undir(D), is the subdigraph induced by the set of double-edges. Note that
undir (D) is the equivalent digraph ofan undirected graph. We do not distinguish between
undir (D) and its underlying simple graph. In particular, we talk about undirected paths
or cycles in D, or about whether undir (D) is bipartite (equivalently, colourable by C2).
In our figures double edges will be drawn as undirected edges.

We say that a digraph D is connected if, for any two vertices u and v, there exists
an oriented (u, v)-walk in D. If D is not connected, we call each maximal connected
subdigraph a connected component of D.

We say that D is a strong digraph if, for any two vertices u and v, there exists a
directed (u, v)-path and a directed (v, u)-path.

A source of a directed graph D is a vertex of in-degree zero. A sink is a vertex of
out-degree zero. We use the term smooth to describe a directed graph with no sources
and no sinks.

Let Ibe a fixed digraph, and let u, v be distinct vertices ofI. The indicator construction
with respect to (I, u, v) transforms a given directed graph H into the directed graph H*,
defined to have the same vertex set as H, and to have as its arc set the set of all pairs xy
such that there is a homomorphism of I to H which maps u to x and v to y. The triple
(I, u, v) is called an indicator, and if the digraph H* is loopless (no homomorphism of
I into H maps u and v to the same vertex), it is called a good indicator. A symmetric
indicator is an indicator (I, u, v) such that some automorphism of I exchanges u and v.
Symmetric indicators are important because the result ofthe indicator construction with
respect to a symmetric indicator is an undirected graph.

LEMMA 2.1 [14]. IfH*-COL problem is NP-complete, then so is H-COL.
In applying the indicator construction care must be taken to assure that H* has no

loops (i.e., that (I, u, v) is a good indicator), otherwise there is a polynomial time
algorithm for H*-colouring" map all vertices to a vertex with a loop.

The following result is an immediate consequence ofthe indicator construction (use
a double edge as the indicator).

LEMMA 2.2 5 ], 14 ]. If undir H) is loopless and contains an odd cycle, then H-
COL is NP-complete.

Let G and Hbe directed graphs, and suppose that H is a subdigraph of G. A retraction
of G to H is a homomorphism f:G - H such that f(h) h for all vertices h of H. If
there exists a retraction ofG to H, the directed graph H is called a retract of G. A digraph
is retract-free (or a core 3 ], 6 ], 12 ], or a minimal graph 10 ], 14 ], 16 if it does
not admit a retraction to a proper subdigraph. Every directed graph G contains a unique
(up to isomorphism) minimal retract-free subdigraph H which admits a retraction
G - H. We refer to such an H as the core ofG. Observe that if G’ is a retract of G then
G and G’ have the same core. If H is the core of G, then there are homomorphisms
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i: H -- G (the inclusion) and r: G -- H (a retraction); thus a graph D is G-colourable
if and only if it is H-colourable.

Let hi, he, ht be specified vertices of a retract-free digraph H, and let J be a
fixed digraph, with specified vertices x and jl, j2, jr. The subindicator construction
with respect to (J, x, jl, j2, jr), and h, h2, ht transforms H to its subdigraph
H induced by the vertex set V defined as follows: Let Wbe the digraph obtained from
the disjoint union of J and H by identifying ji and hi, 1, 2, t. A vertex v of H
belongs to V just if there is a retraction of W to H which maps x to v. The structure
(J, x, jl, j2, jr) is called a subindicator.

LEMMA 2.3 [14]. Let H be a retract-free digraph. IfH-COL is NP-complete, then
so is H-COL.

The directed cycle of length n is denoted by Cn, and assumed to have vertex
set {0, 1, n } and arc set { i(i + 1): 0, 1, n 1, where addition is
modulo n }. Similarly, Pn, the directed path of length n, is assumed to have vertex set

{ 0, 1, n ), and arc set i(i + ): 0, 1, n ). Note that an isolated vertex
is a path of length zero but not a cycle of length zero. A loop at vertex v creates a cycle
of length one.

LEMMA 2.4 16 ]. For every positive integer n, both C-COL and P,-COL are poly-
nomial.

Thus the H-colouring problem is polynomial whenever a directed path or a directed
cycle is a retract of H.

We conclude this section by stating a result concerning the cycle structure of strong
digraphs. (Note that a connected vertex-transitive digraph is strong.)

LEMMA 2.5 [5]. Let D be a strong digraph. There is a homomorphism olD to C
ifand only ifthe length ofevery directed cycle in D is divisible by n.

Thus a strong digraph does not admit a homomorphism to C if and only if it has
a directed cycle whose length is not divisible by n, and does not admit a homomorphism
to any directed cycle of length greater than one if and only if it has a collection C
C2, Ck of directed cycles such that gcd{IV(C)l: 1, 2, k) 1.

3. Results. The following three lemmas are essential to the proof of our main result.
LEMMA 3.1. The core ofa vertex-transitive digraph is vertex-transitive.

Proof Let H be the core of G. Then there is a retraction r: G -- H. Let x and y
be vertices of H, and let f be an automorphism of G such that f(x)= y. Then rof
is a homomorphism ofH to H and, as H is retract-free, an automorphism of H. Since
r(f(x)) r(y) y, we have that H is vertex-transitive.

LEMMA 3.2. Let H be a directed graph and let (I, u, v) be an indicator. Let H* be
the digraph that resultsfrom applying the indicator construction with respect to (I, u, v)
to H. Then Aut (H) is a subgroup ofAut (H*).

Proof Since Aut (H) is a group it suffices to prove that Aut (H*) contains Aut (H).
Let fbe an automorphism ofHand let ab be an arc ofH*. Then there is a homomorphism
h:I -- H such that h(u) a and h(v) b. The function foh is also a homomorphism
ofI to H, andf(h(u)) f(a) andf(h(v)) f(b). Hencef(a)f(b) is also an are ofH*.
Since fis a one-to-one arc preserving map, it is an automorphism of H*. 73

By Lemma 3.2, the digraph that results from applying an indicator construction to
a vertex-transitive digraph is also vertex-transitive.

We now define a special type of indicator that plays a central role in the proof of
Theorem 3.4. A z-indicator is an indicator (I, u, v) such that there is a vertex z that is
the only neighbour of v (the vertex z may be an in-neighbour of v or an out-neighbour
of v). If z is an in-neighbour of v, we sometimes call (I, u, v) an in-z-indicator and,
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similarly, if z is an out-neighbour of v, we sometimes call (I, u, v) an out-z-indicator.
These special indicators are important in our work on vertex-transitive digraphs because
of the following lemma.

LEMMA 3.3. Let H be a vertex-transitive digraph and let (I, u, v) be an in-z-indicator
(respectively, out-z-indicator). If there exists a vertex x ofH, and homomorphisms hi
and h2 ofI to H such that h(u) hz(u) x and h z) 4 h2( z), then either

(a) IE(H*)I > IE(H)I, or
(b) E(H*)I ]E(H)I, and NI(h(z)) Ni(h2(z)) (respectively, NTi(h(z))

NTi(h z
Proof. Since H is vertex-transitive, every vertex is a homomorphic image of the

vertex z. Thus, for every vertex a, there is a vertex b such that N]/. (b)
_
N/(a). Hence

the out-degree ofa vertex does not decrease. (Every vertex v ofa vertex-transitive digraph
has d/(v) d-(v) c for some constant c. Therefore H* has at least as many arcs as
H. Suppose that equality holds. Let r be the out-degree of every vertex of H and H*.
Since Nt,(x) contains both N]t(h(z)) and N]t(h2(z)), the vertex x has d]4,(x) r
only if these two r-sets are equal. 7q

We note that if H is loopless and NI(X)= N]-I(y) (respectively, N;I(X)=
N;I(y)), then x and y cannot be neighbours.

THEOREM 3.4. Let H be a vertex-transitive digraph. Then the H-colouring problem
is NP-complete unless H admits a retraction to a directed cycle. In the latter case H-
COL is polynomial.

Proof We have previously noted the second statement. The first assertion is proved
by contradiction. Let Hbe a counterexample with the minimum number ofvertices and,
within all counterexamples on IV( H)[ vertices, one with the maximum number of arcs.
That is, H is a vertex-transitive digraph that does not admit a retraction to a directed
cycle, and for which the H-colouring problem is not NP-complete. Note that, in particular,
H has no loop, and that by Lemma 2.2, H is not the equivalent digraph of a complete
graph. Furthermore, the minimality of V( n) implies that H is retract-free. (Otherwise
the core H’ of H is a vertex-transitive digraph with fewer vertices than H, and which
does not retract to a directed cycle. By our choice ofH, the H’-colouring problem is NP-
complete. Consequently, H-COL is also NP-complete.) Therefore H is connected. The
result is known ifH has at most four vertices [10 ], [16], hence we may assume that H
has at least five vertices. Since H is not a directed cycle, each vertex has out-degree at
least two. We make the following sequence of assertions about the digraph H.

(1) H does not admit a homomorphism to a directed cycle of length greater than
one. Assume H maps to a directed cycle oflength greater than one and let k be the largest
positive integer such that H C. The integer k exists because H is strong and therefore
contains a directed cycle. (The integer k lies between and the length of the shortest
directed cycle in H.) Since the core ofH is not a directed cycle, C is not a subdigraph
ofH (since C is retract-free, it is a retract of a given directed graph G if and only if it is
both a subdigraph of G and a homomorphic image of G). Thus (P, 0, k) is a good
indicator. Let H* denote the result of applying the indicator construction with respect
to (P, 0, k) to H. By Lemma 3.2, H* is vertex-transitive. Since H is strong, each colour
class of the C-colouring induces a connected component of H*. Thus H* has precisely
k isomorphic connected components, and so the core ofH* is a vertex-transitive digraph
with fewer vertices than H.

We claim that the core ofH* is not a directed cycle. By the choice of k, the digraph
H h/s a collection C C2, C of directed cycles such that gcd{ V(Ci) 1,
2, m } k. Each C gives rise to a directed cycle Ci* in H* oflength 1/k)l v(ci)[.
Hence gcd{IV(C;*)l: 1, 2, m } 1, and H* does not map to a directed cycle
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of length greater than 1. Therefore H* does not retract to a directed cycle. Thus the H*-
colouring problem is NP-complete (by the choice of H), and so H-COL is also NP-
complete. This completes the proof of ).

By ), H is not an orientation of a bipartite graph.
In the remainder of this section, we omit from our proofs the observation that the

digraph which results from applying an indicator construction to a vertex-transitive di-
graph is itself vertex-transitive.

(2) Every vertex ofH is incident with a double-edge. Since H is vertex-transitive,
it suffices to prove that H has a double-edge. Suppose not. Then (P2, 0, 2) is a good in-
z-indicator. Let H* be the result of applying the indicator construction with respect to
(P2, 0, 2) to H.

We claim that H* does not retract to a directed cycle. Since H is strong and
does not map to a directed cycle of length greater than 1, it has a collection C C2,.., C of directed cycles such that gcd{lV(Ci)[: 1, 2,..., m} 1. Each C;
gives rise to a directed cycle Ci* in H* (two such cycles if v(ci)[ is even). If
v(ci)l isodd, v(ci*)l ]v(ci)l,and]V(Ci*)] -( 1/2)] v(Ci)] otherwise.Therefore

gcd{IV(Ci*)]: 1, 2, rn} 1. This proves the claim.
By Lemma 3.3, H* has at least as many arcs as H. If E(H*)I > E(H)I, then

the H*-colouring problem is NP-complete by the maximality of E(H) I, and so H-COL
is also NP-complete, which is again a contradiction. Suppose that equality holds. Let x,
y, z be vertices of H such that x and y are both adjacent from z. By Lemma 3.3 (b),
Nt(x) NI(y). Similarly, it follows from considering the indicator construction with
respect to the out-z-indicator (P2, 2, 0) that NT-t(x) NTI(y). Then x and y are non-
adjacent, there is a retraction H -- H x which maps x to y, contradicting the fact that
H is retract-free. This completes the proof of (2).

(3) H contains T (see Fig. 3.1 ). Assume H does not contain T. Then the sym-
metric indicator (I, u, v) shown in Fig. 3.2 is good. Let H* be the result of applying the
indicator construction with respect to (I, u, v) to H. Then H* is loopless and undirected.
Since undir(H) is spanning, H* contains the equivalent digraph ofthe underlying graph
corresponding to H. Since H is not an orientation of a bipartite graph, H* has an odd
cycle, whence the H*-colouring problem is NP-complete. Therefore H-COL is also NP-
complete, which is a contradiction.

(4) Every vertex of H is incident with at least two double-edges. Suppose to
the contrary that undir(H) is a disjoint union of double edges. Then the indicator
(I, u, v) shown in Fig. 3.3 is a good in-z-indicator. Let H* be the result of applying the
indicator construction with respect to (I1, u, v) to H. It is not hard to see that H*
contains a transitive triple and, therefore, does not admit a retraction to a directed

T1
FIG. 3.1

c o v

FIG. 3.2
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Z

FIG. 3.3

cycle. By Lemma 3.3 the digraph H* has at least as many arcs as does H. If
E(H*)[ > E(H)[, then the H*-colouring problem is NP-complete because of our

choice ofH and, consequently, H-COL is also NP-complete. Suppose that E(H*)I
E(H)I. Let Ix, y] be a double edge. Then Lemma 3.3 asserts that Nb(x) Nb(y),

which is a contradiction. This completes the proof of (4).
(5) H contains CJ’ (see Fig. 3.4). Suppose not. Then the z-indicators (I1, u, v)

and (12, u, v) shown in Figs. 3.5 (a) and 3.5 (b), respectively, are good. Let H* and H* *

denote the result of applying the indicator construction with respect to (I1, u, v) and
(12, u, v), respectively, to H. Both E(H* and E(H* * contain E(H). If either con-
tainment is proper, we reach the contradiction that the H-colouring problem is NP-
complete by Lemma 2.1 and our choice of H.

Suppose that E(H) E(H* E(H* * ), and let x, y, z be an undirected path of
length two in H. Then, by Lemma 3.3, N/(z) NI(X) and NT/(z) NT-i(x). Therefore
there is a retraction H H z which maps z to x, contradicting the fact that H is
retract-free.

(6) H contains A or A2 (see Figs. 3.6(a) and 3.6(b), respectively). Suppose not.
Then the z-indicators (Ii, u, v) and (I2, u, v) shown in Figs. 3.7(a) and 3.7(b), respec-
tively, are good. Let H* and H* * denote the result ofapplying the indicator construction
with respect to (11, u, .v) and (I_, u, v), repetitively, to H. By (5), both E(H*) and
E(H* * contain E(H). If either containment is proper, we have a contradiction. Suppose
that E(H) E(H*) E(H**). Consider a homomorphic image of (11, u, v) in H,
such that u maps to x, and z maps to y 4: x (the vertex y exists by (4)). By Lemma 3.3,
N(x) NI(y). Since there also exists a homomorphism of (I2, u, v) to H such that
u maps to x and z maps to y, we also have N;I(X) N;I(y). But then there is a retraction
H -- H x that maps x to y, which is a contradiction. This completes the proof of (6).

FiG. 3.4. C’.

o c V Vo o U
z z

(a) (b)

FIG. 3.5
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(a) A (b) A 2

FIG. 3.6

z z

(a) (b)

FIG. 3.7

(7) H contains at least one of X, X2, X3, X4, X5 (see Figs. 3.8 (a)-(e), respec-
tively). Suppose first that H contains A, but none of X, X2, X3. Then the indicators
(I, u, v) and (12, u, v) shown in Figs. 3.9(a) and (b), respectively, are good. The
remaining details are similar to those in (5), and the reader should have little difficulty
in completing the proof.

Similarly, if H contains A2 but none of X3, X4, Xs, the indicators (13, u, v) and
(14, u, v) shown in Figs. 3.10(a) and (b), respectively, are good. The details are again
left to the reader.

(a) X (b) X

(C) X

(d) X (e) X

FIG. 3.8
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2

(a) (b)

FIG. 3.9

(8) H contains neither X nor Xs. We prove that ifH contains X or Xs, then the
H-colouring problem is NP-complete. Since X5 is the converse ofX, it suffices to prove
the result when H contains X.

Let x and y be vertices ofH as shown in Fig. 3.11 (a). Let (11, u, v) and (12, u, v)
be the z-indicators shown in Figs. 3.11 (b) and 3.11 (c), respectively. Suppose first that
both indicators are good, and let H* and H* * denote the result of applying the indicator
construction with respect to (I, u, v) and (I2, u, v), respectively, to H. Both E(H*)
and E(H**) contain E(H). If either containment is proper, the result follows from
Lemma 2.1 and our choice of H. Hence assume E(H) E(H* E(H* * ). Then, by
Lemma 3.3, Nfc(x) N(y) and N(x) Nfc(y). This contradicts the fact that H is
retract-free.

Now suppose that one ofthe indicators is not good. We may assume that undir(H)
is bipartite, otherwise H-COL is NP-complete. Let C be a connected component of
undir(H) and let (R, B) be a two-colouring of C. Then H[R] is a vertex-transitive
digraph with fewer vertices than H. If there exists a homomorphism of either I or 12 to
H such that u and v map to the same vertex, then H[ R] contains a transitive triple.
Therefore H[R] does not map to a directed cycle of length greater than 1. By our choice
of H, H[R]-COL is NP-complete. Let r R. There exists an even integer k such that
for every vertex x in R, there is an undirected (r, x)-walk in H of length k. Let P be
(the equivalent digraph of) an undirected path of length k, with origin a and terminus
b. Let H be the result of the applying the subindicator construction with respect to
(P, a, b) and r to H. Then H H[R], and so the result follows from Lemma 2.3.

(9) H does not contain X3. Suppose H contains X3. We show that H-COL is NP-
complete. Let x and y be vertices ofH as shown in Fig. 3.12 (a). Let (I, u, v) be the in-

Z

(a) (b)

FIG. 3.10



COLOURING BY VERTEX-TRANSITIVE DIGRAPHS 405

(a)

(b) (c)

FIG. 3.1

z-indicator shown in Fig. 3.12(b), and let H* be the result of applying the indicator
construction with respect to (I1, u, v) to H. Then E(H*) contains E(H).

Suppose that E(H* E(H). Then, by Lemma 3.3, Nz(X) NI(y). xy is an arc
of H, therefore H has a loop at y, which is a contradiction.

Thus E(H*) properly contains E(H). If H* has no loops, then the H-colouring
problem is NP-complete by Lemma 2.1 and our choice of H. Hence we may assume
that H* has a loop. Thus H contains an undirected triangle or the graph shown in Fig.
3.13(a). In the former case H-COL is NP-complete by Lemma 2.2. In the latter case,
let (I2, u, v) be the indicator shown in Fig. 3.13 (b), and let H* * be the result of apply-
ing the indicator construction with respect to (I2, u, v) to H. Note that E(H**) con-
tains E(H).

x Y u

(a) (b)

FIG. 3.12

(a) (b)

FIG. 3.13
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Suppose that E(H* * E(H). Then, as above, we see that Hhas a loop at y, which
is a contradiction.

Thus E(H* *) properly contains E(H). IfH* * has no loops, the H-colouring problem
is NP-complete by Lemma 2.1 and our choice of H. Hence we may assume that H* *

has a loop. Then Hcontains an undirected triangle, the digraph X, or the digraph shown
in Fig. 3.14(a). In the first case H-COL is NP-complete. The second case contradicts
(8). It remains to consider the last case. Let (13, u, v) be the symmetric indicator shown
in Fig. 3.14(b). We may assume that H does not contain an undirected three-cycle;
otherwise H-COL is NP-complete. Therefore (13, u, v) is good. Let H* * * be the digraph
that results from applying the indicator construction with respect to (I3, u, v) to H. It
may be directly verified that H* * * contains an undirected five-cycle. This completes the
proof of (9).

(10) H does not contain X2. Suppose to the contrary that H contains X2. We
show that H-COL is NP-complete. It may be assumed that H does not contain X1, X3,
or Xs. Let x and y be vertices ofH as shown in Fig. 3.8(b). Let (I, u, v) be the indicator
shown in Fig. 3.9(a), and let H* be the result of applying the indicator construction
with respect to (I, u, v) to H. Since neither XI nor X3 is a subdigraph of H, the digraph
H* is loopless, unless H contains an undirected triangle, in which case we are done by
Lemma 2.2. Note that E(H*) contains E(H). If the containment is proper, the result
follows from Lemma 3.3 and our choice ofH. Hence assume that E(H* E(H). Then
by Lemma 3.3, N(x) NI(y). This is a contradiction.

(11 ) H does not contain X4. The proof is similar to (10). The indicator needed
is shown in Fig. 3.9(b). The details are omitted.

Hence the digraph H cannot exist. This completes the proof ofTheorem 3.4.
COROLLARY 3.5. Let H be an arc-transitive digraph. Then the H-colouringproblem

is NP-complete, unless H admits a retraction to Cn, Po, or PI. In the latter case H-COL
is polynomial.

Proof We have already noted the second statement. Let H be an arc-transitive
digraph with at least one arc. We may assume without loss of generality that H has no
isolated vertices. Then either H is smooth, or every vertex ofH is a source or a sink. In
the former case H is vertex-transitive, so the result follows from Theorem 3.4. In the
latter case PI is a retract. This completes the proof.

Since a connected vertex-transitive digraph H is strong, it admits a retraction to a
directed cycle if and only if the length of every directed cycle in H is divisible by the
directed girth of H. When H is a Cayley digraph of a finite group we are able to give
another characterisation.

Let I’ be a finite group. We denote by F(S) the Cayley digraph with symbol S. That
is, the digraph with vertex-set I’ and arc-set E(I’(S)) {xylyx-1 S}.

FIG. 3.14

(a) (b)
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It is well known that a Cayley digraph F(S) is connected only if the set S generates
P. Since Cayley digraphs are vertex-transitive (because, for any a e F, the mapping
x -- xa is an automorphism), a connected Cayley digraph is strong.

LEMMA 3.6. Suppose that S generates F and H is a nontrivial normal subgroup of
F of index h. IfS is a union of cosets ofH, then the Cayley digraph F/H(S/H) is a
retract ofF(S) (where S/H { Hx" Hx is a subset ofS} ).

Proof Let S Hx tO Hxa tO tO Hx, and let the collection of all cosets of H
be Hx, Hx:,..., Hxh. We first show that F/H(S/H) is an induced subdigraph of
F(S). There is an arc from xi to x in F(S) if and only if xx, Hxm, for some m
between and k; equivalently, xix is an arc if and only if HxHxf Hxm. Therefore
{ x, x2, xh } induces a copy T of F/H(S/H) in F(S). It remains to show that there
is a retraction f:F(S) - T. For each g 6 F, let f(g) be the unique vertex xi such that g
is in Hxi. Then ffixes V(T). Let ab be an arc of F(S) and f(a) Xs and f(b) xt. It
is not hard to see that Hba- Hxtx- Therefore xtx- is in S, and XsXt is an arc of
T. Hence fis a homomorphism. This completes the proof.

LEMMA 3.7. Suppose that S generates F. There is a homomorphism ofF(S) to Ch
ifand only ifS is contained in a coset ofa normal subgroup off with index h.

Proof Suppose thatf:l(S) Ch. Without loss of generality the identity e of
F has f(e) 1. Let H f-( ). Let a, b be in H. Since F(S) is connected, there is a
directed (e, a)-path of length zero modulo h, and a directed (e, b)-path of length zero
modulo h. Consequently, there is a directed (b, ab)-path of length zero modulo h, and
a directed (e, ab)-walk of length zero modulo h. Since a Ch-colouring of a connected
digraph is completely determined by the colour assigned to a single vertex, we deduce
thatf(ab) 1, that is, ab H. Similarly, a- H. Hence H is a subgroup.

Let g e F and let x e H. There exists a directed (e, x)-path of length zero modulo
h, a directed (e, g)-path of length r modulo h, and a directed (e, g-)-path of length
(-r) modulo h (because there is a directed (g-, e)-path of length r modulo h and a
closed directed walk containing both e and g-1 has length zero modulo h). Therefore
there is a directed (e, g-xg)-walk of length zero modulo h, that isf(g-xg) 1. Thus
H is normal.

Let s be in S. The automorphism x xs maps each f-(i) to f-(i + ), 1,
2, , h, with addition modulo h. Hence each colour class of the C-colouring is a coset
ofH. Since there are h cosets and S is contained inf-(2), the proof of the implication
is complete.

() Without loss of generality S Hx. The result follows from Lemma 3.6 (the
graph F/H(S/H) is connected because F(S) is strong).

COROLLARY 3.8. Suppose that S generates F. The core ofF(S) is a directed cycle
ifand only ifS is contained in a coset ofa normal subgroup ofindex equal to the directed
girth ofF(S). []

We conclude this section by mentioning the group-theoretic analogue of Lemma
3.6" IfH is a normal subgroup of a finite group F, then F /H is cyclic if and only if there
exists an x e F such that F (Hx).
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conversations, and the referee for valuable suggestions.

REFERENCES

M. ALBERTSON, P. CATLIN, AND L. G!BONS, Homomorphisms of3-chromatic graphs II, Congr. Numer.,
47 (1985), pp. 19-28.



408 G. MACGILLIVRAY

[2 J. BANG-JENSEN, On the complexity ofgeneralized colourings by directed graphs, preprint 1989, No. 3,
Institut for Matematik og Datalogi, Odense Universitet, Odense, Denmark.

3 J. BAN3-JwNSN AND P. HELL, The effect oftwo cycles on the complexity ofcolourings by directed graphs,
Discrete Appl. Math., 26 (1990), pp. 1-23.

4 J. BANG-JwNsN, P. HWLL, AND G. MACGILLIVRAY, The complexity ofcolourings by semicomplete digraphs,
SIAM J. Discrete Math., (1988), pp. 281-298.

5 ,Hereditarily hard colouring problems, submitted.
6 ,On the complexity ofcolouring by superdigraphs ofbipartite graphs, submitted.
7 G. BLOOM AND S. BURR, On unavoidable digraphs in orientations ofgraphs, J. Graph Theory, 11 1987 ),

pp. 453-462.
8 J. A. BONDY AND U. S. R. MURTY, Graph Theory with Applications, Macmillan, Great Britain, 1976.
[9 A.E. BROUWER AND H. J. VELDMAN, Contractability andNP-completeness, J. Graph Theory, 11 1987 ),

pp. 71-79.
[10] W. GUTJAHR, Farbung dutch gerichtete Graphen, Diplomarbeit, Institute for Information Processing,

IIG, Technical University Graz, Graz, Austria, 1988.
11 ., Ph.D. thesis, Technical University Graz, Graz, Austria, 1989 (in preparation).

[12] W. GUTAHR, E. WLZL, AND G. WOEGNGER, Polynomial graph colourings, Tech. Report B-88-06
(Informatik), Freie Universtit Berlin, Berlin, Germany.

13 R. H,GGKVIST, P. HELL, D. J. MILLER, AND V. NEUMAN LARA, On multiplicative graphs and the product
conjecture, Combinatorica, 8 (1988), pp. 63-74.

14] P. HELL AND J. NEET,IL, On the complexity ofH-colouring, J. Combin. Theory Ser. B, 48 (1990), pp.
92-110.

[15] G. MAcGII3IVRAY, The complexity ofgeneralised colourings, Ph.D. thesis, Simon Fraser University,
Burnaby, BC, Canada, 1989.

16 H.A. MAURER, J. H. SUDBOROUGH, AND E. WELZL, On the complexity ofthe general colouringproblem,
Inform. and Control, 51 1981 ), pp. 123-145.

17] J. NEETIIL AND A. PULTR, On classes ofrelations determined by subobjects andfactorobjects, Discrete

Math., 22 (1978), pp. 287-300.
18] E. WELZL, Colourfamilies are dense, Theoret. Comput. Sci., 17 (1982), pp. 29-41.



SIAM J. DISC. MATH.
VOI. 4, No. 3, pp. 409-412, August 1991

(C) 1991 Society for Industrial and Applied Mathematics

009

A LOWER BOUND ON PROBABILISTIC ALGORITHMS
FOR DISTRIBUTIVE RING COLORING*

MONI NAOR

Abstract. Suppose that n processors are arranged in a ring and can communicate only with their immediate
neighbors. It is shown that any probabilistic algorithm for 3 coloring the ring must take at least log* n 2
rounds, otherwise the probability that all processors are colored legally is less than 1/2. A similar time bound
holds for selecting a maximal independent set. The bound is tight (up to a constant factor) in light of the
deterministic algorithms of Cole and Vishkin [Inform. and Control, 70 (1986), pp. 32-53] and extends the
lower bound for deterministic algorithms of Linial Proc. 28th IEEE Foundations of Computer Science Sym-
posium, 1987, pp. 331-335].

Key words, distributed computation, probabilistic algorithms, graph coloring

AMS(MOS) subject classifications. 68M10, 68Q20, 68R05, 68R10

1. Introduction. In [L] Linial considered the following problem: n processors are
connected in a ring and can communicate with their immediate neighbors. They wish
to decide on an assignment of one of three colors to each processor, such that no two
neighboring processors are assigned the same color (a legal coloring). The question is
what is the radius of the neighborhood around each processor which must be considered
in order to decide on the coloring. The system is assumed to be completely synchronous,
the communication reliable, and there are no limitations on the internal computation
of each processor or on the length of the messages sent. The processors are identical,
except that each one has a unique id in the range { n }. The id’s are assigned in some
arbitrary manner, not known initially to the processors. The radius of the neighborhood
that affects how a processor is colored is exactly the number of rounds it takes to execute
the algorithm.

Linial [L] has shown a lower bound of 1/2 log* n 4 rounds on any deterministic
algorithm for coloring the ring with three colors. This bound is tight up to a constant
factor, since Cole and Vishkin [CV] and Goldberg, Plotkin, and Shannon [GPS] have
provided an O(log* n) round algorithm for achieving it.

In this paper we consider probabilistic algorithms for that task. Each processor is
equipped with a perfect source of randomness, and the processor’s actions can depend
in any way on its coin flips. The performance of an algorithm is now measured in terms
ofthe probability of success as a function ofthe number ofrounds. We show that allowing
the processors to flip coins does not help: any algorithm that runs in less than 1/2 log* n
2 rounds has a high probability of failure, i.e., there will be at least two adjacent nodes
whose color is the same.

The 3-coloring problem is closely related to the maximal independent set problem:
Each processor should decide if it is in the set or not, no two adjacent processors are
allowed to be in the set, and for every processor not in the set, one of its neighbors must
be in the set. Any algorithm for 3-coloring a ring can be translated with two additional
rounds into one that finds a maximal independent set and vice versa. Thus, a lower
bound on the 3-coloring problem provides a similar lower bound for the maximal in-
dependent set problem. Cole and Vishkin [CV provided an algorithm for the maximal
independent set, and Goldberg, Plotkin, and Shannon GPS have generalized it to col-
orings of various degree bounded graphs.

Received by the editors June 20, 1990; accepted for publication (in revised form) September 4, 1990.
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In [BNN] the number of bits of communication required to achieve 3-coloring is
investigated. (That is, messages are 1-bit long.) It is shown that in any deterministic
algorithm it must be f(log n) which is tight by the [CV] algorithm. Interestingly, for
randomized algorithms it is 0( /log n ).

2. The lower bound.
THEOREM 2.1. Let k l 1/3. Any probabilistic algorithm for 3-coloring a ring ofn

processors that takes less than 1/2 log*n b 2 rounds, has probability at most
1/logb) n)) k/2t q- 2t/k to produce a legal coloring.

Proof. In any probabilistic algorithm it can be assumed that the processors first
make their random choices and from then on act deterministically. Since the processors’
actions are determined by the order of the id’s and the random numbers selected in the
system, an algorithm that runs in rounds can be simulated by one where the processors
send to each other their id number and their random selections. After rounds each
processor knows the random numbers selected by 2t + processors: itself and the 2t
processors that are of distance at most from it. Based on this information it decides on
a color. Let D be the range from which the processors make their random selection and
let R D n }. Any r 6 R corresponds to a selection for the random choices of a
processor concatenated with its id. After rounds the information any processor has
corresponds to a vector (r, r2, r2t+l) where ri R. Thus, any t-round algorithm
induces a 3-coloring of the vectors (r, r2, rzt + )[ri 6 R } by associating a vector
with the color that the algorithm assigns a processor with neighborhood information
represented by the vector.

We concentrate on a segment of k + 2t consecutive processors on the ring. Suppose
that the adversary assigns each processor an id by choosing it independently from { n }.
With probability at least 2t]k all the id’s in the segment are unique. This is true,
since the probability that at least two processors choose the same id is bounded by
(k 2t) times the probability that two specific processors chose the same id which is / n
and (k2t). 1/n 2t/k. If the id’s chosen are not unique, we consider it as if the
algorithm "won." The lower bound of the theorem will follow if we can bound by (1
(1/log(b) n))/zt the probability that the processors of the segment choose a legal coloring
in case each processor selects at random ri { 1, R }. This is true since for any two
eventsA and B, Pr [A[ B] =< Pr [A + Pr [B]. In our’case A is the event that the algorithm
succeeds and B is the event that the adversary assigns unique id’s to the segment.

Consider the directed graph GR,2t+" each node corresponds to a vector
(r, rz,-.., rzt+) such that ri R; node (r, r2,’", r2t+) is connected to node
(s, s2, Szt + if and only if ri s + for 2 =< _-< 2t. The edge in this case is called
r r2, rt + s2t + (or, equivalently, r s Szt + )).

This graph was used in the lower bound proof for deterministic algorithms in [L].
It was shown that any algorithm that colors the ring must define a legal coloring ofGR,Zt +
and by deriving a bound on the chromatic number of GR,Zt+ as a function of t, the
lower bound was shown. Here the situation is more complicated, since the ring coloring
algorithm does not necessarily define a legal coloring of Gg,2t + " the probability of selecting
an edge with similarly colored endpoints might be small. (We call such an edge mono-
chromatic.) Instead, we will show a lower bound on the fraction ofmonochromatic edges.

The process ofselecting the random numbers by the k + 2t processors in the segment
corresponds to selecting a (not necessarily simple) path of length k in the graph GR,Zt + "ifthe random numbers selected are r, r2, , r+ 2t, then the path selected is v, v2, ,
v,+zt where vi (r-t, r, rg+t). Let z, z2, z be the edges of this path.
Each zi is uniformly distributed over the edges of GR,Zt + , and zi is independent of all zj
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forj such that [j i[ >= 2(t + ). Therefore, we have k/2(t + random variables
z2t / 2, zk that are mutually independent and each is a random choice of an edge
in GR,2t + 1.

For any coloring (not necessarily legal) of GR,2t / we call an edge monochromatic
if both of its endpoints are assigned the same color. Let p be the probability that an edge
chosen at random in G8,2t /l is monochromatic. For a randomly chosen path of length
k in GR,2t +1,

Prob [some edge is monochromatic]

>= Prob [at least one of { z,z2+ 2, ,zk ) is monochromatic] >= -( -p)/+ ).

If we show that for 1/2 log* n-b-2, for all three colorings of GR,zt+,
p >_- 1/logb), then the probability that any t-round algorithm succeeds is at most

1/log6) n)) k/zt + 2t/k.
Consider the series ofgraphs G, GR,2 GR,Zt + 1, where G,i is defined similarly

to G,zt+ 1. Let ct 3 and ci 2 c+. Define Pl, P2, Pt by setting p 1/cl and
Pi+l p/(2ci+ 1). We will show that p/. is such that for every coloring of G,; with c
colors Prob [random edge in GR,; is monochromatic] > p.

PROPOSITION 2.1. For any coloring ofG,l with cl colors,

Prob [random edge in G,I is monochromatic] >= pl =--.
c1

Proof. Gn,o is actually a complete graph with self loops. Therefore, to minimize the
probability that two nodes have the same colors, all color classes should be of the same
size, and we get that Pl /cl. V1

LEMMA 2.1. Assume thatfor any coloring OfGR,i with ci colors, the probability that
a random edge is monochromatic is at least Pi. Then for any coloring of GR,i/I with
Ci + colors

Prob [random edge in Ga,i + is monochromatic] >= pi + 1-2. ci +

Proof. The nodes of GR,+I correspond naturally to the edges of G,;. Selecting a
random edge in Ga,i +1 corresponds to selecting a path of length two in Ga,;. If we can
show that for every coloring of the edges of Ga,; with c; + colors the probability that two
edges in a random path have the same color is at least p2/(2, c+), then we are done.

Given a coloring of the edges of GR,i with c;+1 colors we define a corresponding
coloring of the nodes of Ga,; with ci 2 ’+’ colors by the following procedure.

For a node v call a color cfrequent for v if at least a fractionf+ pi/2ci+l of the
edges starting at v are colored c. An edge e (v, u) whose color is frequent for v is called
frequent. Otherwise, it is called infrequent. Let S be the set of frequent colors of v and
let C 0, } ’+’ be the characteristic vector of S. Node v is assigned the color C.

This is a refinement of the coloring used in [L], where the color a node is assigned
is the characteristic vector of the set of all colors that meet that node.

CLAIM 2.1. Thefraction ofinfrequent edges is at mostf+ 1" i + Pi/ 2.
Proof. For every node, at mostft + of the edges starting from it are colored by any

color not inSv. Thus, the fraction of infrequent edges is at mostci+l’fi+l =pi/2. Vq

CLAIM 2.2. For every edge coloring ofGR,i + with ci / colors and the corresponding
node coloring with ci 2 ci+l colors, at least pi/2 of the edges are both frequent and
monochromatic.
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Proof. By assumption, Pi ofthe edges are monochromatic and by the previous claim
at most Pi/2 of the edges are infrequent. Thus, at least Pi/2 of the edges are both mono-
chromatic and frequent. [2

Fix a coloring of the edges of GR,i and its corresponding node coloring. Suppose
that a path of length 2 is randomly selected at Gn,;. If the first edge e (v, u) is mono-
chromatic and frequent, then the color of e is frequent at u as well as at v, since (v, u)
being monochromatic means that the lists of frequent colors at v and u are the same.
Therefore, there is probability at leastf+1 that the second edge (starting from u) will be
colored as e (v, u). Thus the probability that both events occur is at least p/2. f+

Pi/2. Pi/Ci + P2i / (2 ci + ), concluding the proof of the lemma. [2

Applying the lemma times we get that

Prob random edge zj in GR,2t + is monochromatic > Pt.

By definition

(2C2) 2t"

Now,

Thus, if 1/2 log* n b 2 for some b > 0, then p, > 1/log {b) n and we get our
theorem. [2

A different prooffor the fact that there are many monochromatic edges was suggested
by Alon (personal communication, 1990)" It relies on the fact that there is lower bound
on the chromatic number of GR,, and thus for any large enough subset of { R }, the
induced subgraph contains at least one edge which is monochromatic.
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GENERATING THE LINEAR EXTENSIONS OF CERTAIN POSETS
BY TRANSPOSITIONS*

GARA PRUESSE" AND FRANK RUSKEY:I:

Abstract. For poset , define the graph G(,) whose vertices are the linear extensions of , and where
two vertices are connected by an edge if the corresponding linear extensions differ by a transposition. Let ,
be a poset and M a subset of its minimal elements for which G( M) has a Hamilton path (cycle). If no
element of , M has exactly one descendant in M then G(,) also has a Hamilton path (cycle). Given only

and a constant average time algorithm for building a path (cycle) in G( . M), a Hamilton path (cycle)
can also be constructed in G(,) in constant average time.

As an application of the results stated above it is proved that the linear extensions of any ranked poset in
which every nonmaximal element has at least two (upper) covers can be generated by transpositions in constant
average time.

Key words, linear extension, transposition, Hamiltonian graph

AMS(MOS) subject classifications. 05C45, 06A05, 06A06, 68Q25

1. Introduction. The set of linear extensions of a poset are of great combinatorial
interest. The linear extensions of posets, depending on the poset, give rise to permutations,
alternating permutations, Young tableaux, multiset permutations, and so on. General
information about posets and linear extensions may be found in Aigner ], Knuth 7 ],
and Stanley [16]. For computer scientists the linear extensions are the so called "topo-
logical sortings" of the poset. Several algorithms have been published for listing all to-
pological sortings (see Kalvin and Varol 6 ). In this paper we consider the problem of
listing all linear extensions of a poset so that successive linear extensions differ by a
transposition; if such a listing can be constructed then we say that the linear extensions
can be generated by transpositions. In general such a listing is not possible; for example,
if a poset consists of two disjoint chains of lengths n > and m > 1, then the linear
extensions can be generated by transpositions if and only if n and m are both odd (see
Eades, Hickey, and Read [3 ], Buck and Wiedemann [2], or Ruskey [10]).

If the poset relation is empty then the well-known algorithm of Steinhaus [17 ],
Johnson [5], and Trotter [18 can be used to generate permutations by adjacent trans-
positions. This algorithm is described in several books including the chapter "Com-
binatorial Card Problems" of Gardner 4 ]. In a sense we are trying to extend this algo-
rithm to other classes of posets. Related questions were considered by Lehmer [9 and
Knuth 8 ].

Let us review some definitions and introduce our notation. A poser is a partial
order R(2) on a set S(). The number of elements in S() is denoted I’1. If
(a, b) 6 R() then we write a =< b or b >- a; if also a 4 b then we write a < b and say
that a is a descendant of b. For elements a, b 6 S() we say that b covers a if a < b and
there is no c such that a < c < b. An element is minimal if it covers no element. A
permutation a a2"-an of S() is a linear extension of if ai < aj implies < j. The
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set of all linear extensions of is denoted E(), and the number of linear extensions
is denoted e(). A poset is ranked if there is a function o from S() to the natural
numbers such that o(a) 0 if a is minimal, and o(b) o(a) + if b covers a.

Define a graph G() that has vertex set E() and edges joining those linear
extensions that differ by a transposition. The graph G() is called the transposition
graph of . It is connected and bipartite. If the sizes of the two partite sets are equal
then is said to be balanced. The subgraph of G() that has the same vertex set but
where adjacent vertices are joined only by adjacent transpositions is denoted G’() and
is called the adjacent transposition graph.

A conjecture of Ruskey [11] states that the transposition graph of every balanced
poset has a Hamilton path. The results of this paper provide further evidence in support
of this conjecture.

Our main result is the theorem stated below. It is proven in the next section.
THEOREM. The linear extensions ofany ranked poset in which every nonmaximal

element has at least two upper covers can be generated by transpositions.
An algorithm for generating the linear extensions ofa poset is said to run in constant

average time ifthe total amount ofcomputation is O(e()), independent of 1. There
is no constant average time algorithm for generating all linear extensions of an arbitrary
poset. However, we show in the third section of this paper that the linear extensions of
a poset satisfying the conditions of the theorem can be generated in constant average
time. Thus we add to the growing list of combinatorial objects that can be generated in
constant average time.

2. The proofs. In this section we prove the theorem. We first prove that a certain
type of generation of all unrestricted permutations is possible.

LEMMA 1. There exists a list Ln-p,p2, ,Pn of the permutations of
{ 1, 2, n for n >= 2, such that (a) ifi is odd then Pi andpi + differ by the transposition
ofthe first two elements, and (b) if is even then pi and pi +1 differ by a transposition,
and c the permutations p and pn differ by a transposition.

Proof. If n 2 then L2 12, 21 provides such a listing. For n > 2, assume that
such a listing Ln-1 is available for the permutations of 1, 2, n }, and that Pi
aa2a3" an- and Pi / a2ala3" an for odd are successive elements of Ln- 1. We
now insert the n in all possible ways into Pi and Pi/ as shown below. The final permutation
depends on whether n is even or odd. The first list corresponds to n odd and the second
list to n even. The list may be generated from top to bottom, or in reverse order from
bottom to top. In going from the top permutation to the bottom permutation we will
say that the n is moving from fight to left:

ala2""an-ln

a2al an El

a2al’"an-1

ala2"’an-i

ala2""an-ln

a2al"’an-n

a2al"’nan-1

ala2""an-i

ala2n’"an-i

a2al ""an-i

a2al ""an-i

aa2n"’an_l

a2al’"an-1 alna2""an-1
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na2al’"an-1 nala2"’an-1

nala2""an-1 na2al"’an-i

alna2""an-1 a2nal’"an-1.

The n will move from fight to left through Pl, P2, then from left to fight through
P3, P4, then from fight to left through Ps, P6, and so on, with the direction changing for
each pair of permutations of { 1, 2, n }. We now need to discuss what happens
at the interfaces of the pairs of permutations, say between pt. + and p; + _. For n even the
al and a2 are in different positions in the initial and final permutations of the list above
so there is no problem at the interface; simply transpose the elements that were transposed
in going from p; + to Pi + 2. However, if n is odd then we must be a little more careful in
our argument. Observe that (no matter what the parity of n) Pi and p;+ differ by a
transposition if is odd, namely the transposition that takes Pi+l to Pi+ 2. Thus the
following partial list ofpermutations of { 1, 2, n can be generated by transposition,
where Pi, <= <-_ n! are as in Ln:

n=Pl,P4,Ps,P8,P9, ,P4j-3,P4j,P4j+I,P4j+4, ,Pn!-3,Pn!.

Let I" be the function that transposes the first two elements of a permutation. Also,
for a list of permutations L ql, qm, let I’(L) denote the list I’(ql), I’(qm).
Note that Ln L, I’(L,).

In the generation ofL for n odd, we are in effect expanding the list L,_ as follows:
for each permutation p of L,_ 1, generate I’(p), and insert n in all possible ways into p
and I’(p) as shown above. The final permutation in the expansion induces the permutation
p on { 1, 2, n } thus we may make the transposition that takes p to its successor
in L,_ l, and continue.

The initial permutation is 12...n and the final permutation is 21, 132, 1432 for
n 2, 3, 4, and for n >- 5 is 143256. .n. Thus the first and last permutations differ by
a transposition. The reason that the pattern regularizes for n >_- 5 is because n 5 is the
smallest value of n for which (n )! is divisible by four. []

There is no other published algorithm for generating permutations that has the
properties (a), (b), (c) of Lemma 1. Most known permutation algorithms are surveyed
in Sedgewick 14 ].

DEFINITION. A B-poser is a poser where

S()={al,a2, ,an,bl,b2, ,bin}

and R() is the transitive closure of

Xt.J{(at.,ai+l) 1,2, ,n- 1}t.J{(bi, bi+l) 1,2, ,m-1},

where X is a set of relations of the form at. < bj.. An example is shown in Fig. 1.
We call m and n the parameters of a B-poset. A B-poset is characterized by the

sequence m >_- ll >---- 12 >---- >---- In >= 0, where li [{ bj.: ai < bj}l. Thus the number of
B-posets with parameters m and n is (n + m)!/(n !m!). A poset is a B-poset if and only
if it has jump number less than or equal to 1.

As is standard, G() e denotes the Cartesian product of G() and an edge; in
other words, it is two copies of G(’) together with a perfect matching joining corre-
sponding vertices in the two copies. The linear extensions in one copy will be preceded
with a plus + and in the other copy with a minus (-). The canonical linear extension
ofa B-poset is e ala2" a, blb2" bm. In the statement ofthe following lemma a single
edge is regarded as having a Hamilton cycle. For any poser of width two, such as a B-
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/)8

b7

b2

b4

al

b5

FIG. 1. A B-poset.

poset, G() G’(). We use G’ in the statement of the following lemma to remind
the reader that all transpositions are adjacent transpositions.

LEMMA 2. For any B-poset , as defined above, there is a Hamilton cycle T in
G’( ) e. Furthermore, the cycle T contains the edgejoining vertices +_c.

Proof. Without loss of generality, we may assume that has no maximum or
minimum element. The proof then proceeds by induction on m and n. The base case is
m 0 or n 0, where G() e consists of a single edge.

If m, n > 0 then we show how to construct a list T(c) that includes every vertex of
G() e, and that starts at +c and ends at -c. It will also prove convenient to have a
notation S(c) for the list T up to but not including -c. Thus the final vertex of the list
S is -f, where f al’"an-lblanb2"" "bm. The list SR(c) is the reverse of the list S(c).

In the algorithm of 3 we use a list Y that includes all the linear extensions of T
except ___c. The Y list starts and ends at the extensions ___f. Clearly, lists equivalent to
the S and T lists can be constructed from Y lists.

Our proof classifies the vertices ofG() according to the number of b’s that are to
the left of an. This leads to the notation

ala2" "an- bb2"" bjanbj + 1"" bm
for the subgraph H ofG() e induced by those vertices that have suffix anbj / 1" bm.
Note that this subgraph is the adjacent transposition graph of a B-poset of smaller pa-
rameters. The notation T(c) is extended so that

T( ala2. "an bib2"" banb + 1"’" bm)

denotes a listing of the vertices ofH that begins and ends at

+ala2" a._ 1bib2"" ba.b + bm.
The notation for S(c) is similarly extended.
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Here is how to construct the list T(e) when rn is even:

+ala2" "an- anblbzb3b4" bm- bm

S( ala2" a,,_ blanb2b3b4" bm- bm)

SR( aa2" "an- bbzanb3b4" bm- bm)

S( ala2" "an- blbzb3anb4" bm- bm)

SR( aa2" a,_ bbzb3b4a,," bm- bm)

S(aa2" a,,_ bbzb3b4" bm- lanbm)

S(aa2 "an- bbzb3b4" bm- bmn

-aa2" "an- bbzb3b4" bm- bman

-aa2" "an- bbzb3b4" bm- anbm

-ala2" .a,_ bb_b3b4a,," bm- ibm

-aa2" a,_ bbzb3a,b4" bm- bm

-aa2" "an- blbzanb3b4" bm- bm

-aa2" "an- banbzb3b4" bm- bm

-aa2" "an- anbbzb3b4" bm- bm.

Here is how to construct the list T(e) when rn is odd:

+aa2. a,,_ anbbzb3b4" bm- bm

S(aa2" "an- banbzb3b4" bm- bm)

S-( aa2" "an- bbzanb3b4" bm- bm)

S(aa2" "an- bbzb3anb4" bm- bm)

S(ala2" "an- bbzb3b4an" bm- bm)

S(aa2. "an- blbzb3b4" anbm- bm

S(aa2 "’’an- blbzb3b4""bm-anbm)

T( aa2. "an- bbzb3b4" bm- bm-ff-n

-aa2" a,_ bb:zb3b4" bm- anbm

-aa. a,_ bb2b3b4a,," bm- bm

--aa2" "an- blb2b3anb4" bm- Ibm
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-ala2" a,_ bb2anb3b4" bm- bm

-aa. a_ banb2b3b4" bm- ibm

-ala2" "an- anbb2b3b4"" bm- bm. !

LEMMA 3. Let be a poser and M a subset of its minimal elements for which
G( M) has a Hamilton path (cycle). If no element of M has exactly one
descendant in M then G() also has a Hamilton path (cycle).

Before proving this lemma let us make a few observations regarding the conditions
ofthe lemma. First, the condition that no element of Mhas exactly one descendant
in M is not equivalent to the condition that no element of M covers exactly one
element ofM. An element can cover exactly one element ofM and yet have more than
one descendant in M.

Secondly, note that if MI > 1, then G() must be balanced; a perfect matching
in G() can be defined by transposing the leftmost two elements ofM in any linear
extension. In fact, if MI > then the condition that no element of M has exactly
one descendant in M is equivalent to the condition that for every linear extension of
another linear extension is obtained by transposing the leftmost two elements of M.

We now present the proof of Lemma 3.
Proof. Let and M be as described in the statement of the lemma. Let M have n

elements and M have m elements. If n the single element a of M is not
comparable to any element of S(). Thus the Steinhaus-Johnson-Trotter idea of
sweeping the a back and forth through the permutations along the Hamilton path (cycle)
in G( M) produces a Hamilton path (cycle) in G(). From now on we assume
that n > 1.

We construct the Hamilton path in three stages. Each stage produces a list of linear
extensions, and each successive stage expands this list. In the first stage we list the vertices
along the Hamilton path (cycle) in G( M). Denote this list by

q q2, qs, where s e( M).

In the second stage we replace each qj by a list of all linear extensions of of the
form pqj, where p is a permutation of the elements ofM. Let p, P2, "’", Pr, where r
n!, be the list produced by Lemma 1. Then the stage two construction iteratively, for

1, 2, s, produces the linear extensions

Pqi,P2qi, ,Prqi ifi is odd;

Prqi, ,Pzqi,Pqi ifi is even.

Note that each successive linear extension differs by a transposition. At the end of stage
two there are n!e( M) linear extensions in the list. The first linear extension is pq.
If e( M) is odd, then the final linear extension is Prqs. If e( M) is even, then
the final linear extension is Pqs. Thus if there is a Hamilton cycle in G( M) then
the first and final linear extensions at the end of stage two also differ by a transposition.

In stage three we intermingle the elements of M al, a2,"’, an} and
M b, b2, bm}. Let

iO[aa2.. "an;bbz’"bm]

denote the extension of where S(2) S() and R(2) is the transitive closure of

R( Oo)tA{(ai, ai+) =1,2, ,n-1}tA{(bi, bi+) l,2, ,m-1}.
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The poset . is a B-poset. Now consider two successive linear extensions from the sec-
ond stage that differ by a transposition of the first two elements. Call them p
alaza3" anbb2" bm and p’ azala3" anbb2" bm. Let

[aaza3" "an;bb2"" "bm] [p];

2 [a2ala3’’ "an;blb2"" "bm] [p’].

Let us use <l (<2) to refer to the relations in (I02). We claim that
are isomorphic as B-posers, and the isomorphism is a transposition function. Only relations
involving al or a2 and an element of M are of concern. If al <l bj then a2 <l bj,
because otherwise b; would have only one descendant in M. If a2 <l b; then clearly
al < bj-. Similarly, al <2 b if and only if a2 <2 bj. Thus the two posets are isomorphic,
by the function that transposes al and a2. Note that al is not covered by an element
of M in l and a2 is not covered by an element of M in 2. Thus the a
and a2 elements can be transposed in any linear extension of to obtain a corresponding
linear extension of 2, and vice versa. Hence the subgraph of the transposition graph
G() induced by the vertices ofE() tO E(2) is the graph G(l) e.

We now apply Lemma 2 to replace the two successive linear extensions p and p’ by
a list of all linear extensions of l or 2. This list starts at p and ends at p’. Stage three
does this replacement for every successive pair of linear extensions that differ by a trans-
position of the leftmost two elements, taken from the list at the end of stage two. The
proof is complete.

The theorem now follows as an easy consequence of Lemma 3.
THEOREM. The linear extensions ofany ranked poset in which every nonmaximal

element has at least two upper covers can be generated by transpositions.

Proof. Starting with the minimal elements we proceed up the poser one rank at a
time. The linear extensions of the minimal elements can be generated by transpositions
by using the Steinhaus-Johnson-Trotter algorithm. Let be the subposet consisting of
those elements with rank r or less and let M be the set of all elements of rank r. Assume
that all linear extensions of elements with rank less than r have been generated (e.g.,
there is a Hamilton path in G( M)). By the dual version of Lemma 3 the linear
extensions of can be generated by transpositions.

An alternate version of the theorem is given below.
THEOREM. The linear extensions ofany ranked poset in which every nonminimal

element has at least two lower covers can be generated by transpositions.
This is not just the dual of the previous theorem since the dual of a ranked poset is

not necessarily ranked. However, it does follow from an inductive argument similar to
the one used to prove the original theorem.

We now list some immediate corollaries of the theorem.
COROLLARY 1. For n odd, alternating permutations can be generated by transpo-

sitions.
This was first proven by Ruskey [12]. A permutation ala2"" an is alternating if

a < a_ > a3 < a4" "; they are counted by the Euler numbers (see Stanley [16]). The
inverses of alternating permutations arise as the linear extensions of the so called
"fence" poset.

COROLLARY 2. The linear extensions ofa crown can be generated by transpositions.
This is listed as an open problem in [12 ]. A crown is a poset whose Hasse diagram

(as a graph) is an even length cycle and where every element is on one of two ranks.
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COROLLARY 3. The linear extensions ofthe Boolean algebra lattice, the lattice of
subspaces ofa fnite-dimensional vector space over GF( q), and the partition lattice can
all be generated by transpositions.

These orders are discussed in Aigner ]. It is interesting that the transposition graph
of the Boolean algebra lattice has a Hamilton cycle but the number of vertices it has is
unknown (Sha and Kleitman [15 ]). One would suspect that this is true of the other
examples mentioned in Corollary 3 as well.

If there is a Hamilton path (cycle) in G’( M), where Mis the set of all maximal
elements, then the only complication in obtaining a Hamilton path (cycle) in G’() is
in the proof of Lemma 1, where nonadjacent transpositions are possible. It was recently
shown by Ruskey and Savage 13 that it is possible to generate permutations by adjacent
transpositions and satisfy conditions (a) and (b) ofLemma 1. Since condition (c) is not
used in the proof of the theorem, it holds for adjacent transpositions as well. However,
there is no implementation of the permutation generation method of [13] that runs in
constant average time.

3. The algorithms. In this section we discuss the efficient implementation of the
algorithms implicit in the proofs of Lemmas and 2, and the theorem of 2. In each
case the algorithm can be implemented to run in constant average time. This means that
the total amount of computation divided by the number of permutations generated is
bounded by a constant. The input is the poset . Only O([ [) additional storage is
necessary.

We first discuss the algorithm corresponding to Lemma 1. The algorithm is recursive
and follows the proof. Three global arrays a, a +/-, and d 5_r are maintained. Array a is
the permutation, a+/- is its inverse, and d+/-r is a directions array indicating whether an
element is moving from right to left (- 1 ) or from left to right ( + 1 ) Initially a
a+/- 1, 2, n and all directions are -1. A Pascal procedure to do the generation is
shown in Fig. 3. The initial call is Perm ( 2 ). The effect of the procedure call
Swap ( kl, k2 ) is to transpose the elements kl and k2 in the permutation as well as
their inverses. Procedure call SetSmal]_er ( k, +/-l, 5_2 ) returns the indices of the
leftmost elements in the permutation that are less than k. See Fig. 2.

Let cn denote the number of calls to Set Small er We see that c2 0 and for
n > 2 that

Cn--Cn-l+1/2(n--1)!.
From this recurrence relation it follows that cn < (n )!. Since each call to Set Smal 1 er
is O(n), the total amount of computation used in the calls to SetSmaller is O(n!).
Other than the computation done by Set Smal 1 er, the amount of computation is
proportional to the number of recursive calls. The number of recursive calls is less than
n!. Hence the complete algorithm is O(n!).

procedure SetSmaller(k integer; var il, i2 integer)
begin

il :-I;
whilea[il] >= kdo il := il + i;
i2 := il + i;
whilea[i2] >= kdo i2 := i2 + I;

end {of SetSmaller}

FIG. 2. Pascalprocedure SetSmaller.
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procedurePerm (k integer)
var i integer;
begin

if k > n then begin
PrintIt; Swap( a[l] a[2] PrintIt;

end else begin
if dir k +i then begin

Perm( k+l
SetSmaller(k, il, i2 Swap(a[il] a[i2]

end
Perm(k+l
for i := 1 to k-2 do begin

Swap(k, a[ai[k]+dir[k] Perm(k+l
end;
if (dir[k] =-I) and (k> 2) then begin

SetSmaller(k, il, i2 Swap(a[il] a[i2]
Perm( k+l

end;
dir[k] :=-dir[k]

end;
end {of Perm};

FIG. 3. Pascal procedure to generate all permutations.

We now implement the algorithm of Lemma 2 to generate a Hamilton cycle in
G() e, where is a B-poset with parameters n and m. The basic approach is the
same as in Lemma 2 but some of the details vary. The procedure Y n ) of Fig. 4
generates a list of all linear extensions of G() e except for the canonical extensions
+e; the list starts at +fand ends at -f(recall that fwas defined in the proof ofLemma
2 to be a. an- banb2" bm). In the proof of Lemma 2 we assumed that there was no
maximum element in G() and thus an was free to move to the rightmost position of
the linear extension. However, our algorithm simply moves an to the right as far as
possible. This is the reason that rn is not a parameter of.

The Boolean function Right ( n ) returns true only if element an can be transposed
with the element to its right. We assume that Right takes time O( ). This may require

procedureY (n integer)
varmr, j integer;
begin

mr :=0;
while Right n do begin

if odd mr then Move n, +I
else

if Right n-i {#i} then begin
Move(n-l, +i Y(n-i Move(n, +i
Y n-i ); Move n-l, -i

end else Move n, +i
mr := mr + 1

end {while}
if odd mr or not Right n-i then Switch
else begin Move n-l, +i Y n-i Move n-l, -i end;
for j := 1 to mr do Move(n, -I)

end {of Y};

FIG. 4. Pascal procedure to generate a Hamilton path in G’(. e.
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some preprocessing, depending on how is specified. Procedure Sw+/-t eh changes the
( + ) prefix to (-) and vice versa. Procedure Move ( n, +l ) moves element an
one position to the right, and Move ( n, -1 ) moves it one position left. The variable
mr counts the number of times that an has moved to the right.

The calling sequence first determines whether an can be moved to the fight.
If not, then Switch is called. Otherwise, execute Move ( n, +1 ) Y ( n ) and
Move ( n, -1 ) Within the while loop, the call to Right ( n-1 ) {#1} always
returns the same value.

Procedure Y runs in constant average time because the running time is determined
by the number of recursive calls to Y, and every call to Y is preceded or followed by a
Move, and every Move creates a new linear extension.

We now need to put all the pieces together to implement the proof of the theorem.
We first modify the terminating case of Perm so that instead of printing, swapping the
first two elements, and printing, that it executes the calling sequence as described above.
Furthermore, Swit ch is modified so that, instead of changing signs, it swaps al and a2.
And finally, we must alternate the directions in which Perm produces its list of per-
mutations.

while all of L( M) has not been generated do begin
blb2"" "bin next element of L( M);
an+ 1" "an+ -" blb2" bm;
Initialize for call to Perm;
Perm( 2 );

end { while }
Acknowledgments. We wish to thank the referees for their helpful comments that
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ON THE POWER OF THRESHOLD CIRCUITS
WITH SMALL WEIGHTS*

KAI-YEUNG SIU? AND JEHOSHUA BRUCK

Abstract Linear threshold elements (LTEs) are the basic processing elements in artificial neural networks.
An LTE computes a function that is a sign of a weighted sum of the input variables. The weights are arbitrary
integers; actually, they can be very big integers--exponential in the number of input variables. However, in
practice, it is very difficult to implement big weights. So the natural question that may be asked is whether there
is an efficient way to simulate a network of LTEs with big weights by a network of LTEs with small weights.
The following results are proved: every LTE with big weights can be simulated by a depth-3, polynomial
size network of LTEs with small weights; and (2) every depth-d, polynomial size network of LTEs with big
weights can be simulated by a depth-(2d + ), polynomial size network of LTEs with small weights. To prove
these results, tools from harmonic analysis of Boolean functions are used. The technique is quite general; it
provides insights to some other problems. For example, the best known results on the depth of a network of
threshold elements that computes the COMPARISON, ADDITION, and PRODUCT of two n-bits numbers,
and the MAXIMUM and the SORTING of n n-bit numbers are improved.

Key words, threshold circuits, linear threshold functions, neural networks, polynomial bounded weights,
circuit depth

AMS(MOS) subject classifications. 68Q15, 68Q05, 68Rxx

1. Introduction.
Linear threshold functions. A linear threshold functionf(X) is a Boolean function

such that

if F(X) >= O,
f(X)=sgn(F(X))=

-1 ifF(X)<0

where

F(X _, wi" xi + Wo
i=1

Throughout this paper, a Boolean function will be defined as f" { 1, -1} { 1, -1};
namely, 0 and are represented by and -1, respectively. Without loss of generality,
we can assume F(X) 4:0 for all Xe 1, } n. The coefficients wi are commonly referred
to as the weights of the threshold function. We denote the class of all linear threshold
functions, by LT1.

LT functions. In this paper, we shall study a subclass of LT, which we denote by
LTI Each functionf(X) sgn ’- wi xi + Wo) in LT1 is characterized by the property
that the weights w/. are integers and bounded by a polynomial in n, i.e., ]wil <- n for
some constant c > 0.
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Threshold circuits. A threshold circuit 5 ], 11 is a Boolean network in which every
gate computes an LT function. The size of a threshold circuit is the number of LT
elements in the circuit. Let LTk denote the class of threshold circuits of depth k with the
size bounded by a polynomial in the number of inputs. We define LTk similarly except
that we allow each gate in LT to compute an LT function.

Although the definition of (LT) linear threshold function allows the weights to be
real numbers, it is known [13] that we can replace each of the real weights by integers
of O(n log n) bits, where n is the number of input Boolean variables. So in the rest of
the paper, we shall assume without loss ofgenerality that all weights are integers. However,
this still allows the magnitudes of the weights to increase exponentially fast with the size
of the inputs. It is natural to ask if this is necessary. In other words, is there a linear
threshold function that must require exponentially large weights? Since there are 2 an2)

linear threshold functions in n variables [9], [15], [16], there exists at least one which
requires ft( n 2 bits to specify the weights. By the pigeonhole principle, at least one weight
of such a function must need 2(n) bits, and thus is exponentially large in magni-
tude, i.e.,

LT LTd.
The result above was proved in [10] using a different method by explicitly constructing
an LT function and proving that it is not in LTd. In the following section, we shall
show that the COMPARISON function (to be defined later) also requires exponentially
large weights. We will refer to this function later on in the proof of our main results.

Some motivation. The motivation for this work comes from the area of neural net-
works, where a linear threshold element is the basic processing element. Many experi-
mental results in this area have indicated that the magnitudes of the coefficients in the
threshold elements grow very fast with the size of the inputs and therefore limit the
practical use of the network. One natural question to ask is the following. How limited
is the computational power of the network if we restrict ourselves to threshold elements
with only "small" growth in the coefficients? We answer this question by showing that
we can trade off an exponential growth with a polynomial growth in the magnitudes of
coefficients by increasing the depth of the network by a factor of almost two and a
polynomial growth in the size.

Main results. The fact that we can simulate a linear threshold function with ex-
ponentially large weights in a "constant" number of layers of elements with "small"
weights follows from the results in [4] and [12]. Their results show that the sum of n n-
bit numbers is computable in a constant number of layers of"counting" gates, which in
turn can be simulated by a constant number oflayers ofthreshold elements with "small"
weights. However, it is not explicitly stated how many layers are needed in each step of
their construction and direct application of their results would yield a constant such as
13. In this paper, we shall reduce the constant to 3 by giving a more "depth"-efficient
algorithm and by using harmonic analysis of Boolean functions [2], [3], [6]. We then
generalize this result to higher depth circuits and show how to simulate a threshold circuit
ofdepthod and exponentially large weights in a depth-(2d + threshold circuit of"small"
weights, i.e., LTd

_
LT2d+ .

As another application ofharmonic analysis, we also show that the COMPARISON
and ADDITION of two n-bit numbers is computable with only two layers of elements
with "small" weights, while it was only known to be computable in three layers 5 ]. We
also indicate how our "depth"-efficient algorithm can be applied to show that the product
oftwo n-bit numbers can be computed in LT4. In addition, we show that the MAXIMUM
and SORTING of n n-bit numbers can be computed in LT3 and LT4, respectively.
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The remainder ofthis paper is divided into four major sections. In 2, we introduce
the basic notions of harmonic analysis of Boolean functions and show that the COM-
PARISON function of two n-bit numbers is not an LT function but is computable in
LT2. In 3, we present a "depth"-efficient algorithm and use the results of 2 to show
that LT LT3 and LTa

_
LTEd/. In 4, we give some extensions and applications

of our techniques. In the concluding remarks, we indicate some open problems and
possible extensions of our results.

2. Harmonic analysis and the comparison function. In this section, we shall focus
on the COMPARISON function of two n-bit numbers. This LT function has the in-

teresting property that it is not an LT function, i.e., it separates the complexit.y class
LT from LTd. The best-known result about this function is that it belongs to LT3 [5 ].
Using tools from harmonic analysis [2], [3 ], we obtain the depth-optimal result by
showing that COMPARISON LT2. Later on in the proof of our main result we shall
see how any arbitrary LT function can be reduced to the COMPARISONfunction using
one layer of LT elements. First, we give a definition of the COMPARISON function.

DEFINITION. Let X (Xl, Xn) Y (y, Yn) { 1, } n. We consider X
and Y as two n-bit numbers representing Z 7-

_
xi" 2 and Z Yi" 2 respectively.

The COMPARISON function is defined as

In other words,

C(X, Y)= iffX>=Y.

C(X, Y)=sgn , 2i(xi-Yi)+
i=1

LEMMA I.

COMPARISON LT1.

Proof. We write the values ofthe function C(X, Y) in the form ofa 2 by 2 matrix
in such a way that each row corresponds to the values of the function over the variables
yi’s for a fixed value ofX. For example, taking n 2, we have

-1
-1 -1
-1 -1 -1

The rows are arranged from top to bottom in the following order: X (1, ),
(1, -1), (-1, 1), (-1, -1). The columns are arranged from left to fight in the
same order for the Y’s. Observe that every row in the matrix is distinct. This is true
for general n. Suppose we realize C(X, Y) by any other linear threshold function
sgn (w0 + ’--1 (WiXi d- ViYi)) with integer weights. The fact that there are 2 distinct
rows in the matrix implies that there are 2 distinct values of Z - wixi. This is only
possible if some w is exponentially large. [3

On the other hand, using harmonic analysis 3 ], we can show the following lemma.
LEMMA 2.

COMPARISONe LT2

Before we proceed to the proof of Lemma 2, we need to introduce the tools from
harmonic analysis.
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Spectral representation of Boolean functions. Recently, harmonic analysis has been
found to be a powerful tool in studying the computational complexity ofBoolean functions
[2 ], [3 ], [7 ]. The idea is that every Boolean function f { 1, -1 } -- { 1, -1} can be
represented as a polynomial over the field of rational numbers as follows:

f( X) , aX where XO--XIx2 xn,
{0,1}"

Such representation is unique and the coefficients of the polynomial { a [a { 0, } "}
are called the spectral coefficients of f. The coefficients a’s are computed as follows. Let
P2, denote the vector of the 2" values off(X), and let A2. denote the vector of the
spectral coefficients a’s. Then

Az, =-Hz,P2,
where H2, denotes the Sylvester-type Hadamard matrix of order 2" [8]. H2, can be
defined recursively as follows:

H.
We shall define the L spectral norm of f to be

{0,1}

The proof of Lemma 2 is based on the spectral techniques developed in 3]. Using
probabilistic arguments, it is proved in 3 that if a Boolean function has L spectral
norm which is polynomially bounded, then the function is computable in LT2. We
observe (together with Noga Alon) that the techniques in 3 can be generalized to show
that any Boolean function with polynomially bounded L spectral norm can even be
closely approximated by a sparsepolynomial. This observation is crucial when we extend
our result from a single element to networks of elements with large weights. We shall
give the proof of the stronger result here.

LEMMA 3. Letf(X) { 1, }" -- { 1, } such that f <= n for some c. Then
for any k > O, there exists a sparse polynomial

F(X , w.X such that F(X f X =< n-k,
oreS

where w. and N are integers, S c O, } n, the size ofS, w., andN are all bounded by a

polynomial in n. Hence, f( X) I.T2.
Proof. We use the same probabilistic argument as in [3]. It suffices to show that

there exists a random sparse polynomial of the above form F(X) such that IF(X)
f(X)[ -< rt -k with probability > 0. Let f(X) o,}. aX and L Ilfl[
Y..0.. la.I. Let FL] be the least integer not smaller than L. Note that FL] <
Ilfll / and is polynomially bounded. For a {0, 1} n, let p. [a=l/[Lq. We define
independent and identically distributed random variables Zi(X) such that

sgn (a.)X with probability p., a e { 0, } ",
Zi(X)

0 with probability . 0,.
p-"
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Note that the expected value of Zi(X) is

E[Zi(X)] , p, sgn (a.)X"=
a6{0,1}" {0,1}"

a,X,/[Llq
f(X)
[L]

and the variance is

Var [Zi(X)I E[Z(X)I-E2[Zi(X)]
[Ll] [L] 2

Therefore, by the central limit theorem and for sufficiently large n, we have

i=1 ILl]
>n 1/2N1/2] Pr { N

Z(X) -f(X) n

O(e-n)<2

for N O([Ll-12n2k+l) which is polynomially bounded. Now take F(X) [L]/
N Z iN=l Zi(X). By union bound, we obtain

Pr { IF(X)-f(X)[ > n -k for some Xe { 1,- } n } < 1.

Thus,

Pr {I F(X)-f(X)I =<n -k for all X 1,-1} } >0.

We can rewrite F(X) 1/N Z,s w,X, where w, and the size of S are bounded by
N. Observe that

f(X)=sgn (F(X))=sgn ( , wX).aS

It was noted in [3] that since each monomial X" is a symmetric function and thus can
be written as a sum of polynomially many LT1 functions [2 ], [5], it follows that
f( X) e LT2. [2]

Remark 1. The fact that any Boolean function f(X) with polynomially bounded
L spectral norm can be expressed as a sign of a sparse polynomial and thus belongs to
LT2 is shown in [3 ]. Our result stated in Lemma 3 .is stronger in the sense that each
such functionf(X) can even be closely approximated by a sparse polynomial. We make
crucial use of this lemma (and its consequence) when we prove Theorem 2 later.

Now we are ready to prove Lemma 2. It suffices to show that COMPARISON has
a polynomially bounded L spectral norm.

ProofofLemma 2. We shall write a recursion for the spectral representation of the
COMPARISONfunction C(X, Y). If Cn is the polynomial corresponding to the function
ofx, x and y, y, it is easy to see that-- +xy

Cn xn Yn+Cn_
2 2

This shows that the L spectral norm increases by one when we increase n by one. So
if we denote the L spectral norm by ]]. as before, then with C 2, we have by in-
duction that CI[ n + and thus is polynomially bounded. Hence COMPARISON
LTd. rq

Remark 2. It follows trivially by taking -Y that

t(X,Y)=sgn , 2i(xi+Yi)+ eLT2.
i=1
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Remark 3. Suppose the L1 spectral norm of an affbitrary LT1 function is polyno-
m.ially bounded. Then it would follow that LT1 LT2. However, even some simple
LTl function such as sgn 7- xi) has Ll spectral norm that is not polynomially bounded.
We shall show this fact later.

As a consequence of Lemma 3, we obtain the following.
LEMMA 4. Letf X { 1, -- { 1, } such that f <- n for some c. Then

for any k > 0, there exists a linear combination ofLT1 functions

f(X)=ri= lWjtj(X Sblch that F(X)-f(X)] <=n-,
where tj (X) Lrl, and s, wj’s, and N are integers bounded by a polynomial in n.

Proof. The prooffollows immediately from Lemma 3 by rewriting every monomial
X in F(X) as a sum of polynomially many LT1 functions. D

3. Main results. Although most linear threshold functions require exponentially
large weights, we can always simulate them by three layers of LTI elements.

THEOREM 1.

LTI
_
LT3.

Proof. The proof of Theorem will be divided into three parts. First, we show how
any LTI function f(X) sgn (F(X))can be reduced to the COMPARISON function
in two layers. Second, by Lemma 2, the final result can be obtained using another two
layers. Finally, we will see how the second and the third layers can be combined into
one layer so that altogether only three layers are needed. The strict inclusion follows
from the well-known fact that the XOR function is not computable in LT whereas
XOR 6 LT2.

(i) Reduction to COMPARISON. We shall show how we can reduce F(X) to a
sum of two numbers using two layers. Then it follows from Remark 2 of Lemma 2 that
we can reduce sgn (F(X)) to the COMPARISON function in two layers.

First observe that by considering the binary representation of the weights wi, we
can introduce more variables and assign some constant values to the renamed variables
in such a way that any linear threshold function can be assumed to be of the following
genetic form:

f(X) sgn (F(X)),

where

log

F(X) 2;(Xl, + x, +... + x,,).
i=1

We can further assume that n is odd by noting that f(X) is not changed if we add
to the F(X) and the fact that 2 n log 2" log ,-1 2 1. For convenience of
presentation, we assume n log n to be an integer, where log denotes logarithm to base
two. Let

(1) si xli + xz + + x, fori =l,...,n.
logNote that s;I -< n. Now partition the sum F(X) Z i= &2; into n consecutive blocks
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of l [log n] summands each, so that
21

F(X , si2 2r- Z Si2 +...
i=1 i=l+1

n log

Si2i
i=nlogn-l+

j 0 =jl+
si2i Sj.t+k2 k- 2jr+

j=0 k=l

n-1

2jz + where st+ k2k 1o
j=0 k=l

Note that

(2) 11 =< Z [s+kl2k-’ --<rt( 2/- 1) <22rlgnl.
k=l

Furthermore, note that every odd number z such that zl < 22flog nl

+_ binary representation with 2[log n] bits:
2flog n]

(3) z 2 z;2 where zi _+ 1.
i=0

can be expressed in

Since n is assumed to be odd without loss of generality, it follows that is also odd and
therefore can be represented as 2[log n] bits of + as in the above expression (3). Now
observe that because of (2), there is no overlapping in the +_ binary representation
between .2j/+l and +22(j+2)1+ 2 2rlg n(+z2Jl+ 1). Thus we can compute the +1
binary representation of each for j odd in parallel and concatenate the resulting bits
together to obtain the + binary representation of

Sodd 2/+ 1.
j odd

We can obtain the + binary representation of

Seven Z 2j/+l
j even

in a similar fashion. Obviously, F(X) is the sum of Sodd and Seven. It remains to show
how to compute the binary representation of each . Observe that each is a poly-
nomially bounded linear combination of log n n input variables. Let bk be the kth bit
in the _1 binary representation of . Then there exists a set of numbers { kl, kt }
such that bk if and only if { kl, kl }. Let

(4)

Then

ykm=Sgn {2(-km)+ 1};)Tkm=Sgn {2(km-)+ 1} form= 1, ,l.

(5) bk Z (Ykm+Ykm)
m=l

Since . is polynomially bounded, there aronly polynomially many different km’s.
The first layer of our circuit consists of LT1 elements which compute the values

’S ’SYkm’S and Ykm" The second layer takes as inputs Ykm’S and Ykm and outputs
sgn { X m (Ykm + 37km) } Hence the + binary representation of each . can be com-
puted in two layers.

Remark 4. It was known [5 that any symmetric function is computable in two
layers. The construction (4) and 5 above is an immediate generalization of this result.
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Remark 5. Similar techniques were applied in 4 and 12 to reduce the computing
of a multiple sum to that of a sum of two numbers. Their construction first reduces the
sum of n n-bit numbers to that of log n numbers by applying a "counting" gate to each
s; in above, and then to a sum of log log n numbers. The novelty in our ideas is in
reducing the multiple sum to sum of two numbers in one step by computing each in
(2) above using only two layers.

(ii) Another two layers to compute COMPARISON. Now since F(X) can be re-
duced to a sum of two O(n log n)-bit numbers in + binary representation, it follows
from Remark 2 ofLemma 2 that we only need two more layers to compute the function.

(iii) Combining the second and third layers. So far we have used four layers of
LT1 elements to simulate an LT element: two layers to reduce the computing of a
general LT function to that of a COMPARISON, then another two layers to compute
the COMPARISON. Now we shall see how to combine the second and the third layer
together so that LT LT3.

Note from (5) that the inputs b to the third layer are linear combinations of the
outputs from the first layer. Thus, it is redundant to compute the sgn (. after computing
the linear combination. Therefore, we can directly feed the outputs from the first layer
to the third layer without the use of the second layer. []

Example. A small numerical example will be helpful to illustrate the ideas. We take
n 8 so that [log n] 3, and let

f(X) sgn (F(X))

sgn 169x 245x2 + 123x3 + 206x4- 6 lx5 163x6 + 154x7- 164x8).
In Fig. 1, the upper-fight and upper-left solid blocks indicate 0 and 2, respectively,
whereas the upper-middle dotted block indicates g. We set all xi’s to be 1. Each row
in the summands indicates each "weight" in binary representation and is partitioned
into three subblocks. For example, 169x 27x + (25 + 23)xl + x and -245x2
(--27 26)X2 + (--25 24)X2 + (--22 1)x2. We compute the sum of all the first
subblocks to obtain g0 -5. The other subblocks are summed to obtain -5 and
2 in parallel. The bottom-right dotted block, which has sum 0, is added to make
the resulting two numbers into the form ofthe arguments in the COMPARISON function.

The result stated in Theorem implies that a depth-d threshold circuit with expo-
nentially large weights can be simulated by a depth-3 d threshold circuit with polynomially

1 01

0 1

1 0

I -ii

’I 0 I’
,’1 -1 O,

’1 1 1’

,0 0 1,

,1 -1 -1,
1 0 O,

’0 1 1’

1 0 O!

1 1 1 1 -1 1 ,I
r "r J

’-I 1 1 -I I"I -I -I -I’
JI. J

0 0 1

-1 0 -1

0 1 1

1 1 0

-1 0 -1

0 -1 -1

0 1 0

-1 0 0

FIG. 1. An example to illustrate the computing ofthe sign ofa multiple sum.
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large weights. Using the result ofLemma 3, we can actually obtain a more depth-efficient
simulation.

THEOREM 2.

LTa
_
LT2a+ 1.

Proof. We shall prove the result by induction on d. The case for d is stated in
Theorem 1, where the last two layers ofthe simulating circuit LT3 compute the COM-
PARISON function of the outputs from the first layer. For the inductive step, suppose
every circuit Cd-1 LTd- can be simulated by a circuit 2d- ffT2d-1, where the
last two layers of 2d-l compute the COMPARISON function of the outputs from
the (2 d 3)th layer. Let Cd LTd and f (X), fm(X) be the outputs from the
(d- 1)th layer and g(f(X), ,fm(X)) be the output from the last layer of C. By
Theorem 1, the function g can be computed in three layers of LT elements withf(X)’s
as inputs to the first layer; each gate in the first layer computes a function

hj( f (X), fm(X)) sgn wifi(Y) + w0

where Z/= wifi(X) 2t- Wo 4:0 for allX {1, -1}n and n=0- Iwl < nkfor some k > 0.
Since f(X) LTd_ 1, by inductive hypothesis it can be simulated by some C ffT2d-1,
where the last two layers compute the COMPARISON function of the outputs from
some circuits in LT2d 3. Now apply Lemma 4 to the last two layers ofeach C;. It follows
that we can express each f(X) 1/N Vltil(X) + ei, where N and I/I are poly-
nomially bounded, I,1 <= n -k, til(X) LT2d-2 Let Fi(X) 1/N Y. lltil(X); then

hj(FI(X), ,Fm(X))=sgn Wi(f(X)--ei)+ WO =sgn wifi(Y)+

where

Wi$i
i=1

m

<=n -k [wil < 1.
i=1

Since by assumption, Z = wifi(X) + Wo is a nonzero integer, therefore

hi(El(X), ,Fm(X))=sgn wf(X)+wo =h(fl(X), ,fro(X)).

Thus we can rewrite

h(f(X), ,fm(X))=sgn wiFi(X)+ wo =sgn ,t,(X)+

where s’S are integers, is polynomially bounded and
Hence, ( (X), f(X)) e Te_ . Since g can be computed with three lay-
ers of LT1 elements with (X) as inputs and each gate in the first layer computes
h((X),..., f(X)), it follows that g((X),... ,f(X)) e L+ 1. Therefore by
induction we have shown that any function computable in LTe can be simulated in
LT2d+

As another consequence of Lemma 3, we have the following corollas.
COrOllArY 1. Let (X), fm(X) befunctions with polynomially boundedL

spectral norms, and &t g((X), fm(X)) be an T function with f(X)’s as in-
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puts, i.e.,

g(fl(X), ,fm(X)) sgn wif(X) + wo
i=1

Then g can be expressed as a sign ofa sparse polynomial in X with polynomially many
number ofmonomial terms X’s and polynomially bounded integer coefficients. Hence
gE LT2.

Proof. Using Lemma 3, we can replace each f(X) by its sparse polynomial ap-
proximation Fi(X) with sufficiently small error. By the same argument as in the proof
of Theorem 2, this does not change the function g, i.e.,

g(fl(X), ,fm(X))=g(fl(X), ,Fm(X))=sgn ff’iFi(X)+ wo
i=1

Thus gcan be expressed as a sign ofa sparse polynomial as claimed. Since each monomial
X can be expressed as a sum of polynomially many LT1 functions, it follows that g
LT2.

4. Extensions and alllieations. In Remark 3, it was mentioned that not all LT
functions have polynomially bounded L spectral norms. We shall prove this fact via the
following theorem. (As in Lemma 3, by a sparse polynomial we mean a polynomial with
only polynomially many monomial terms X"’s.)

THEOREM 3. The I,T function MAJORITY

sgn x

cannot be approximated by a sparse polynomial with an error o( n- ).
Proof. In 2 it is proved that there is a symmetric function that needs an exponential

number of monomial terms X"’s to be expressed as a sign of a polynomial. We shall
prove that the existence ofan approximation to the MAJORITY function (with an error
o(n-)) by a sparse polynomial will contradict the result in [2]. Note that any LT1
function is a projection of the MAJORITY function with an increase of polynomially
many variables. Ifthe MAJORITYfunction can be approximated by a sparse polynomial
(with error o(n-1)), then it is easy to see that every LT function would have such an
approximation. Let g(X) be an arbitrary symmetric function. It was known that [5]
g(X) can be computed by a LT2 circuit with the sum of the magnitudes of weights in
the second layer bounded by O(n). Let )] (X), fm(X) be the outputs from the first
layer and (fl (X), fm(X)) be the output from the second layer. If each f(X) can
be approximated by a sparse polynomial Fi(X) (with error o(n- )), then as in the proof
ofCorollary 1, it is clear that (f (X), fm(X)) (F (X), Fm(X)). It follows
that g(X) can be expressed as a sign of sparse polynomial with polynomially many
monomial terms X"’s. Since g(X) is an arbitrary symmetric function, this contradicts
the result in 2 ].

It follows from Lemma 3 and the above theorem that the MAJORITY function
cannot have a polynomially bounded spectral norm.

It was known [5] that ADDITION of two n-bit numbers is computable in LT3,
i.e., we can compute each bit ofthe sum oftwo n-bit numbers using three layers. It seems
intuitive that ADDITION is harder than COMPARISON with respect to circuit depth.

Srprisingly, ADDITION can actuality be computed in two layers, i.e., ADDITION
LT2. Also note that ADDITION LT since the least significant bit of the sum is the
XOR of the least significant bits of the two numbers.
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THEOREM 4. Let x, y be two n-bit numbers. Then

ADDITION(x, y)6 LT2.

Proof. We apply the spectral techniques in 3 again and show that the L spectral
norm of each bit of the sum is polynomially bounded.

Let x x,_,Xl,__. "x 0, x2 Xz,_,x2,_2" "xz0 be the two n-bit binary numbers
whose sum is to be computed. The input vector to the function ADDITION is arranged
as (x,_,, x2,_ 1, x0, x20). Let s sns,_ ’"So denote the resulting (n + )-bit sum
and ck denote the kth carry bit, for k 1, ..., n. Then s, c,, sk PARITY(xlk,
XZk, Ck) for _--< k _-< n 1, So XOR(xo, X20). It follows that [Is[I 11XlkXZkCkl[ 11Ckll.
Hence it suffices to show that c has polynomially bounded L spectral norm.

As in the proof of Lemma 2, we write a recursion for the spectral representation of
the nth-carry bit c as a function of (Xl,_,, x2,_ , Xlo, x20). Then if (, is the poly-
nomial corresponding to the nth-carry bit, we have

This shows that the L1 spectral norm increases by when we increase n by 1. The same
calculation as in the case of COMPARISON gives (11 n + for all n >= 1. It follows
that the L1 spectral norm of each bit of the resulting sum is polynomially bounded and
thus ADDITION LT2 3 ]. []

Another application of our "depth"-efficient algorithm and Theorem 2 yields the
following theorem.

THEOREM 5. The product oftwo n-bit integers can be computed in IT4.
Sketch ofproof. The product of two n-bitnumbers can be reduced to a sum of n

2n-bit numbers using one layer, and then to the sum of two numbers using another two
layers. By Theorem 2, the final sum can be computed using two more layers. As in the
proof of Theorem 1, we can combine the third and the fourth layers into one layer so
that altogether only four layers are needed. ZI

Remark 6. In [5 ], it was shown that at least three layers are needed to compute
the product of two n-bit numbers. We give an upper bound of four layers.

Given n n-bit numbers, we would like to compute the maximum or sort the numbers.
We now show that these two problems can be computed in LT3 and LT4, respectively.

THEOREM 6. The MAXIMUM ofn n-bit numbers can be computed in IT3.
Proof. Let Zg ZinZin _,’’" Zi, for 1, n, denote the input binary numbers.

Recall from our convention that 0 and are encoded as and -1, respectively. Define

-I-1 ifzi>=zj,
ij

otherwise.

Then the kth bit of the maximum number is

V (i ijAZik)l<=i<=n l<=j<=n

where V and A, respectively, denote the OR and AND functions. Note that co is essentially
the COMPARISON function of z; and zj-. By Lemma 4, we can closely approximate each
co by a linear combination of LT functions. The same a.[rgument as in the proof of
Theorem 2 shows that A j.s, c0 A zg can be computed in LT2, since the AND function
is in LTd. The last layer computes the OR function.
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It was shown in [14 that the SORTING of n n-bit numbers can be computed in
LTs. By using Corollary 1, we can improve the depth of the sorting circuit presented in
14 ]. In SORTING, we assume that the input is a list of n n-bit binary numbers and the
output will be the same list sorted in nondecreasing order. A number which appears m
times in the input list will be duplicated m times in the output list.

THEOREM 7. The SORTING ofn n-bit numbers can be computed in LT4.
Proof. As in Theorem 6, let z; zi, zi,_,’" zi,, for 1, n, denote the input

binary numbers. Define

I if zi > zj or (zi zj and >=j),

otherwise.

Note that for each i, p Y]= (1-c)/2 is the position of z; in the sorted list. If
we let

-1 ifpi=m,
EQm(Pi) (sgn { Pi m } + sgn { m pi }

otherwise,

then the kth bit of the mth number in the sorted list is

/ (EQm(Pi) /X zik)
<=i<=n

where V and A, respectively, denote the OR and AND functions. Recall again from our
convention that 0 and are encoded as and -1, respectively.

We can compute sgn { Pi m } and sgn { m p; in the first two layers by Corollary
1. The third layer is used to compute

(EQm(Pi) / Zik) sgn { zinc-(sgn ’{Pi- m } + sgn { m -Pi } + 2 }

and the fourth layer is used to compute the OR of the outputs (EQm(Pi) /k zi),
1,.-.,n.

5. Conclusions and future directions. In this paper, we have shown that any linear
threshold (LT) function can be simulated by three layers of LT elements. We then
generalize this result by showing that every depth-d, polynomial size network of linear
threshold elements with big weights can be simulated by a depth-(2d + ), polynomial
size network of elements with small weights, i.e., LT LT2+. Using the spectral
techniques, we also show that both the COMPARISON and ADDITION of two n-bit
numbers are in LT2, whereas they are not computable in LTd. We note here that,
recently, Alon and Bruck [1] found explicit constructions of LT2 circuits that compute
the COMPARISONand the ADDITION functions. We also indicate how the PRODUCT
of two n-bit numbers can be computed in LT4, and show that the MAXIMUM and the
SORTING of n n-bit numbers can be computed in LT3 and LT4, respectively.

There are a few open problems related to the results in this paper:
The spectral approach gives.an existence proof that functions with "small" L

spectral norms are computable in LT2. It will be interesting to have a general method
to find constructions for these functions, extending the results of ].

2) The spectrum of a genetic LT function has an exponential L spectral norm.
Is it true that LT 9 LT2?

3) Is it possible to strengthen the result stated in Theorem 2? We conjecture that
LTa

_
LTa+ 2.
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ON THE GEOMETRY AND COMPUTATIONAL COMPLEXITY OF
RADON PARTITIONS IN THE INTEGER LATTICE*

SHMUEL ONNt

Abstract. The following integer analogue of a Radon partition in affine space rd is studied: A
partition (S, T) of a set of integer points in ,]d is an integral Radon partition if the convex hulls of S
and T have an integer point in common. The Radon number r(d) of an appropriate convexity space
on the integer lattice Zd is then the infimum over those natural numbers n such that any set of n
points or more in Zd has an integral Radon partition. An (2d) lower bound and an O(d2d) upper
bound on r(d) are given, r(2) 6 is proved, and the existence of integral Radon partitions, in lattice
polytopes having a 1-skeleton with a large stable set of vertices, is established. The computational
complexity of deciding if a given set of points in Zd has an integral Radon partition is discussed,
and it is shown that if d is fixed, then this problem is in P, while if d is part of the input, it is
NP-complete.

Key words, abstract convexity, convexity spaces, geometry of numbers, Radon number, Radon
partition, lattice polytopes, integer programming, integer lattice

AMS(MOS) subject classifications. 52A01, 52A25, 52A35, 52A40, 52A43, 68C25, 90C10

1. Introduction. We study the following integer analogue of a Radon partition
in affine space Td: A partition (S, T) of a set of integer points in Td is an integral
Radon partition if the convex hulls of S and T have an integer point in common. The
Radon number r(d) of an appropriate convexity space on the integer lattice Zd, to be
defined below, is then the infimum over those natural numbers n such that any set of
n points or more in Zd has an integral Radon partition.

As the study of Radon partitions has a,natural setting in the context of convexity
spaces, we recall a few basic definitions from that theory.

DEFINITION 1.1 (Convexity space). A convexity space is a pair (X, C), where X
is a set, C c 2X, and the following hold:

(1) )C, XC,

(2) For all F C C [F E C].
The members of C are called convex, and the C-hull of a set A c X is C(A)

N(B’[B e C] A [A c_ B]}. The classic example is (Td, conv), where conv {A" A c_
Td and A is convex}.

DEFINITION 1.2 (Radon partition). A partition (S,T) of a given subset of X,
where (X, C) is a convexity space, is called a Radon partition, if the C-hulls of S and
T intersect.

Finally, we give the following slightly extended definition.
DEFINITION 1.3 (Radon number). Given a convexity space (X, C) and F C 2X,

we define the F-Radon number r(F) as the infimum over those natural numbers n
such that any set A F with n elements or more has a Radon partition,

r(F) inf{n e N" VA e F [[IAI _> n]
--+ [SS3T [S u T A] A [S N T ] A [C(S) C(T) # q)]]]}.
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When F 2X, this reduces to the usual definition of the Radon number, which
is denoted simply by r. When the underlying set of the space is a Cartesian product
X Kd, we will use the notation r(d, F), and for F 2x we will use r(d).

The classical Radon theorem, which follows easily from the affine structure of 7d,
states that the Radon number of the space (7d, conv) is r(d)=d+2.

The convexity space that is studied in this paper is the restriction of (7d, conv) to
the integer lattice, and will be denoted by (d, Cd). Thus, the Cd-hull of a set A c_ zd

is Cd(A) conv(A)Zd, and the collection of convex sets is Cd {Cd(A)" A C_ zd}.
It follows that the Radon partitions and the Radon number r(d) of that space coincide
with those defined in the beginning of this section.

There are several papers discussing convexity spaces and their Radon numbers and
also Helly, Caratheodory, and exchange numbers (to be defined in 3), e.g., Danzer,
Griinbaum, and Klee [5], Eckhoff [7], Hammer [11], Levi [14], Tverberg [18]. In
particular, the Helly number of our space (Zd, Cd) was studied before by Doignon [6].
Also, some recent investigations motivated by integer programming were concerned
with Helly properties of the integer lattice (Bell [1], Scarf [15], Schrijver [16, p. 234]),
and Caratheodory properties of it (Cook, Fonlupt, and Schrijver [4]).

In contrast with the linear growth rate (as a function of the dimension) of the
Radon number of the reals given above, we show in 2 an (2d) lower bound on the
Radon number r(d) of the integer lattice. It is interesting to note that this lower
bound is also in contrast with linear upper bound on the Radon number of the
product space (Z, C)d (defined on the same ground set Zd, but having only the
collection {A1 x A2 x Ad A C_ Z, 1 < <_ d} of d-boxes as its fmily of convex
sets), which follows from an upper bound on Radon numbers of product convexity
spaces given in Eckhoff [7].

On the other hand, we show in 3 an O(d2d) upper bound on the Radon number
of the integer lattice.

Throughout the paper, by a "polytope" we mean a real convex polytope, i.e., a
set P conv(V) _c ’d such that V is finite. If V c_ Zd, then P is called a "lattice
polytope." It is easy to see that, in the definition of the Radon number, it is enough to
consider subsets A c_ X such that [A] < and A ext(P), the set of vertices of P,
where P is some lattice polytope. Thus, the question about r(d) is, in fact, a question
about the existence of Radon partitions of sets of vertices of lattice polytopes, and
we ask the same question about subclasses of lattice polytopes. This is the subject of
4, in which we study some properties of polytopes having 1-skeleton with a large
stable set of vertices (in the graph theoretical sense), and establish the existence of
a Radon partition for such polytopes. This result is also useful for the proof, given
in 5, that r(2) 6, and leads to a simpler and more direct proof, for simple lattice
polytopes, of the upper bound.

Finally, in 6, we discuss the computational complexity of deciding if a given set
of points in Zd h3s a Radon partition, and show that if d is fixed, than this problem
is in P, while if d is part of the input, it is NP-complete.

Before going on, we note that the Radon number of the integer lattice is invariant
under affine transformations. More precisely, we have the following observation.

OBSERVATION 1.4. Consider a set S c_ Zd such that dim(aft(S)) k < d. If
IS[ >_ r(k), then S has a Radon partition.

The proof is based on the fact that, given such a set, there is an affine bijection
from aft(S) to Tk that preserves integrality (this is a result, say, of Theorem 3 in
Gruber and Lekkerkerker [9, p. 19] or Corollary 4.35 in Schrijver [16]).
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FIG. 1

2. A lower bound. We have the following proposition.
PROPOSITION 2.1. For d > 1 we have

r(d + 1) _> 2r(d)- 1.

Proof. Assume indirectly that r(d + 1) _< 2r(d) 2. Let A c_ Zd, [A[ r(d) 1
be a set that admits no Radon partition. Let

Xi {(a,i)’a e A} (i 0, 1).

Then X0 t_J X1 C_ Zd+l and IX0 tJ Xll 2(r(d) 1) > r(d + 1), so there exists a
Radon partition of X0 t_J X into two sets Y0, Y. Let p e Cd+ (Yo)fq Cd+ (YI).
Then p E 2;d+l, and Cd+l(Yo) fq Cd+(Y) C_ {(x,’",Xd+l) 0 < Xd+ < 1}, SO

Pd+l {0, 1}. Assume, without loss of generality, that Pd+l 0. Then, for 0, 1,
let Zi Y/fq{(x,-.. ,Xd+)" Xd+ 0}. We then have that p Cd+(Zo)fqCd+(Z1).
Thus, the sets {a "(a, 0)
contradiction.

The following set of points shows that r(2) > 6 (see Fig. 1)"

{(0, 0), (2, 0), (0,

This, together with Proposition 2.1, yield the following corollary.
COPOLLAPY 2.2. For d >_ 2, r(d) >_ 2d + 2d-2 + 1 5.2d-2 + 1.

Proof. The proof is by induction on d. for d 2 this is true since r(2) _> 6. Now,

r(d+ 1) _> 2r(d) 1 _> 2. (24 + 2d-2 + 1) 1 2d+ + 2(d+1)-2 + 1,

as required. D

3. An upper bound. In this section, we must recall a few more invariants of
convexity space (X, C).

DEFINITION 3.1 (Caratheodory number). The Caratheodory number c is the
infimum over those natural numbers n such that the C-hull of any set S c_ X is the
union of the C-hulls of subsets T C_ S with IT < n,

c inf{n e N" /S c_ X [C(S) tO{C(T)’[T C_ S] A [ITI _< n]}]}.
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DEFINITION 3.2 (Helly number). The Helly number h is the infimum over those
natural numbers n such that any finite family L c_ 2X with the property that the
intersection of the C-hulls of all its members, N{C(A) A E L}, is empty, has a
subfamily M C_ L of size IM] _< n with the same property,

h inf{nEN" VL C_ 2x [[[ILl < c] A [N{C(A)" A e L}
[3MC_L [IMI_<n]A[{C(A)’AeM}--

DEFINITION 3.3 (Exchange number). The exchange number e is the infimum
over those natural numbers n such that for every point p X and finite set A C_ X, if

IAI >_ n then the C-hull of A is contained in the union of the C-hulls of sets obtained
from A by replacing a point a A by the point p,

e inf{nEN" VpeXVAC_X [[n<_lAl<c]
--. [C(A) c_ U{C(pU (A a)) a e A}]]}.

As with the Radon number, when the underlying set of the space is a Cartesian
product X Kd, we will use c(d), h(d), e(d). It is well known that for (nd, cony),
c(d) h(d) e(d) d + 1.

The following proposition was proved in Doignon [6].
PROPOSITION 3.4. The Helly number of the convexity space (Zd, Cd) is h(d) 24.
The following proposition follows immediately from the definitions.
PROPOSITION 3.5. Let (X, C) be a convexity space. Suppose this space has a

Caratheodory number c and an exchange number e, and let Y c_ X. Then (Y, {A NY
A C}) is a convexity space (the restriction to Y) with Caratheodory number c’ <_ c,
and exchange number e <_ e.

The following proposition follows immediately from the proof of Theorem 3 in
Sierksma [17].

PROPOSITION 3.6. Let (X, C) be a convexity space with finite Caratheodory,
Helly and exchange numbers c, h, e. Let a be a nonnegative integer such that e <_ a
and c <_ a. Then the Radon number satisfies

r

_
(a-1)(h-1) + 3.

We now give an upper bound on the Radon number r(d) of the convexity space

COROLLARY 3.7. r(d) <_ d(2d- 1) + 3.
Proof. It is known that for (7d, conv) the Caratheodory number and the exchange

number are both equal to d + 1. By Proposition 3.5, we then have, for (Zd, Cd), that
c(d) _< d / 1 and e(d) _< d + 1. By Proposition 3.4, we have h(d) 2d, and so by
Proposition 3.6 we get

r(d) <_ ((d + 1) 1)(h(d) 1) + 3 d(2d 1) + 3.

4. Stable sets in polytopes. In this section we study in detail some elementary
properties of stable sets of vertices of polytopes. We establish the existence of a
Radon partition of the set of extreme points (vertices) of a lattice polytope having
a large stable set (in the sense defined below) of vertices. As a byproduct, this
result yields a simpler and more direct proof of an upper bound for r(d, SP), where
SP {A c_ Zd A ext(P), P a simple polytope}, which is asymptotically the
same as the one given in Corollary 3.7 (recall that a d-polytope is called "simple" if
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each one of its vertices is contained in exactly d l-faces). It is also helpful in proving,
in the next section, that r(2) 6.

We start with some notation. By the "graph" of a polytope we mean the abstract
graph having as vertices and edges the 0-faces and l-faces of the polytope, respectively.
For two points x, y E 7d we denote by Ix, y] conv({x, y}) the closed line segment
joining them. For a vertex s E ext(P), we denote its set of neighbors by Np(s)
{v ext(P)" Is, v] is a 1-face of P}.

We will need the following (Brndsted [3, Thm. 11.8]) proposition.
PROPOSITION 4.1. Let P be a d-polytope, v a vertex of P, and H a hyperplane

separating v from Np(v). Then H separates v from ext(P) \ {v}.
By a (real) "Minimal Radon Partition" (MRP) we mean a pair (S, T) constituting

a real Radon partition of ST c_ d (i.e., ST 0 and cony(S) conv(T) = 0), such
that no proper subset of S 2 T admits a real Radon partition. The following is easy
to derive from the affine structure on 7d, and, in fact, is just the circuit elimination
axiom in the more general setting of oriented matroids (for a general reference to
oriented matroids, see Bjhrner et al. [2]).

PROPOSITION 4.2. Let (S,T) and ($2,T2) be two MRP’s such that S $2,
$1 T2, and x S T2. Then there exists an MRP ($3, T3) such that x $3 [2 T3,
$3 S1 [-J $2, and T3 C_ T1 [2 T2.

The following is an elementary fact, formulated in terms of MRP’s.
PROPOSITION 4.3. Let P be a d-polytope, V ext(P), u, v e V. Then In, v] is

not an edge of P if and only if there exists an MRP ({u, v}, T), T c_ Y \ {u, v}.
We will now establish some properties of polytopes, which will lead to the proof

of the main result of this section.
LEMMA 4.4. Let P be a d-polytope, u e Y ext(P), P’= conv(V \ {u}), and

v e Y \ ({u} U Np(u)). If w e Y \ {u, v} is such that Iv, w] is not an edge of P, then
it is also not an edge of P’.

Proof. If Iv, w] is not an edge of P then, by Proposition 4.3, there exists T1 c_
V \ {v, w} such that ({v, w},T1) is an MRP. If u T, then T C_ ext(P’) and so
the claim follows by Proposition 4.3. Suppose then, that u T. Now, In, v] is not
an edge of P, and so there exists T2 C_ V \ {u, v} such that ({u, v},T2) is an MRP.
Now, eliminating u {u, v} A T using Proposition 4.2, we find an MRP (S, T) with
S c_ {v, w} and T c_ T1 U T2 \ {u}. However, v, w are vertices of P, so we must
have S- {v, w}, and T c ext(P’), so again by Proposition 4.3 Iv, w] is not an edge
of P’.

LEMMA 4.5. Let P be a d-polytope, u e V ext(P), P’ conv(V \ {u}),
v e P \ ({u} P’), and P"= conv(Y t2 {v} \ {u}). If w e Y \ {u} is such that In, w]
is not an edge of P, then Iv, w] is not an edge of P".

Proof. First, it is clear that ext(P") V t2 {v} \ {u}. Now, if In, w] is not an edge
of P, then there exists T1 C_ V \ {u, w} such that ({u, w}, T) is an MRP. Also, v P
implies that there exists T2 c_ V such that ({v}, T2) is an MRP, and since v P’, it
must be that u T2. Eliminating u via Proposition 4.2, we obtain an MRP (S, T)
with S c_ {v, w} and T C_ T t2 T2 \ {u}. Now, w is a vertex of P, T c_ ext(P’), and
v P’, so it must be that S {v, w}, and so by Proposition 4.3, Iv, w] is not an edge
of P".

LEMMA 4.6 (Stable set exchange). Let P be a d-polytope, V- ext(P), and S V
a stable subset of vertices (i.e., no two vertices in S lie on a common 1-face). Let
x e conv(S) \ (S t2 conv(V \ S)). Then there exists a vertex s e S such that in the
polytope P’ conv(Yt2{x}\{s}), we have ext(P’) V{x}\{s} and S’ S{x}\{s}
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FIG. 2

is a stable set.
Proof. Let H be a hyperplane separating x from V \ S. Since x E conv(S), there

is a vertex s E S, which is also separated from V \ S by H. S is stable, however,
so Np(s) C_ V \ S, and so H separates s from Np(s). Then, by Proposition 4.1, it
separates s, and hence x, from Y \ {s}. Thus ext(P’) Y U {x} \ {s}.

Now, if t e S\ {s}, then [s, t] is not an edge of P, and so by Lemma 4.5, [x, t] is not
an edge of P’. If u e S \ {s, t}, then It, u] is not an edge of P; so by Lemma 4.4, It, u]
is not an edge of conv(Y \ {s}) c_ P’, and so is not an edge of P’ either. Therefore,
S is a stable set in P, as claimed. [:]

We can now prove the following theorem.
THEOREM 4.7. Let P be a d-lattice polytope such that S c V ext(P) is a

stable set of vertices and IS[ 24 + 1. Then (S, Y \ S) is a Radon partition of V, i.e.,
c (s) c (y \ s) #

Proof. S is a set of integer points in ’d of size 24 + 1, so there are two points
y, z e S having the same parity on all coordinates. The point x (y / z)/2 is an
integer point in conv(S) \ S. If x conv(Y \ S), then we are done. If not, then let the
point s E S, the polytope P, and the set S be as defined in Lemma 4.6. Then, by the
lemma, P and S satisfy the hypothesis of the current theorem and we can repeat the
above argument. Now Iconv(S’):gdl < [conv(S)Nzdl because s e conv(S)\conv(S’),
and [conv(S) fq zd[ < cx, so after finitely many applications of the above argument,
we obtain a polytope P" and a set S" such that (S", V \ S) is a partition of ext(P")
such that there exists an integer point x" conv(S") fq conv(Y \ S). But, by the
construction, conv(S") c_ conv(S), so in fact we have x" e Cd(S)fq Cd(V \ S). U

Example 4.8. Consider, for k _> 3, the graph G(k) (Y(k),E(k)) which is the
union of two homeomorphs of the k-wheel (see Fig. 2 for k 4), defined as follows
(we call it the "Bicycle wheel with 2k alternating spokes")"

V(k)
E(k)

{V VOw’’" Vk-l U, tO Uk-1}
{{Vi,Ui}" 0 < < k- 1} t2 {{ui, vi+l (rood k)}" 0 _< < k- 1}

t2 {{v, vi}’0<i<k-1}t2{{u, ui}’0<i_<k-1}.
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The graph G(k) is planar and 3-connected, so by Steinitz’s theorem (see, e.g.,
Griinbaum [10, 13.2]) there exists a (convex) lattice 3-polytope P(k) having G(k)
as its graph. Note, for example, that the 3-cube C3 has G(3) as its graph. Now, for
k _> 9 and d _> 3, each one of the polytopes P(k) Cd-3 c_ Td satisfies the hypothesis
of Theorem 4.7, and so admits a Radon partition. Note that for k 9 or 10 we cannot
deduce this from Corollary 3.7.

As a corollary to Theorem 4.7 we get again the upper bound, for simple polytopes,
and so we have the following corollary.

COROLLARY 4.9. 2d + 24-2 -+- 1 _< r(d, SP) < d2d + 2.

Proof. The lower bound is the same as the one given in Corollary 2.2, as the proof
in 2 remains valid for simple polytopes. For the upper bound, recall that the graph
of a simple polytope is d-regular, so if the polytope has at least d2d + 2 vertices, it
has a stable set of size at least [((d2d + 2) 1)/d] 24 + 1. Then, by Theorem 4.7,
the set ext(P) has a Radon partition, r

5. The two dimensional case. In 2 we have shown that r(2) _> 6. We now
prove the converse. Recall our notation that, for S c_ Z2, C2(S) conv(S)C Z2. We
will use the following simple fact (Gruber and Lekkerkerker [9, Thm. 4, p. 20]).

PROPOSITION 5.1. Let Vl, v2 be two linearly independent points in Z2. If

C2({(0, 0), Vl, V2}) {(0, 0), Vl, V2},

then the set {Vl, v2} is a lattice basis of Z2.
LEMMA 5.2. Let V C_ Z2 be such that IVI 6 and P conv(V) is a convex

hexagon. Let S c_ Y be a stable subset with IS[ 3. Then 62(S) \ S .
Proof. Without loss of generality we may assume that S {(0, 0), vl, va}. Con-

sider the two lines li lin(vi) (i 1, 2). Denote the four connected components of
72\ (11 U/2) by ci,j (i,j 0, 1) (see Fig. 3).

There must be two points in V \ S lying on adjacent components, say w E Cl,0,
W2 E C0,0.

Now, suppose indirectly that C2(S) S. Then, by Proposition 5.1, {Vl, v2} is a
basis of the lattice Z2. Now for 1, 2, w e Z2 so lies on the line ll + kiv2 for some
integer k _> 1. But then we have v2 conv({(0, 0), w, w2}), a contradiction. [3
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THEOREM 5.3. r(2) 6.

Proof. Let U C_ Z2 be such that UI _> 6. We may assume that there is a subset
Y c_ U such that IYl 6 and P conv(Y) is a convex hexagon. It is enough to
show that V admits a Radon partition. Let S C_ V be a stable set with ISI 3. By
Lemma 5.2, C2(S) \ S q). Then either C2(S) N C2(V \ S) , in which case we are
done, or there exists a point x e C2(S) \ (S t_J conv(Y \ S)). In that case, we can do a
stable set exchange and obtain a new set S and polytope P as defined in Lemma 4.6,
and in particular C2 (S’) c C2 (S).

Repeating the same argument as above, we eventually get, as in the proof of
Theorem 4.7, a set S" such that IS"I 3, P" conv((Y \ S)U S") is a convex
hexagon, S" is stable in P", and C2(S")NC2(V\ S) . But then we are done, since
conv(S") c_ conv(S) and so (S, Y \ S) is a Radon partition of Y. D

6. Computational complexity aspects. Consider the following decision prob-
lems.

RADON(d)"
Instance: n E N and A c_ zd such that IAI n.
Question: Does A admit an (integral) Radon partition?

RADON:
Instance: d, n E N and A c_ Zd such that ]A n.
Question" Does A admit an (integral) Radon partition?

Note that in RADON(d), the dimension d is fixed and is not part of the input.
We show that RADON(d) is decidable in polynomial time while, in contrast, RADON
is NP-complete.

PROPOSITION 6.1. RADON(d) is decidable in polynomial time.

Proof. Given an input to RADON(d), if n >_ r(d) then there exists a Radon
partition. Otherwise, consider all possible pairs (S, T) of disjoint nonempty subsets
of the input set A such that ISI, ITI < d / 1 and the points in S (respectively T) are
affinely independent in aft(S) (respectively aft(T)). Since the Caratheodory number
of the reals c(d) < d / 1, there will be such a pair with Cd(S) Cd(T) 7 if and only
if the input set A has a Radon partition. The number of such pairs is bounded by
a polynomial function of n, and in fact, n < r(d) < c (the second inequality from
Corollary 3.7), so it is bounded by a finite constant which depends on d only. For
each pair (S, T) with ISI < d+ 1, IT[ < d/ 1, do the following. Find a system of linear
equalities defining aft(S), and check affine independence, i.e., ISI- 1 / dim(aft(S))
(otherwise, move on to the next pair).

Next, add inequalities to this system to get a description of conv(S). This is easy,
as conv(S) is a simplex in aft(S), so any (ISI- 1)-subset of S spans a facet of cony(S)
in aft(S).

It is easily verified that the bit size of such a description is bounded above by a
polynomial function in the bit size of the input, and so this step could be done in
polynomial time.

Similarly, find a linear inequalities and equalities description of conv(T).
Now, let L be the union of the collections of linear equalities and inequalities

describing conv(S) and conv(T). Apply to it an algorithm that checks if its solution
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set contains an integer point, e.g., the integer programming algorithm given in Lenstra
[13], which runs in polynomial time when the dimension d is not a part of the input.
Since the solution set of L is conv(S)
Cd(T) , which is what we need.

Next, we show that, in contrast, RADON is NP-complete. The following problem
is known to be NP-complete (see Garey and Johnson [8, p. 223]).

PARTITION:
Instance- n E N and a set of nonnegative integers B {al,..., a2n}.
Question: Is there a balanced partition, namely a partition (I, J) of [2n] {1,..., 2n}
such that III IJI- n and EiEI ai EjEJ aj ?

THEOREM 6.2. RADON is NP-complete.
Proof. To show that RADON is in NP, suppose the instance in question has

a Radon partition (S, T). Then there exists x Cd(S) Cd(T), and so the triple
(x, S, T) is a witness of size bounded by a polynomial in the size of the input, to the
existence of a Radon partition, which can be checked in polynomial time.

We now show that PARTITION is polynomial time reducible to RADON. Given
an input (n,B) to PARTITION, let d 2(22n)+1, k n+n2. We construct a set A of
2n+ 2 (22n) distinct points in Zd such that A has a Radon partition if and only if there
exists a balanced partition for (n, B). For convenience, we index the first coordinate
of a point by 0, and for each pair i, j such that 1 _< i < j _< 2n, a point will have two
coordinates, one indexed by 1, i,j and the other by 2, i, j, so a point will be written
as

X (X0, X1,1,2 X2,1,2, X1,1,3 X2,1,3, Xl,2n--l,2n X2,2n--l,2n).

Now, for each e [2n], we will have one point xi, and for each pair i,j such that
1 _< i < j _< 2n we will have two points yi,J, zi,y, so

A= {x ,... x2n, yl,2 zl,2 y2n-l,2n, z2n-l,2n},

where the points are defined as follows:

for all i [2n] let x kai.

for all i, j [2n] such that < j, let

,’J -1 xj J’J 1, ,’J "J’J k.Xl,i,j Yl,i,j 1,i,j "l,i,j t]2,i,j 2,i,j

All other entries of all points will be set to zero.
Clearly the set A defined in this way can be constructed from B in polynomial

time.
Now, suppose first that (I, J) is a balanced partition for (n, B). Define S, T C_ A

as follows:

S {xi’iI}U{zi,y’l<_i<j_2n, ieI, jeJ}
U{yi,y" 1 _< i < j _< 2n, J,j I},

T {x’iJ}U{yi,’l<_i<j<_2n, iEI,jJ}
U{zi,j 1 <_ i < j <_ 2n, i J,j I}.
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It is easy to see that SNT 0 and ISl ITI k, and that Eses-s EteTt e z,
so Cd(S) Cd(T) , and so, for instance, (S, A \ S) is a Radon partition.

Conversely, suppose (S, T) is a Radon partition of A, i.e., for every point x E A
there exists a real number c(x), 0 <_ c(x) <_ 1, such that

E c(t)t Zd and E c(s) E c(t) 1.
tT sS tT

Let 1 < i < j < 2n, and consider the (2, i,j)th coordinate. It is clear then, that if
c(yi’j) > 0 or c(z,) > 0, then in fact c(y’) c(z’j) and y,J, z, are on opposite
sides of the partition. If both coefficients above are zero then, moving y,3 to the other
side if necessary, we may assume again that it is on the opposite side of zi’j. So, we
may assume that for all 1 < < j < 2n we have c(yi’j) c(zi,j) and yi’J, z’ are on
opposite sides of the partition.

Now let 1 < i < j < 2n. We can make the following claim.
CLAIM. If the points x and xj are on the same side of the partition, then c(yi’j

c(z’j) 0 and c(x) c(xJ), whereas if they are on opposite sides of the partition,
then c(x) c(x) c(y,) c(z,).

Proof of the claim. Consider the (1, i,j)th coordinate. Four cases arise, according
to whether x and xj lie on the same or opposite side of the partition, and whether x
and y’J lie on the same or opposite side of the partition. We demonstrate the proof
in the case where both xJ and y,J appear on the opposite side of the partition than
xi. In that case, we have

-(x’) + (z’,) (x) (u’,) e z.
If c(yi’j) 0, then

(z,) 0 0 > -(x) (x) > 0 (x) (x) 0.

If c(yi’j) 1, then

c(z’’j) 1 0 < 1 c(x’) c(x) 1 < 0 == c(x’) c(x) 1.

Otherwise, [c(xY)- c(yi’j)[ < 1 and c(xY)- c(yi,j) e Z, so

(x) (U’) 0 -(x) + (z’) 0 (x) (’) (U’) (),
as claimed. The other cases are simpler and are left for the reader to verify.

The claim implies that, for all 1 < < j < 2n, we have c(x) c(xJ), so for all
[2n] we get c(xi) c for some number c >_ 0. If c 0 then, by the claim again,

for all i,j such that 1 < < j < 2n we also have c(y,) c(z,) 0; But then all
coefficients are zero, which is impossible. So c > 0.

Now, let I {i" x S}, J {j" x T}. We have shown in the beginning of
the proof that, for any 1 < < j < 2n, we have c(y,j) c(z,) and yi,, z, are on
opposite sides of the partition, so we have

implying III= IJ], and so (I, J) is a partition of [2n] such that I/I IJI- n.
Finally, consider the 0th coordinate. We have

Ecka- Ecx E c(s)so- E c(t)to E CXo- Ecka
iI iI sS tT jJ jJ

which implies that -iez ai jej aj, so (I, J) is a balanced partition for (n, B). [:]
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FIG. 4

7. Remaining questions. Computing the lower and upper bounds given in
Corollary 2.2 and Corollary 3.7, we obtain 11 <_ r(3) <_ 24. For simple polytopes we
can do a little better.

PROPOSITION 7.1. 11 _< r(3, SP) <_ 21.

Proof. Let P be a simple 3-polytope, and let f be the number of/-faces of P
(i 0, 1, 2). Suppose f0 _> 21. Let g be the number of vertices of P contained in
its ith facet (i 1,..., f2). We claim that there exists a facet having g _> r(2) 6.
Now fl 3f0/2 (P simple), so Euler’s formula implies f0 2(f2 2). Counting
incidences of vertices and facets, we get =1 g 3f0 6f2 12. Now f0 _> 21,
so f2 >_ (3.21 + 12)/6 > 12. Thus, the average number of vertices on a facet is
(6f2- 12)/f2 6- 12/f2 > 5, so there must be a facet containing at least six
vertices, proving the claim. But then the set of vertices of this facet has a Radon
partition, by Observation 1.4, so the set ext(P) has a Radon partition as well. [:]

It will be interesting to find tighter lower and upper bounds for r(d) and r(d, SP),
or at least the exact values of r(3) and r(3, SP). Even more specifically, does the set
of extreme points of any lattice 3-polytope realization of the dodecahedron (see Fig.
4) always admit a Radon partition?
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A NOTE ON
PLANAR GRAPHS AND CIRCLE ORDERS*
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Abstract. A partially ordered set P is called a circle order if one can assign to each element
a @ P a circular disk in the plane Ca so that a b if and only if Ca C Cb. To a graph G (V, E)
associate a poser P(G) whose elements are the vertices and edges of G. v e in P(G) exactly when
v @ V, e E, and v is an endpoint of e. It is shown that G is planar if and only if P(G) is a circle
order.

Key words, planar graphs, circle (containment) orders
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The purpose of this paper is to provide a characterization of planar graphs by
showing that natural partially ordered sets associated with planar graphs are circle
orders.

A circle order is a partially ordered set P with the property that to each element
a E P we can assign a circular disk (i.e., a circle together with its interior) Ca so that
a < b if and only if Ca C Cb. The mapping a H Ca is called a circle containment
representation of P. Note that if the centers and radii of a and b are Pc, Pb and ra, rb,

respectively, then

Ca C Cb IPa--Pb[ < rb--ra.

Circle orders (and their relatives) have attracted a great deal of interest [2]-[5],
[7]. One of the more nagging problems in this area is the following question.

THE QUESTION. Is every finite three-dimensional poser a circle order?
In [5] (see also [3]) it is shown that the infinite three-dimensional poset Z3 (triples

of integers ordered coordinatewise) is not a circle order, yet if the word "circle" is
replaced by "regular 10,000-gon" the answer to the question is "yes."

(The circle order concept extends naturally to higher dimensions yielding sphere
orders. These partial orders arise as "causality" orders in physics (see [4]) and it is
known [2] that there are posets that are the containment order of spheres in Rk+l

but not of spheres in Rk for every positive integer k.)
One way to approach the question is to consider specific kinds of three-dimensional

orders and determine whether or not they are circle orders. A theorem of Schnyder
[6] provides a natural candidate class as follows.

Given a graph G- (V, E) we can define the vertex-edge incidence poser P(G) as
follows. The elements of P(G) are the vertices and edges of G, i.e., P(G) Y U E.
In P(G) we have v < e exactly when v E V, e E, and v e, i.e., v is an endpoint
of e.

Perhaps the nicest result on the orders P(G) is the following result due to Schny-
der [6].

THEOREM 1. Let G be a graph and let P(G) be its vertex-edge incidence poser.
The graph G is planar if and only if dim P(G) <_ 3.

Theorem 1, together with an affirmative answer to the question, would yield the
implication ifG is planar, then P(G) is a circle order. This implication turns out to be
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Department of Mathematical Sciences, The Johns Hopkins University, Baltimore, Maryland

21218 (e-mail: ers@cs.jhu.edu or ersjhunix.bitnet). This research was supported in part by
Office of Naval Research contract N00014-85-K-0622.

448



ON PLANAR GRAPHS AND CIRCLE ORDERS 449

an easy consequence of a result due to Thurston’s [8] work in geometric topology (see
Theorem 4 below). Moreover, we also prove here the opposite implication, namely,
if P(G) is a circle order, then G is planar. Thus our main result is the following
characterization of planar graphs via circle orders.

THEOREM 2. Let G be a graph and let P(G) be its vertex-edge incidence poset.
The graph G is planar if and only if P(G) is a circle order.

In our proof we find it more convenient to work with the dual poset /6(G) of
P(G). (Recall that the dual 15 of P is a poset with the same elements as P such that
x <p y == y <p x.) We lose no generality thanks to the following observation.

LEMMA 3. A poser P is a circle order if and only if its dual [9 is a circle order
as well.

Proof. Since duality is an involution, it is enough to show that if P is a circle
order then so is its dual/5. Suppose P is a circle order and to each a E P we assign
a circle C(pa, ra) with center Pa and radius ra. Choose a number M greater than
ra (for all a E P). Now assign a - C(pa, M ra) which gives a circle containment
representation for/5. []

Thus it is enough to prove that G is planar if and only if/3(G) is a circle order.
Proof of Theorem 2. First, assume that/3(G) is a circle order. To each vertex v

we assign a circle Cv with center pv and radius rv and to each edge vw we have Cvw
with center Pvw and radius rvw. The inclusions we have are exactly those of the form
C.C.

We show that G is planar by finding an explicit embedding. Each vertex v

V(G) is embedded at the point pv, the center of its representing circle. Each edge
vw is embedded as the "two-step" path consisting of the line segment from p to

Pvw followed by the segment from Pvw to Pw. We must show that these edges are

noncrossing.
Suppose, for sake of contradiction, that ab, cd E(G) and their embeddings cross.

Without loss of generality, line segment PaPab intersects line segment PcPcd.
By the triangle-inequality we see that

IPa Pabl + IPc Pdl >_ IPa Pcdl + [Pc PI.
Add tab + rcd to both sides and use the facts

ra > IPa Pabl + rab (because Ca Cab),
rc > IP Pcdl + rcd (because Cc Ccd)

to find that

ra q rc > (IPa Pcdl+ red) + (IPc Pabl / tab).

It follows that either ra > Ipa--Pcdl+rcd or rc > Ipc--Pabl+rb. The first contradicts

Ca 2 Ccd and the second contradicts Cc 75 Cab. Thus edges ab and cd do not cross.
Note 1. It is possible, however, that edges such as ab and ac do cross if segments

PaPab and PcPc intersect. However, crossings of edges emanating from the same
vertex are easy to repair locally. See Fig. 1.

Note 2. The two-step paths cannot be readily replaced by straight line segments
between the centers of the vertex circles. Figure 2 shows how the line segments PaPb
and PcPd might intersect and how two-step paths avoid this collision.
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FIG. 1. How line segments PaPab and PcPac might intersect and how to repair such an inter-
section.

FIG. 2. Why two-step paths are necessary.

It therefore follows that if/3(G) is a circle order, then G is planar.
The converse follows easily from the following result due to Thurston [8].
THEOREM 4. Let G be a planar graph. We can assign to each v E V(G) a

circular disk Cv so that vw E(G) implies Cv and Cw intersect at a single point and
vw E(G) implies that Cv and Cw are disjoint.

If G is planar let the circles assigned to vertices of G be the circles whose existence
is guaranteed in Theorem 4. If vw E(G) let Cvo be centered at the unique intersec-



ON PLANAR GRAPHS AND CIRCLE ORDERS 451

tion point of Cv and Cw with radius 0. Clearly, this is a circle representation of/5(G).
(For those unhappy with circles of radius 0, note that we can simply increase all radii
by a fixed amount, say 1, and no containments are created or destroyed.) []

Combining Theorems 1 and 2 we obtain the following lovely result.
THEOREM 5. Let G be a graph and let P(G) be its vertex-edge incidence poser.

The following statements are equivalent:
G is a planar.
P(G) is a circle order.
dim P(G) < 3.
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Abstract. Several classes of cyclic orders arising from geometrical, algebraical, and combinatorial structures
are introduced, and their extendability to total cyclic orders is studied. By analogy to Dushnik-Miller dimension
for partial orders we define, for circular orders, intersection and product dimension that may differ up to a
factor of two. A class of cyclic orders that allow a graphic representation similar to Hasse diagrams is also
studied.
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1. Introduction.
1.1. A set X with a set T c X of triples is called a cyclic order if and only if T is

cyclic, asymmetric, and transitive. We can easily find examples for cyclic orders in various
mathematical areas. The most well-known class of cyclic orders is derived from partial
orders (we call them poset-generated cyclic orders). Other classes that we will study in
more detail in 2 and 3 are the class of arc orders generated by sets of intervals on a
circle in the plane, the class of incidence orders that come from incidence systems, the
class ofcyclic orders generated by triangulated graphs, and the class ofpath orders derived
from a set of paths in the plane with common initial and final point.

More cyclic orders can be obtained from categorical operations like subobject, prod-
uct, and intersection. The most interesting class is the class of circular orders that are
intersections of total cyclic orders (circles). In 2 we show that this class is closed with
respect to subobjects and products. We show by a counting argument that incidence
orders in general are not circular. On the other hand, path orders, arc orders, and poset-
generated cyclic orders are circular.

The decision whether a cyclic order is totally extendable is known to be NP-complete.
However, for an infinite cyclic order, this property is determined by its finite cyclic
suborders since we prove that a cyclic order is totally extendable (circular) if and only
if each finite cyclic suborder is totally extendable (circular).

By analogy to Dushnik-Miller dimension for partial orders we introduce in 5 for
the class of circular orders the intersection and product dimension. It turns out that for
a circular order the two dimensions may differ up to a factor oftwo. We also give several
estimates for the dimension of certain circular orders.

There exist two characterizations of cyclic orders. The first is given by permutations
on a set, the second, which is discussed in detail in 4, characterizes a cyclic order by
its maximal total cyclic suborders. A specification of the latter equivalent description of
cyclic orders enables the graphical representation ofcertain cyclic orders (graphical cyclic
orders) by means of oriented graphs (Hasse diagrams). We also study relations of the
class of graphical cyclic orders to other classes.
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In this article we study both finite and infinite cyclic orders. When dealing with the
cyclic orders arising from some geometrical representation, we restrict ourselves only to
the finite case, though the results often allow extension to the countable case.

1.2. We start with the following definition.
DEFINITION. Let X be a set, and T c X be a set of triples. Then

C=(X,T)=(X(C),T(C))

is called cyclic order if and only if the ternary relation T is

(C Cyclic, i.e., (x, y, z) e T implies (y, z, x) T;

(C2) Asymmetric, i.e., (x, y, z) e Timplies (z, y, x) T; and

(C3) Transitive, i.e., (x, y, z), (x, z, w) e T implies (x, y, w) e T.

A cyclic order C (X, T) is called a total cyclic order or circle if and only if T is

(C4) Total, i.e., for each x, y, z X, x 4: y 4: z 4: x, either (x, y, z) T or
(z, y,x) T.

Note that for a cyclic order C (X, T), (x, y, z) T implies x 4 y 4 z 4: x.
1.3. The notion of cyclic orders was first introduced by Huntington [13] in 1924

and then independently many times in 11 ], 32 ], and 19 with geometrical motivation,
in 8 and 22 with algebraic motivation. Axioms for total cyclic orders appear in 12
and 5 ].

Despite these many sources there are only few results on cyclic orders. The most
interesting results concern extensions of cyclic orders to total cyclic orders [8 ], [17]
mentioned in 2.6. This is also our main scheme here.

1.4. Now we give a collection of examples of cyclic orders.
1.4.1. In this paper, a partial order P (X, R) always means that the relation R c

X2 is asymmetric (hence antireflexive) and transitive.
A cyclic order C (X, T) is called poser-generated, indicated by Cp, if and only if

there exists a partial order P (X, R) such that

T= { (x, y, z), (y, z,x), (z,x, y)I (x, y), (y, z)eR }.
1.4.2. Let X be an at most countable set of arcs on a circle in the Euclidean plane.

(An arc means here an open, semi-open, or closed interval on a circle such that its closure
is not the whole circle. Such configurations appear in the analysis ofphasing traffic signals
35 ]. The related intersection graphs were characterized by Tucker 37 ], 38 ].) Let three

arcs form a triple if and only if they are pairwise disjoint and ordered clockwise on the
circle. We call this cyclic order an arc order. Especially, if each two arcs in X are disjoint,
then this yields a total cyclic order.

1.4.3. Let I (X, 9) be an incidence system satisfying [b[ >= 3 for each b e 9
and b b’l --< for each b, b’ e 9, b q: b’. On each block b e , b { b, b2, },
choose a cyclic orientation b <b ba <b <b b on its elements. Then we get a cyclic
order C (X, T), called incidence order, from I by

(x,y,z)eT iff x<bY<bZ<bXfOrsome be3.

1.4.4. A graph G (X, E) is called oriented if and only ifE c X2 is asymmetric. A
finite-oriented graph G (X, E) is called a circuit if and only if forX { Xl, x2, "", xn },
E { (xi, xi+ 1)[i 1, n 1} U { (xn, Xl)}. G’ is called chordless circuit in G if
and only if the circuit G’ is an induced subgraph of G.
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Now, let G (X, E) be a triangulated oriented graph, i.e., there are no chordless
circuits of length greater than three in G, and let each edge e e E be in some directed
triangle in G. Then G induces a cyclic order C (X, T) in the following way:

(x,y,z)eT iff(x,y),(y,z),(z,x)eE.

1.4.5. Let a,/3 be two arbitrary but fixed points in the Euclidean plane E2. A path
x is a continuous and injective mapping x: [0, 1] - E2 with x(0) a, x( =/. Let
Xbe a set of paths such that each pair of distinct paths intersect finitely many times. For
each three paths x, y, z X, x 4: y 4: z 4: x, let Sxyz be a circle in the plane with center
a such that x, y, z do not intersect on Sxyz or in its interior except in a.

Now we can derive a cyclic order C (X, T), called path order, from X in the
following way:

(x, y, z) T if and only if x, y, z are pairwise disjoint (except in a,/3) and x, y, z
in this order intersect Sxyz clockwise. See Fig. 1.
Example.

FIG.

X= {1, 2, 3, 4, 5 } and T= {(1,2,3),(2,3, 1),(3, 1,2),(1,2,5),(2,5, 1),(5, 1,2),
(2, 3, 4), (3, 4, 2), (4, 2, 3)}.

1.5. An equivalent definition of cyclic orders can be given by a certain set of per-
mutations. Let r be a permutation on a set X. Let us call r a 3-cycle (or 3-permutation)
if it consists of exactly one cycle of length three leaving all other points fixed.

PROPOSITION. Let S be a set of3-cycles on X satisfying thefollowing:

Ifr S, then r- S.(P1)

(P2) Ifr, 0 Sand roo is a 3-cycle (o denoting the usual composition ofpermutations
then roo S.

Then C (X, T) where T { (x, y, z) y r(x), z r(y) andx r(z)for some r S}
is a cyclic order. Conversely, every cyclic order can be obtained in this way.

For a second characterization of cyclic orders see the theorem in 4.5.
1.6. Let C (X, T) be a cyclic order, and let X’ c X be a proper subset of X. If

the restriction C[x, of C to X’ is a circle, then C’ C[x, (X’, T f) X’3) is called a
circle in C. C’ is called maximal circle in C if and only if it is a circle in C and there is
no X"

_
X such that X’ c X" and C[x,, is a circle in C. Using Zorn’s lemma it is easy

to see that each circle in a cyclic order is contained in some maximal circle (cf. [13]).
For a cyclic order C, let (C) designate the set ofall maximal circles in C. For a

circle C (X, T) and x, y e X, x 4: y, let C(x, y) c X designate the following set:

C(x,y):= {zeXl(x,z,y)e}.

Let C (X, T) and C’ (X, T’) be cyclic orders (on the same underlying set X) and
T
_

T’. C’ is called total extension of C if and only if C’ is a circle.
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1.7. We now give some more definitions that can be used to obtain new cyclic
orders from already existing ones.

Let C (X, T) be a cyclic order and X’ c X be a proper subset of X. Then the
restriction C’ := CIx, of C to X’ is called cyclic suborder, indicated by C’ =< C.

Let { C (Xi, Ti)li I } be a family of cyclic orders. Then the (direct) prod-
uct of the family F is given by X() i1 Xi (the Cartesian product), and
T() ii Zi, where ((Xi)ieI’(Yi)iI’(Zi)iI) - ieI Ti if and only if (xi, Yi, Zi) E

Ti for each E I.

The homomorphisms (cf. 2.4)

pj X Ci -- Cj xi)i i---xj
i1

are called (natural) projections. The intersection f3 of the family is defined by

X(N)= Nxi, T(N)= N Ti.
iI iI

By definition of cyclic suborder, product, and intersection of cyclic orders, the next
theorem follows immediately.

THEOREM. The class ofcyclic orders is closed with respect to subobjects, products,
and intersections.

1.8. The most interesting class of cyclic orders that will be investigated in 2 and
5 is the class of circular orders.

DEFINITION. A cyclic order is called circular order ifand only if it is the intersection
of a family of circles.

1.9. For convenience, we denote a finite circle CwithX(C) { Xl, Xn } simply
by xl x2"’" xn to indicate the order on C:

(x, x, Xk) T(C) iff either < j < k or j < k < or k < < j.

Finally, if { tl, t2, tk } is a set of sequences each of length at least three, we write
T (tl, t2,’", tk) to indicate that T is the set of all triples and all cyclic permu-
tations of triples which can be derived from ti according to rule (,). For example, T
( 1345, 2345 ) denotes the set of triples of the disk order of the example in 1.4.5.

2. Circular orders.
2.1. In this section we begin the investigation of the class of circular orders (for the

definition see 1.8). We show that this class is closed with respect to subobjects and
products and we prove that circles are the only subdirectly irreducible cyclic orders in
the class of circular orders.

Then we reflect on the extendability of cyclic orders to total cyclic orders. Examples
of cyclic orders that do not have any total extension are well known. We show the
existence of an infinite series of incidence orders that are not totally extendable. We also
prove that a cyclic order is totally extendable, respectively circular, if and only if each of
its finite cyclic suborders is totally extendable, respectively circular.

2.2. THEOREM. The class ofcircular orders coincides with the class ofall subobjects
ofproducts ofcircles.

Proof. Obviously, the intersection of a family of circles is isomorphic to a cyclic
suborder of the product of this family (viz., the "diagonal" of the product). We prove
the converse by defining a set of total extensions of the product of a family of circles
representing the product as the intersection of these extensions.
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Let " { C/= (Xi, Ti) e I } be a family of circles, and let I be a linearly ordered
index set. For e I, let sie Xi be arbitrary but fixed elements, and define

Ri:- { (y,z)l(si,Y,z)e Ti} tO { (si,y)l yeXi- { si) ).
First, for each e I, we define two lexicographic orderings <i and <i of I[-tuples. Let
x (xi)i i and y (Yi)i 1 be II -tuples. Then, for e I,

x <i y : either (xi, y) e Ri
or (xj, yj) e R for some j >

and xk yk for all =< k < j
or (x, y) e R for some j <
and xg yg for all =< k or k < j,

x </y : either (xi, y) Ri
or (yj, xj) e Rj for some j >

and xg y for all =< k < j
or (y, x) e Rj for some j <
and xk y for all =< k or k < j.

Now we define total extensions Dk XieI Xi, Uk), k e { j, j }, j e I, of by

(x, y, z) e Uk iff either x <k Y <k Z or y <g z <k X or z <k X < y

for x, y, z e iei Xi, x y 4 z 4 x. For (x, y, z) e ii Ti, we have x 4: y 4: zg 4:
xk for each k e I, and it is easy to see that (x, y, z) e U, Uj_. for each j e I. Suppose
(Z, y, X) iel Ti for x, y, z e ix Xi with x 4: y 4: z 4: x. Then either there exist
coordinates i, i2 e/such that (x,, y,, z,)e Ti, (x2, z2, yi:)e Ti: or there isa coordinate
e I such that I{ xi, Yi, zi }l < 3. In the first case, we have (x, y, z), (x, z, y) Ui, fq

Ui:, in the second, (x, y, z), (x, z, y) Ui D Ui_. Hence,

x x q and X Ci X zt.nz  .
iI jI iEI I

D

2.3. Now it is routine to show the following theorem.
THEOREM. Subobjects and products ofcircular orders are circular again.
2.4. However, the minimum cardinality ofa family ofcircles necessary to represent

a given circular order as intersection of this family does in general not coincide with the
minimum cardinality of a family of circles such that the circular order is isomorphic to
a subobject of a product of this family. This feature will be discussed in more detail in
5.

Next we prove why it is reasonable to express the "complexity" of a circular order
by the minimum number of circles necessary to represent it. To this end, we first have
to give some additional definitions.

Let C (X, T) and C’ (X’, T’) be cyclic orders andf:X -- X’ be a mapping.
Then f is called a homomorphism, indicated byf:C -- C’, if and only if for each x, y,
z e X, (x, y, z) e T implies (fx, fy, fz) e T’.

If f is an injective homomorphism, then f is called an embedding if and only if
fC <= C’. Iff is a bijective homomorphism andfT T’, then f is called an isomorphism
and C, C’ are said to be isomorphic, indicated as usual by C - C’.

Remark. For a homomorphism f:C -- C’ and x, y e X(C), x 4 y, fx fy is
possible only if x, y are not both in some triple of T(C).

2.5. The cyclic order C (X, T) is called subdirectly irreducible in a category c
ofcyclic orders ifand only if for each embeddingf C -- iei Ci into a product of cyclic
orders from cg such that all Pif:C -- Ci are onto, at least one ofpif is an isomorphism.
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THEOREM. Circles are the only subdirectly irreducible cyclic orders in the class of
circular orders.

Proof. Suppose C (X, T) to be a circle and the inclusion mapping (embedding)
f:C -- ii Ci into a product of circles to be such that each pif:C -- Ci is onto. Since
C is cyclically totally ordered and all pifare homomorphisms, each Pif has to be one to
one and thereby C - Ci I).

Conversely, suppose the circular order C (X, T) are not totally ordered. Then
there is a family { Ci (X, Ti)li I} of circles with C f’l" and an embed-
ding f:C--, x-(x,x,...), since (x, y, z) e T( f’)o) if and only if
(fx, fy, fz) T(). By definition of the embeddingf, each Pif is onto and even one
to one, but obviously none of Ci is isomorphic to C. Hence C is not subdirectly irre-
ducible.

2.6. Not each cyclic order is circular. There even exist cyclic orders that do not
have any total extension. The first example was given by Meggido 17 ]. Here we prove
the existence of such examples by a counting argument. It indicates that a "random"
cyclic order is without total extensions. This proof also reveals that incidence orders (for
the definition see 1.4.3) in general are not totally extendable.

Let (X, /’) be a finite, simple, and uniform set system, i.e., 3 -< MI M’I and
M f’l M’I =< for each M, M’ e //, M 4: M’. On each set M //choose a cyclic

orientation <t of its elements and define an incidence-order C (X, T) from (X, )
as described in 1.4.3.

PROPOSITION. Ifl /a( > X]" log X I, then thereexistsafamilyofcyclicorientations
(<t)tt such that the incidence order Cfails to be totally extendable.

Proof. For given (X, /) there exist at least 2 Ial different cyclic orders C (by the
above construction) since 2 Iul is a lower bound for the number ofdifferent orientations
of the sets M e //. However, there exist only (I X )! circles on X, and obviously
two different incidence orders cannot have the same circle as total extension. The bound
then follows by using Stirling’s formula.

For instance, for each Steiner triple system of order at least 19 there exist cyclic
orientations of the blocks such that the derived cyclic order has no total extension.

2.7. It was proved in 8 that the recognition ofcyclic orders having total extensions
is NP-complete. For an infinite cyclic order this property is determined by its finite cyclic
suborders as follows.

THEOREM.
A cyClic order is totally extendable ifand only if each finite cyclic suborder is

totally extendable.
(ii) A cyclic order is circular ifand only ifeach finite cyclic suborder is circular.
Proof. It is sufficient to prove the "if-part" for both statements. We use Rado’s

theorem (which is equivalent to axiom of choice).
RADO’S THEOREM [30, Thm. 7.1.4]. Let G(V, V’) be a bipartite graph that is

locallyfinite in V. For each finite set A c V let there be defined a choicefunction fA (a),
a A, associating with a the unique edge (a, fA (a))from it. Then there exists a choice
function fv(v) defined for all of V with the property that for each A there exists a set
B
_
A such thatfA(a) fB(a), a A.
(i) Let C (X, T) be a cyclic order such that for each finite subset Y c X there

is a total cyclic order (Y, Tr) with Ty
_

T[r. We apply Rado’s Theorem as follows.
Set V := (’), the set of all unordered triples of X, and V’ { + 1, -1 }. Let

G(V, V’) be the complete bipartite graph on V, V’. Let < be some (fixed) linear order
ofX. For each finite A c V define the choice functionj as follows.
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Set Y := tAA c X and for every { a, b, c } A, a < b < c, and let

+1 if (a,b,c) Tr,
fa({a’b’c})=-1 if(a,c,b)Tr.

Clearly, fv determines a total extension C’= (X, T’) of C. (Define (a, b, c)e T’
if and only if fv({a, b, c}) +l for a<b<c, and (a,c,b)T’ if and only if
fv( { a, b, c } -1 for a < b < c. Thus T’ is complete and extends T.)

(ii) Let C (X, T) be a cyclic order such that each finite cyclic suborder is circular,
i.e., for each finite Y c X, there is a family of circles { (Y, Zi)li IF} with T I
Niir Ti. Let (a, b, c) be a triple which is not in T. Then, for each finite subset Y = X
with { a, b, c }

___
Y, there is a total extension of Tit not containing (a, b, c). Applying

Rado’s Theorem, we obtain a total extension Tabc of T not containing (a, b, c). Thus C
is circular.

3. Path orders, arc orders, and lmset-generated cyclic orders.
3.1. We will continue our study of certain subclasses of cyclic orders by the inves-

tigation of path orders. We show that path orders are circular and circular orders are in
general not path orders. We also prove that arc orders are path orders and hence circular
but not each path order is an arc order. Finally, we prove that finite poset-generated
cyclic orders are path orders and investigate the relation of this class to other classes.

3.2. PROPOSITION. Path orders are totally extendable.
Proof. Let C (X, T) be a path order. We can assume that X is finite, since the

statement then follows for infinite path orders by the theorem in 2.7. By assumption
( 1.4.5), for each three distinct elements x, y, z in X, there exists a circle Szyz in the
plane with center a such that x, y, z do not intersect on Sxyz or in its interior except in
a. (In the sequel, by a point of intersection we always mean a point different from a and
/3; if two paths do not intersect in this sense, we call them disjoint.) Hence, since X is
finite, there exists a circle Sx in the plane with center a such that no two paths in X
intersect on Sx or in its interior. The points ofintersection ofpaths from Xwith Sx define
a total cyclic order Co (X, T0) on X which extends the path order C.

3.3. THEOREM. Path orders are circular.
Proof. Again, we may assume that the path order C (X, T) is finite. Let Co

(X, T0) be the total extension of C defined in Proposition 3.2. For points 3’, 6, 3’ 4: 6, on
a path x X, let 3" <x 6 indicate that a walk on x from a to 6 has to pass
X, x :/: y, be two paths that intersect. Let 3" :/: a be the first point of intersection ofx and
y on x when walking on x from a to/, i.e., if 6 e x fq y, a 4:6 4 3", then

Ifthe finite face in the plane bounded by x( 0, x- (3") ]) and y ([ 0, y- (3") ]) contains
3, then let Ny’= Co(y, x) t.J { x }, otherwise let Ny’= Co(x, y) U {x }.

Let My
_

Nxy be the smallest set satisfying
(i) x e Mzy, and
(ii) If z e My and there is a path w Nxy that is disjoint with z and either

(z, w, y) To if Nx, Co(x, y) tO {x} or (w, z, y) To if Nx, Co(y, x) tA {x}, then
W mxy.

Since Mxy is the smallest set with properties (i), (ii), each z Mxy, z X, is disjoint
with x and, by definition of Nxy, intersects y.

Now define a total cyclic order Cxy (X, Ty) of C by

(a,b,c)Txyiffeither(a,c,b)Toif{a,b,c} fqMxy= {b} or{a,b,c}-
Mx, { b } or (a, b, c) e To in all other cases.

Figure 2 illustrates the case where Ny Co(x, y) t_J { x }.
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FIG. 2. Members ofMxy"; members ofNxy Mxr: (C); members ofX N:y: O.

CLAIM 1. Cxy extends C.
Proof. We have to show that T

_
Tzy. Let (a, b, c) e T, thus (a, b, c) e To. Then

not both x and y are contained in (a, b, c). If we check all possibilities that can arise for
elements a, b, c, we may distinguish the following cases:

(i) If { a, b, c} Mxy J or { a, b, c}
_
My, then (a, b, c) e Ty.

(ii) { a, b, c } f) Mxy { a, c } cannot occur.
(iii) In all other cases, we have { a, b, c } Mxy

_
X- Ny { y } and therefore

(a,b,c)eTy.
This proves Claim 1.

CLAIM 2. C Co O { Cxy[ X, y X are intersecting paths }.
Proof. Let C’ Co c 7) { Cy[ x, y e X are intersecting paths }. By Claim l, it

suffices to show that T(C’)
_

T. Let x, y, z e X, x # y # z # x, be paths with (x, y, z),
(z, y, x) T. Without loss of generality let (x, y, z) e To and let x and y intersect. If
Nxy Co(x, y) t.J { x }, then z . X Nxy { y } and (y, x, z) Txy. Otherwise we have
either z Mxy whence y, x, z) Txy, or z Mzy whence y and z intersect. Then Nyz
Co(y, z) t_J {y}(Nyz Co(z, y) tA {y} cannot occur then), whence x eX- Ny {z}
and (z, y, x) T,z. Therefore in each case, we have (x, y, z), (z, y, x) t T(C’) proving
T(C’) T.

The theorem is proved by Claim 2 and the theorem in 2.7. ff]
3.4. Not each circular order is a path order: Let C1 12345, C2 14235, C3

14253, and Ca 14523. Then T(f37= C) ( 123, 145,234), which is not representable
as path order since the paths representing 1, 2, and 4 must be disjoint but neither 124
nor 142 belongs to T(C).

3.5. Obviously, path orders are closed under taking subobjects. However, they are
not closed with respect to products: Let C 123456; then C )< C contains, e.g., the triples
1, )(3, 3)(4, 4); 1, )(2, 5)(4, 6); and (3, 3)(4, 4)(2, 5), with neither 1, )(3, 3)-

(2, 5 nor 1, )(2, 5 )(3, 3) corresponding to the situation in 3.4.
3.6. Next we show that arc orders are path orders. On the other hand, not each

path order is an arc order. We also show that products of arc orders need not be arc
orders.

THEOREM. Arc orders are path orders.
Proof. We first prove the theorem for an arc order C (X, T), where X { xili I }

is a set ofclosed arcs on the circle S in the plane. We describe the procedure for generating
the related path-configuration in an informal way since the idea is simple and a formalized
definition would be ugly. Let a be the center ofS and let S’ be a circle with center a and
radius twice the radius of S. Let X’ { xli I } be the central projection (with center
a) of arcs X on S’. Let X ai bi I) with ai <= b with respect to clockwise ordering
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on S; by analogy, xi [ai, b] with ai < bi on S’. Finally, let/3 be a point in the infinite
face of the plane defined by S’.

Then, for each e I and ai < bi, let Pi be a path (in the sense of the definition in
1.4.5 leading from a to/3 which consists of a straight line from a to a, a curve (path)

from a to bi, a straight line from bi to b and a curve from b to/3 (if ai b, then let P
consist of a straight line from a to a and a curve from a to ) such that { eli I}
defines a path order and for 4 j, Pi intersects Pj ifand only ifxi CI xj D { a,/3}. Obviously,
the path order induced by { P;I I } is equivalent to the given arc order. We demonstrate
the procedure for the arc order given in 1.4.2 by Fig. 3.

FIG. 3

IfX { Xi[ e I } is a set of arbitrary arcs, then we replace X by a set X { il 6 1 of
closed arcs that induce the same arc order. First, replace each point a S, which is an
endpoint of arcs { xjlj J} with 4: J c I, by a closed interval of length 2 -m, where
m := min { j J}. (Since Xis at most countable, we can assume without loss ofgenerality
that I .) All other points on S remain unchanged. Now, for each I, let i be the
closure of Xi on the "extended" circle. It is easy to see, that for each i, j 6 I, x f3 xj
if and only if ; fq Y) . Hence X induces the same arc order as X and C is a path
order according to the first part of this proof. D

3.7. On the other hand, not each path order can be represented as arc order since
the poset-generated cyclic order derived from the partial order.% (which is also a path
order according to the theorem in 3.9) cannot be represented as arc order.

3.8. Products of arc orders in general are not arc orders. For example, for a 4-circle
C (i.e., a circle of length 4), C C C cannot be represented as arc order. More
generally, if C is a cyclic order in which the disjoint union of a 3-circle and a 4-circle is
a cyclic suborder, then C is not an arc order.

3.9. The end ofthis chapter is dedicated to poset-generated cyclic orders (see 1.4.1 ).
We show that this class is a proper subclass in the class of path orders. Finally, we show
the existence of arc orders that are not poser-generated and the converse.

THEOREM. Finite poser-generated cyclic orders are path orders.
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Proof. Let P (X, R) be a partial order, and let { Pi (X, Ri)li e I } be a
family of chains with P t’). Represent by a set of parallel and uniformly oriented
directed lines Li, e I, such that for x, y e X, x 4 y, x proceeds y on Li if and only if
(x’, y) e Ri(i e I). Join all corresponding points on each two neighbouring lines. Join all
points on the leftmost line with a new point a left of all lines and all points on the
rightmost line with another point/3 fight ofall lines such that no two ofthese connections
cross each other. Then the set of paths gained by this procedure induces a path order
which coincides with the cyclic order Cp generated by P.

3.10. Conversely, not each path order is induced by a poset since, ifx, y, respectively
y, z, are disjoint paths, x, z need not be disjoint. However, each path order with endpoints
a,/3 lying on the boundary of the face surrounded by the paths and containing all paths
is generated by a poset.

3.11. Poset-generated cyclic orders are obviously closed under taking subobjects
but not with respect to products, which is shown by the example in 3.5. The class of
circular orders is the smallest class containing path orders and being closed with respect
to products.

3.12. Not each poser-generated cyclic order is an arc order since the cyclic order
derived from the disjoint union of chains of length four cannot be represented as arc
order (cf. 3.8 ). On the other hand, the arc order in Fig. 4 cannot be gained from a par-
tial order.

FIG. 4

4. Graphical cyclic orders.
4.1. Usually when working with an abstract structure it is convenient to have the

possibility of drawing pictures to gain more insight. Unfortunately, there is no obvious
way of drawing diagrams for a general cyclic order.

In this section we introduce a certain subclass of cyclic orders that can be represented
by means oforiented graphs. Since the maximal circles in cyclic orders play an outstanding
role in the process of transition from cyclic orders to oriented graphs, we first study their
"behaviour" in cyclic orders. This analysis leads to a new characterization ofcyclic orders
by their maximal circles. A specification of this result then enables us to introduce the
class of graphical cyclic orders which can be represented by a certain class of oriented
graphs called Hasse diagrams (of cyclic orders). Triangulated oriented graphs having
each edge in some directed triangle are Hasse diagrams.

At the end of this section we investigate the relation of this class to other classes of
cyclic orders.

4.2. For definitions and notation used in the following, see 1.6.
DEFINITION. Let CI, C2 be circles, { x, y }

_
X(CI f) X(C2), C1 (x, y) 4 Jg5,

C2 (y, x) 4 . Then

C& {X}Cl(X,y){y}C2(y,x)
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denotes a circle with

x(c)= (x,y}

T(C)= T(C {x,y) t_JC(x,y)) T(C2l {x,y) C2(y,x))(xzylzC,(x,y))

(xywl wCy,x))(xzw,ywzlzC,x,y), wCy,x)).

4.3. DEFINITION. For a cyclic order C (X, T) and /(C) { Mili I } its set
of all maximal circles, we define the following axiom of intersection.

(AI) For all 4: j and x, y X(Mi) fq X(Mj), x 4: y,
Mi(x, y) J iffM(x, y) 4: ,
Mi(y, x) 4 iffMj(y, x) 4:

If Mi(x, y) 4: 4: Mi(y, x), then there are k, l I with
Mk & {x}Mi(x, y){y}M(y, x),
Mt & {x}Mj(x, y){y}Mi(y, x).

4.,1. LEMMA. Let l { Mil I } be a family of circles satisfying AI ). Let no
circle ofl be contained in any other circle of l. Then, for all
X(Mi) I") X(Mj), x y z : x:

Mi(x, y) CI Mj( y, x) , Mi(Y, x) f’) Mj( x, y)
(2) (x, y, z) e T(Mi) ifand only if(x, y, z) T(Mj.).
4.5. THEOREM. For a cyclic order C, l C) satisfies AI ). Conversely, let

{ Ci (Xi, Ti) 1} be afamily ofmaximal circles satisfying (AI). Then there exists a
unique cyclic order C (X, T) with X toiel Xi and I(C)

Proof. Assume Mi(x, y) 4: j and Mj( x, y) . Then there are z Mi(x, y),
w /14( y, x) with xzy T(Mi), xyw T(Mj). By (C1) and (C3), xzw, ywz T. Let
z’ e Mi(x, y), z 4: z’, and without loss of generality xzz’, xz’y, zz’y T(Mi). Then xz’w,
ywz’, zz’w e T, i.e., xzz’yw is a circle in C. Analogously, we get for w’
w’, that xzyww’ is a circle in C. Thus we get that there is a circle Mk in /(C) containing
{ x} tA Mi(x, y)to { y} tO Mj( y, x). SinceM is supposed to be maximal, this contradicts
the assumption Mj(x, y)

By the same argument, we see that Mj( x, y) 4: implies M(x, y) 4: . By analogy,
we prove that Mi(y, x) 4: if and only if Mj.( y, x) 4:

Hence, if Mi(x, y) Mi(y, x), then there are circles M, Mi l(C) with
X(Mk)

_
{x} tO Mi(x, y) I,.J {y} tO Mj(y, x), X(M)

Mi(y, x). Suppose v eX( Mk) {x} tO Mi(x, y) tO {y} tO M(y, x). Let z e Mi(y, x)
be arbitrary. If possible, choose u, w e {x} tA Mi(x, y) tO {y} with uvw e T(M) such
that uwz e T(Mi). Then uvz, vwz e T, which contradicts the fact that M; is maximal.
Otherwise, we have xyv e T(M:). Let z e M(x, y) be arbitrary. Then yvz, zvx e T,
which contradicts the fact that My is maximal. Therefore, X(M) { x} tO Mi(x, y) tO
{y} tO My(y, x). By analogy, we prove that X(Mt) {x) tO My(x, y)tA {y} tO Mg(y,x).
Obviously, M, Mt are "compatible" with Mi, My whence T(M), T(Ml) are as stated in
the claim.

First we show that C is uniquely determined. Let xyz T. Then there exists a
maximal circle (Y, T] y) in C containing xyz. Since /(C) ///, there is some e I
such that Ci (Y, Tit), hence xyz e Ti. Conversely, let xyz e Ti for some e I, then
xyz T. Hence it remains to show that C exists. Define T tOii Ti. Since each Ci is a
cyclic order, (C1) holds for C. Obviously, (C2) follows from the second part of the
lemma in 4.4. Now let xyz, xzw e T. Then there are i, j e I with xyz e Ti, xzw e T.
If j, we are done. Otherwise we have [C/f) C[ >= 2. Since C/(x, z) 4: C( x, z),
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C(z, x) 4 4 C(z, x) there is k e/with Cg g {x} C/(x, z){z}Cj.(z, x), hence xyw
c= Tk and xyw T. This proves (C3).

4.6. For the definition of the class of graphical cyclic orders we first define the
"axiom of intersection" for oriented graphs similar to the one in the definition in 4.3
for maximal circles. (For definitions and notation concerning graphs we refer to 1.4.4,
respectively, 4].) Then we describe the transition from cyclic orders to oriented graphs
and vice versa and mention some problems arising in this process. Finally, a character-
ization of oriented graphs that represent cyclic orders is given.

For an oriented graph G let /’(G) designate the set ofall chordless circuits in G
For a circuit G (X, E) and x, y, z X, x 4: y 4 z 4: x, we write x y -- z if and
only ifthere is a directed path in G leading from x to y without traversing z and a directed
path in G leading from y to z without traversing x. For a circuit G (X, E) and x, y
X, x 4 y, let G(x, y) X designate the following set:

G G
G(x, y) { zXI x-’ z--- y}

4.7. DEFINITION. Let G1, G2 be chordless circuits, x, y e X(G1) CI X(G2),
Gl(X, y) , G2(y, x) . Then

a & {x}al(x,y){y}a2(y,x)

denotes a chordless circuit with

X(G) {x, y} UGI(X, y)UG2(y,x),

E(G) E(G1 {x,y} UGI(X,y))UE(G2I {x,y} UG2(y,x)).

4.8. DEFINITION. For an oriented graph G (X, E) and ///(G) {M[i I} its
set of all chordless circuits, we define the following axiom of intersection:

(AI) For all 4 j and x, y e X(Mg) f) X(M), x 4: y,
M(x, y) iff(x,y),
M(y,x) iff(y,x).

IfM(x, y) M(y, x), then there are k, e I with
M {x}Mi(x, y){y}.(y, x),
M g {x}(x, y){y}Mi(y,x).

4.9. LEMMA. Let { Mg[ e I } be afamily ofchordless circuits satisfying AI ).
Then,for all C j and x, y, z e X( Mi) X(), x y z x:

Mi(x, y) (y, x) , Mi(y, x) (x, y) .
(2) x y z ifandonlyifx
4.10. DEFINITION. (i) For an oriented graph G (X, E) and (G) its set of all

chordless circuits, let G (X, T) be defined as follows. For each x, y, z e X, x y
zx,

M M
(x,y,z)eT iff xyzforsome Me(G).

(ii) For a cyclic order C (X, T) and (C) its set of all maximal circles, let
NC (X, E) be defined as follows. For each x, y e X, x y,

(x, y) E iff (x, y, z) T(M) for some z X, M (C) such that (x, u, y) g
T(M) for each u e X.

4.11. THEOREU. For an oriented graph G, G is a cyclic order ifand only fthe
set ofall chordless cycles (G) satisfies AI ).



CYCLIC ORDERS 465

Proof. Obviously, each chordless circuit of G is matched to a maximal circle of
egG. On the other hand, each maximal circuit of gG is induced by a chordless circuit
of G. Hence, necessity follows from part one of the proof of the theorem in 4.5.

Sujficiency. (C follows from the definition of the operation and from the def-
inition of -.--.. (C2) follows from the second part of the lemma in 4.9. (C3) is
proved by an argument similar to the "=" part of the proof of Theorem 4.5. []

4.12. PROPOSITION. For a cyclic order C, fqC is an oriented graph that in general
does not satisfy AI).

Proof. We have to show that
E(fC) for some x, y e X, x q: y. Then there are circles Mi, M (C), Mi 4: M, and
elements u, v e X such that (x, y, u) T(Mi), (y, x, v) T(M) and Mi(x, y)
M(y, x). Then, by (C3), (x, v, u), (y, u, v) e T. Hence xvyu is a circle in C. Thus
there is a circle Mk in C containing x, Mi(x, y), y, M( y, x), contradicting the fact that
M;, M are maximal. Hence, fqC is an oriented graph.

To show that in general (AI) does not hold, let C (X, T) be the cyclic order on
X {1, 2, 3, 4, 5, 6, 7, 8, 9} with T (1234, 3567, 1968) (Fig. 5). Then {1, 2, 3,

circuits M, N in (qC with -- 3 -- 6 and5, 6, 9 }, { 1, 8, 6, 7, 3, 4 } induce chordless
M

N- 6 -- 3. (AI) is obviously invalid, since { } N( 1, 3) { 3 } M(3, does not induce a
chordless circuit in (C.

FIG. 5

4.13. DEFINITION. A cyclic order C is said to be graphical ifand only ifC
and an oriented graph G is called a Hasse diagram (of the cyclic order G) if and only
if G ( cgG and //(G) satisfies (AI).

Obviously, if C is graphical, then (C satisfies (AI), and C is graphical if and only
if (#C is the Hasse diagram of C.

4.14. THEOREM. An oriented graph G is a Hasse diagram if and only if l/l(G)
satisfies AI and each edge ofG is covered by a chordless circuit ofG.

Proof. Necessity is clear by the theorem in 4.11.
Sufficiency. Since G (gG and by the definition of the operation , each edge

of G belongs to a chordless circuit. (AI) follows from the fact, that /(CgG)=
cg///( G). t--1

The following facts are easily verified.
4.15. PROPOSITION. Let G (X, E) be a triangulated oriented graph such that

each edge e E belongs to some directed triangle. Then G is a Hasse diagram.
COROLLARY. Each tournament with each edge in a directed triangle is a Hasse

diagram.
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4.16. Unfortunately, there is no obvious characterization ofgraphical cyclic orders.
For a cyclic order C to be graphical it must not contain a substructure like the one of
the counterexample in the proposition of 4.12. It is unclear, however, whether for
graphical cyclic orders there exists a finite family of forbidden substructures.

4.17. PROPOSITION. Let C, D be cyclic order, C <= D, and let D be graphical. Then
C is also graphical.

Graphical cyclic orders are not closed under products, which is demonstrated by
the following example. Let C 123 and C2 123456 be two circles that are obviously
graphical. Each circle in C1 C2 has length three. Then ( C1 C2) contains, in particular,
the (induced) subgraph in Fig. 6. Thus, T(c((C C2)) contains the triples (1, )-
(2, 5 )(3, 3) and 1, 4)(2, 2)( 3, 6), which cannot belong to T(C C2). Hence Cl
C2 4: f(C C2) and C C2 is not graphical.

(, )

(2, 5 (3, 3)

FIG. 6

4.18. Finally, we give a few remarks on the relation of the class of graphical orders
to other classes:

--Circular orders are in general not graphical. Conversely, graphical cyclic orders
are in general not circular.

--Arc orders are in general not graphical.
THEOREM. Let P be a partial order offinite height. Then, Ce is graphical.
Proof. Let C Cpbe generated by P (X, R). The maximal circles ofC are exactly

the circuits generated by maximal chains in P. We have to show that C cfC. Suppose
there is a chordless circuit M in fC that is not induced by a maximal chain in P. Then
M consists of "segments" of circuits that are induced by maximal chains. Hence, there

M M
exist x, y, z X(M) with x -- y - z, (x, y), (z, y) R and (x, z), (z, x) R.
Furthermore, there exist chains Lx (Xx, Rx), Ly (Xy, Ry) in Pwith Xx LJ Xy X(M),
(u, x) Rx for all u Xx and (y, v) Ry for all v 6 Xy. Since (x, y) e R, there is a
maximal chain L (X’, R’) that contains Lx and Ly: Xc tA Xy

_
X’ X(M) and

Rx (A Ryc R’. Since zX’ and the definition ofC, there exists a chord in Min contradiction
to the definition ofM.

5. Dimension theory for circular orders.
5.1. In the theory of partial orders it is well known (cf., e.g., [33]) that for a poset

P, the minimum number of chains whose intersection is P coincides with the minimum
number ofchains such that P is isomorphic to a subposet ofthe product ofthese chains.
This number is called the (Dushnik-Miller) dimension of P, denoted by dim P. Here
we similarly introduce two concepts ofdimension for circular orders (in accordance with
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the theorems in {} 2.2 and 2.5), which turn out not to coincide. However, both dimensions
agree up to a factor two.

5.2. DEFINITION. Let C (X, T) be a circular order. Then the intersection di-
mension and the product dimension of C are defined by

idim C min { II If- f’) Ci, Ci circle (iI) },
iI

pdim C min { I1 C <= X Ci, Ci circle (i e I) }.
iI

5.3. THEOREM. For a circular order C, the intersection dimension and the product
dimension satisfy

pdim C =< idim C=< 2. pdim C.

Moreover, both equalities hoM infinitely often.
Proof. Since each representation ofCas intersection ofcircles provides an embedding

into the product of these circles, we have pdim C =< idim C for any circular order C.
Moreover, for each n e N, there exists a circular order Cn with pdim Cn n idim Cn;
e.g., take a circle of length n and one isolated point (cf. 5.8). On the other hand, by
the theorem in 2.2, each product of n circles can be represented as the intersection of
2n circles, proving idim C =< 2. pdim C for any circular order C. Again, for each n
there exists a circular order C, with idim C, 2n 2-pdim C,; e.g., take a product of
n circles of length 2n (cf. the proposition in 5.9).

5.4. The rest ofthis section is dedicated to the estimation ofintersection dimension
of circular orders.

PROPOSITION. For a circular order C (X, T) which is not a circle,

3

Proof. The expression on the fight side is an upper bound for the cardinality of
a family of total extensions of C such that for each x, y, z e X, x g= y z g= x,
with (x, y, z), (z, y, x) T, there are circles C1, C e with (x, y, z) T(C1 and
(z, y, x) e T(C2).

COROLLARY. For a circular order C, idim C -< . IX(C)[ 3.
But we do not even know whether there exists a class K of circular orders and a

constant K > such that idim C > K. IX(C) for each C e K.
5.5. Clearly, the class ofcircular orders is hereditary with respect to both dimensions,

i.e., for Cl <- C2, idim Cl =< idim C2 and pdim Cl =< pdim C2.
5.ll. PROPOSITION. Let Cl, C2 be circular orders. Then

idim C1 C2 =< 4-idim C1. idim Cz.

Proof. This follows from the theorems in 2.2 and 2.3.
5.7. Next we give some concrete values for the intersection dimension of finite

cyclic orders.
PROPOSITION. Let C (X, T) be a finite cyclic order, l C) { M, N} be its

set of maximal circles, X( M) 71 X( N) 4 , X(C) X(M) U X( N), and either
M(x, y) N(x, y) or M(y, x) N(y, x)for each x, y X( M) f3 X( N), x 4 y, if
M N[ > 1. Then C is circular and

idim C M[ + NI 2. MCl N[.

Proof. Without loss of generality let M xx2"" Xm (cf. 1.9), N yy’"yn

and M f’l N Xl x2" "xk y Y2" "Yk with k < m, n. This means that we assume xi
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y,, 1, k and T ( (x, x, x) <- a < < , <= m) ha ( y, y, y) <= c <
/3 < n). Since paicularly, T does not contain triples of the form

x xye, x_ yx, ye_ yx, y xxe,

xmxl y, XmyX y,yx, yxy

for k < a m, k < n, but

xxx xxy T

forl a<k<7m,k<6n, wehave

idim C m + n- 2k.

(For each of the above triples that are not in T there has to be a circle containing it that
is a total extension of C. This proves the lower bound.)

On the other hand, we have the following "encoding." Let C (X, T), 1,
2, .--, m + n- 2k, be given by

C1 Xl x2" XkXk + 1" XmYk + Yk + 2" Yn,

C2 =XlX2" xgyg+ xg+ x+2"" XmYk+ 2Yk+ 3"’" Yn,

C3 x x2 XkYk + Yk + 2Xk + Xk + 2" Xmyk + Yk + 4" Yn

Cn k X X2 XkYk + Yk + 2" Yn Xk + Xk + 2" XmYn

Cn k + Y Y2 YkY + ynx+ Xg + 2 Xm

Cn k + 2 Y Y2 yXk + lYe+ Y+ 2" ynX + 2Xk + 3" Xm

C_+ YlY2" "ygx+ lXk+ 2Y+ lYk+ 2" ynX+ 3X+ 4" Xm,

Cn k + k Yl Y2 ykXk + Xk + 2" Xm Yk + Yk + 2" YnXm.

Obviously, T(C) T(G). Let (x, y, z), (z, y,x) T(C). Then (x, y, z) is one of the
following triples:

(a) xyz x,xy where k < < m, a < and k < 7 n"

xyze Tn + g + and zyxe Tn g + .
(b) xyz XXmY where a < m and k < 7 n"

xyze T and zyxe Tn g +

c) xyz y,yx where k < fl < n, a < and k < 7 m"

xyzeTe_g+ and zyxeT_.

(d) xyz y,y,x where a < n and k < 7 m"

xyz T, + and zyxe T
Hence, in each case, (x, y, z), (z, y, x) T(ln-zk G), showing that

idim C m + n 2k.

5.8. The proof of the next proposition is analogous to that of 5.7 and therefore is
omitted.
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PROPOSITION. Let the finite circular order C1 (X1, T) be a cyclic suborder of
C2 (X (3 X2, T), i.e., C2 arisesfrom C by adding isolatedpoints. Then C2 is also circu-
lar, and

idim C idim(C 0 { x } ).

In particular, ifC is a circle, then

idim C2 Cll.
5.9. PROPOSITION. Let { Ci (Xi, Ti) 1, 2, n } be afamily ofcircles.

Then o is circular and

min { Xil, 2n } _-< idim =< 2n.
l_i_n

Proof. The upper bound follows from the theorem in 2.2.
Let m := minl_i_ {IXl, 2n} and Ci xilxi2"’xi, with ki >-- m, I

{ 1, 2, n }. For C (xi)i(xi2)ii’" "(Xim)iI a circle of length m in and

X--’(XIl,X32,X53, ,X(2p-1)p,X(2p- l)(p+ 1), ,X(2p- l)n),

where rn { 2p 1, 2p), we have idim >_- rn according to the proposition in 5.8
since x is isolated in C tO { x }.

Remark. Let C xyz be a circle of length 3 and n >= 2. Then C 3 n-1. C (i.e.,
the disjoint union of 3 "- copies of C) and idim Cn 3. However, we do not know the
intersection dimension of the nth power of a circle of length rn > 3.

5.10. We note that the disjoint union of a finite number of finite circles is circular.
Moreover, we have the following proposition.

PROPOSITION. Let C (X, T) be a cyclic order with X (3i Xi and T Oie I Ti,
such that each C (Xi, Ti) is a finite circle in C, III > andfinite. Then C is circu-

lar and

idim C max C,I.
iel

Proof. Let I be a linearly ordered index set, rn max/e/ [C/[ and Ci xx/
x/i (i I). Define total extensions Dj (X, U), j 1, 2, m, in the following way.

Let (x, y, z) (xL, x, Xtw U if and only if

either (x,y,z) Ti for some e I
or ifj= 1, either r=s4:t, u<v or rs=t, v<w or r>s>t,

ifj> 1, either r =s4:t and
ifj<nr, either j<=u<v

or u<v<j or u>=j, v<j,
ifj>-nr, either U=nr, V<nr

or
or rs=t and

ifj<n, either j<-_v<w
or v<w<j or v>-j, w<j,

ifj>-_ns, either V=ns, w<ns
or v<w<ns

or r<s<t.

Then we claim that = Dj (X, = U) (X, T) C. To see that, let x, y, z 6 X,
x 4: y 4 z 4= x, x 6Xr, y6Xs, z 6X. Then

(a) r= s t: (x, y, z) 6 T if and only if (x, Y, z) U, j 1,2,...,m.
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(b) r s 4 t: Then (x, y, z) T and, since each cyclic permutation of each
Ci(i I) is contained in a least one Dj(j e { 1, 2, m } ), there are indices j, j2
{ 1, 2, m } such that (x, y, z) e Us. and (z, y, x) e Us

(c) r 4 s t: analogous (b).
(d) r =/= s =/= t: Then (x, y, z) T and there is some j e { 2, 3, m } such that

(x, y, z), (z, y, x) t U U..
Hence, we have idim C -< m.

be a circle in C with maximum number of elements, and let xLet C XtlX Xm
be any element of any other circle. Since all triples (x, x, x} + (j 1, 2, rn ),
(x, X/m, x are not in T, it is idim C >= rn according to the proposition in 5.8.

5.11. PROPOSITION. Let C (X, T) be afinite path-order, and let

n:= { { x, y } Y x andy are intersecting paths } + 1.

Then, idim C _-< n.
Proof. Apply the theorem in 3.3. E]

5.12. For the rest of this section we would like to give some estimates for poset-
generated cyclic orders.

Let P (X, R) be a poset. Then J(P) designates the set of all incomparable pairs
in P:

J(P) := { {x,y} I(x,y),(y,x)R }.
PROPOSITION. Let P be a finite poser which is not a chain and let the cyclic order

C be generated by P, C Ce. Put n := el >-- 2. Then,

idim Ce<=2 J(e)l <=n(n- 1).

Proof. For each x, y, z X X(P) X Ce), x 4 y 4 z 4 x, x, y, z) T( Ce) if
and only if either (z, y, x) T(Ce) or two of the elements are incomparable in P. For
each { x, y} J(P), there exist linear extensions Pxy (X, Rxy) and Pyx (X, Rx) of
P with (x, y) Rx and (y, z) Rxe for each (x, z) 6 R, respectively, (y, x) Rx and
(z, y) Ryx for each (z, x) R. Then obviously,

c= cCx.
{x,y}J(P)

If Ce has more than three elements, then for n PI,
idim Ce<=n(n )-6.

5.13. An immediate consequence of the proposition in 5.8 is the following prop-
osition.

PROPOSITION. Let the cyclic order C Ce be generated by a finite poset P.
Let P’ be a chain in P and let x X(P) X(P’) satisfy either (x, sup P’) R(P) if
(inf P’, x) R(P) or (inf P’, x) R(P) if(x, sup P’) R(P). Then,

idim Ce>= P’].

5.14. By 5.13, there exist for each n >- 3 posets Pn with IX( Pn)l n + 1, dim Pn
2 and idim Ce, n. Even for each k >- 2, n >- 3, there exist posets Pn,k with

dim Pn,k k and idim Cen.k > k(n );

e.g., put P,, n + 1 where n designates the chain of length n. Since for each n
there exist posets Pn of height two and dim P, n, idim Ce, 2 (since then T(Ce,)

(e.g., take the poset P, determined by the family of all 1-element and n )-element
subsets of an n-element set ordered by inclusion), dim P is in general not bounded by
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idim Ce. But we conjecture that there is a constant K such that dim P _-< K-idim Ce for
each poset P with the property that each maximal chain in P has length at least three.
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FAULT TOLERANT SORTING NETWORKS*
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Abstract. A general technique for enhancing the reliability ofsorting networks and other comparator based
networks is presented. The technique converts any network that uses unreliable comparators to a fault tolerant
network that produces the correct output with overwhelming probability, even ifeach comparator is faulty with
some probability smaller than 1/2, independent of the other comparators. The depth ofthe fault tolerant network
is only a constant times the depth ofthe original network; the width ofthe network is increased by a logarithmic
factor.
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1. Introduction. One of the major problems in large scale systems is the inevitable
presence of fault elements. The larger the system, the larger the probability that some
fraction of the system will fail to operate correctly. One way to overcome this difficulty
is to design algorithms that perform correctly in the presence of a significant number of
faulty components.

This paper presents a general technique for enhancing the reliability of networks
built of unreliable comparators. We demonstrate the novel technique through the con-
struction of fault tolerant sorting networks. We comment on applications ofour technique
to other comparator based networks, such as merging and selection networks, in the last
section.

A comparator is a 2-input, 2-output device capable of sorting two elements. A
sorting network consists of a collection of registers that pass through a number of levels
of comparators. Registers store input elements we wish to sort and comparators connect
pairs of registers. When two registers pass through a comparator, the two values entering
via the registers exit in sorted order. No more than one comparator is connected to any
register per level; the number of levels is the depth ofthe network. A network is a sorting
network if any set of elements entering the first level of the network exits in sorted order
in the last level. An asymptotically optimal O(log N) depth network was first given by
Ajtai, Komlos, and Szemeredi [AKS83].

Yao and Yao [YY85 were the first to study sorting networks with stochastic faults.
They assume a weak model of faults in which faulty comparators directly output the
inputs without comparing them. A comparator in that model never changes the order
of a pair that is already sorted. A deterministic version of this fault model was studied
by Rudolph [Rud85] and Schimmer and Starke [SS88 ].

In the current work, we consider a stronger fault model in which a faulty comparator
outputs the two input values in an arbitrary order (or even outputs one of the input
values in both outputs). Such faulty comparators can destroy the correct order among
a list that is already sorted. Our goal is to construct a fault tolerant network for the strong
model of faults that computes the correct sorted list with high probability, even if each
comparator is faulty, with some fixed probability smaller than 1/2, independent of the
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other comparators. In other words, we require the fault tolerant sorting network to com-
pute, with high probability, the correct output even ifa constant fraction ofits comparators,
chosen randomly, are faulty.

Sorting networks usually use Nregisters, one for each input. The following argument
shows that no N register network can achieve our goal. Let X1 denote the register that
outputs the smallest element in the list. Clearly X is compared at least once in the
network; let denote the last register to whichX is compared. Ifthere are no more than
N registers in the network, either X1 or does not store the minimum value when they
are compared. Ifthat comparator is faulty, the network does not output the correct order.
Thus the failure probability of a fault tolerant network that sorts N elements with N
registers cannot be smaller than the failure probability of each individual comparator.

To obtain a smaller failure probability we allow the network to use more than N
registers. The network has Nmarked registers that receive the input elements and output
the sorted list; the other registers are for internal use through the intermediate computation.
All registers store only copies of the input values. To use the extra registers, the network
can copy values from one register to another. We measure the width of a network by the
maximum number of registers used by the network in one level.

The problem of noisy transmission of data has been extensively studied and can be
handled efficiently by error correction codes [MS77 ]. In the current work, we concentrate
on faulty comparators and assume no faults in the copying and transmission of values
in the network.

Our main result is a general technique for converting any sorting network to a fault
tolerant sorting network. Given a depth O(d) network for sorting N elements, our tech-
nique constructs a sorting network of depth O(d) and width O(N log N) that computes
the correct output with probability 1/N, even ifeach comparator is faulty with some
fixed probability smaller than 1/2, independent of the other comparators.

The study of constructing reliable systems from unreliable components goes back
to the work of von Neumann [VN56 ]. See also Pippenger [Pip85 for recent results. In
these works, the computing power of Boolean circuits is used in order to improve the
reliability ofcircuits with noisy gates. Our new result shows that using comparators alone,
we can achieve similar results in the context of comparator based networks. The crux of
our method is an expander based component that uses comparators and replaces the
"counting component" used in the construction of reliable Boolean circuits with noisy
gates. While the comparator based component cannot count, we show that it is powerful
enough for enhancing the reliability of the sorting network.

2.1. The fault tolerant sorting network: overview of the network. The network has
two main parts. The first part simulates the comparators ofthe original sorting network.
Through this part, each register Xi of the N registers of the original network is simulated
by a set (i {X I, X 7’ } of rn log N registers.

We say that a register Xie stores the correct value at a given stage ofthe computation
if it stores the same value as the register Xi of the original network at the corresponding
stage of the original network. For the correctness of the computation we require that at
each step ofthe computation all but a fixed fraction ofeach set Xi store the correct value.
When register X is compared with X in the original network, our network compares
each Xie with Xf, g 1, m. Since a fraction of the comparators might be faulty,
each comparison might increase the fraction ofwrong values. The heart ofour simulation
is a constant depth majority-expander component that reinforces the majority in each
set Xi after simulating each comparison of the original network.

The second part of the network generates the output. The input to this part are N
sets, each with rn log N values. With high probability, each set contains only a small
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fraction of values that are not the correct value for that set. The goal of this part of the
network is to reduce the m values of each set to one correct value. This goal is achieved
by successive use of a majority-preserver component.

2.2. Basic components. The majority-expander and the majority-preserver com-
ponents are built of two basic components: the enforced comparators and the stochastic
halver.

DEFINITION. A -enforced comparator is a construction with two inputs and two
outputs that computes the maximum and minimum of the two inputs with error prob-
ability bounded by ft.

THEOREM 1. For every 0 < < p < 1/2 there is a construction of depth and width
3(2/(3 6p)) 1/(1g23/18) log 2/fi that is a -enforced comparator even ifeach ofits com-
parators is faulty with some probability bounded by p < 1/2.

Proof. We compute the maximum of X and Y by iterative use of the operator
max max [X, Y], max [X, Y] ].

Assume that we have a construction Mi that has depth Di, width IV,., and computes
the maximum of two elements with failure probability bounded by Pi. Plugging Mi into
the above operator (see Fig. gives a component Mi +1 that has depth 2Di and width
2 W,.. Noting that Mi + fails if and only if at least two of its three Mi components fail,
we get that it computes the maximum of two elements with failure probability

(1) (3)Pi +1 <= -Pi)P] + P3 3p- 2p3i.
2

The failure probability ofthe basic comparators, used as Mo, is bounded by p. Thus
Po P and Do Wo 1. Let e; 1/2 Pi. By plugging p; 1/2 eg into we get eg +1
eg(23- 2e/2). If p; _-> , then e; _-< 62-, and e;+l --> ei( 2(62-) 2) => 23/lSe;. Thus ifpo --> ,

> or p,, <aftert 1/log23/181og 1/(3(1/2 p))iterations, e=
Ifpi <= then pj+, _-< 32J-’() 2j _-< (1/2)2J. Let t2 log log (2/fi) then P,+2 < fi/2.
Using a similar construction, we can compute the minimum ofX and Ywith prob-

ability fi] 2. Thus we get a construction that computes the maximum and the minimum
ofX and Y with error probability ft. The depth and width of the whole construction is
bounded by

2 )1/(1og23/18) 2
log --.2+2+1=2

3--6p p

To use this construction we need 2+ : copies of each of the two inputs. These
copies can be constructed in depth + t2. [[]

The construction of the majority-expander is based on explicit construction of ex-
pander graphs, let G (A, B, E) denote a bipartite graph, and let I’(X) denote the set

FIG. 1. A Pi+ -enforced comparator made up ofprenforced comparators.



FAULT TOLERANT SORTING NETWORKS 475

of neighbors of a set of vertices X, i.e.,

F(X) { Yl (x, y)eE for some xeX }.

DEFINITION. G (A, B, E) is an (a, , m, d)-expander if ]AI [BI m, the
degree of every vertex in G is d, and for every set of vertices X such that XI --< am,
Ir(x)l >-- IXl.

LEMMA 2. For any a < and [5 such that a(5 < there is an explicit construction

ofan (a, fl, m, d)-expander with d <= (8/( a))/( aft).
Proof. The construction in [LPS86] gives a d-regular bipartite graph with second

largest eigenvalue bounded by 2- for any d p + 1, p prime. By [Alo86 ], if the
second eigenvalue is bounded by 2f the expansion of each set of size bounded by am
is at least/3 >= d/((d- 4)a + 4). Thus, d (4/3(1 a))/(1 a/3) is sufficient for
expansion/3. To guarantee the existence of d of the form p + 1, p prime, it suffices by
Bertrand’s postulate [HW75, p. 343 to take twice this value.

DEFINITION. A set X e-represents a value t/, if at least
store the value .

DEFINITION. An (g, n, 6, )-stochastic halver is a construction with 2g inputs and
two sets of g outputs. If the input set 01 + 02-represents a value U, 01, 02 < 1/2, such that
no more than 201g input values are smaller than U and no more than 202g input values
are larger than t/’, then, with probability -/, the upper output set has no more than
rig values larger than U and no more than (201 + 6)g values smaller than U, and
the lower output set has no more than ng values smaller than U and no more than
(202 + 6)g values larger than

THEOREM 3. For everyfixed 0 < < 1, andfor every 0 <= <= log m, there is an
explicit construction with depth c1((2 i/ 5)/rt 2 + log 4ed/ n 2) and width c2m/2 i, where c
andc depend on andp but not on m or i, that is, a (m/2 i, , , 2-4m)-stochastic halver
even ifeach ofits comparators is faulty with somefixed probability smaller than 1/2.

Proof. The construction is similar to the halver component in [AKS83]; only the
analysis is different, taking into account the faulty comparators. Let X { XI, Xe
and { Y, Ye } denote two sets of g m/2 registers each. The input is given
in the 2g registers X t.J Y. The lower output set is Y and the upper output set is. We connect the registers in )? to the registers of by an (n, (1-r// n2/2)/
(r/- 2/4), g, d)-expander. Each edge of the expander corresponds to an (n2/4ed
2-’+/’)-enforced comparison between X e to Y I moving the larger value to Y
and the smaller value to X. To schedule the comparisons, we color the edges of
the expander with d colors. The comparisons are executed according to the color or-
der; thus, each register is involved in no more than one comparison at a time. The
depth and width of each enforced comparator is, according to Theorem 1, bounded by
3(2/(3 6p)) l/g 23/8)((2i+5)/rl 2 + log(8ed/rl2)). The construction contains d
phases and each phase executes rn/2 enforced comparators in parallel. Thus we get a
network of depth c((2i+5)/rl 2 + log(8ed/rl2)) and width c2m/2 i, where Cl and c2
depend on n and p but not on rn or i.

Let E(X) and E(Y) denote the sets of registers in X and Y, respectively, that are
adjacent to faulty enforced comparators. The probability that more than rlZg/4 out of
the dg enforced comparators are faulty is bounded by

k > nzg]4

d 2 4ed] 2< 2
k 4ed22 +,/’- --] 4ed2- ’/’

<-_ 2-4m.
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Thus with probability 2 -4m, E(X) and E(Y) are not larger than 72g/4. A faulty
enforced comparator may output one of the input values in its two outputs; thus, it can
change the total number of values that are larger or smaller than U. The input set has
no more than 201g values smaller than U, and no more than 202g values larger than
Thus, if there are no more than 72g/4 faulty enforced comparators, the upper output
set ) has no more than (201 + 72/4)g _-< (201 + ri)g values smaller than U, and the
lower output set I? has no more (202 + ri

2 / 4) g _-< (202 + 7) g values larger than
Let H(X) denote the registers in X storing, at the end of the execution of this

construction, values that are larger than //’. If x E(X), then the value of x does not
increase while executing this construction; similarly, the value of y qt E(Y) does not
decrease. If x H(X) E(X) and y E(Y) is a neighbor of x, then the value of y at
the end of the execution must be larger than the value of x, and thus must be larger
than t.

If [H(X)[ > 7g, [E(X)I _-< 72g/4, and [E(Y)[ =< 72g/4, then the total number
of registers that at the end of the execution of this component store elements that are
larger than is at least

IH(X)I + IF(H(X)-E(X))I- E(Y)I >he+ 1--7+72/2( 72)7_72/4

Xg----g= 1+ g> 202

But the input set had no more than 202g values larger than "1/, and 72g/4 faulty
enforced comparators can add no more than another rizg/4 values larger than //’. Thus
[H(X)[ must be smaller than 7g. By a similar argument, Y has no more than rig values
that are smaller than U.

The fault tolerant network uses m log N registers to simulate each register of the
original sorting network. The invariant kept by the fault tolerant construction is that at
least e)m of the m registers always store the correct value of the original network.
The following construction enables the network to enforce the majority among the m
registers in constant depth.

DEFINITION. An (6, e, m, fi)-majority expander is a construction with m inputs
and m outputs. If more than (1 6)m of the inputs have the same value, then with
probability -/, this value ends up in at least e)m of the output registers (i.e., if
the input set 6-represents a value U, then with probability -/ the output set e-repre-
sents ).

In what follows, the O(f) notation means that the expression is bounded by cf
where c is a constant that is independent of m and but might depend on e.

THEOREM 4. For everyfixed e > 0 there exists a construction of width O(m) and
depth O( that is an (1/2, e, m, 2 -4m+ 1)-majority expander, even ifeach ofits comparators
is faulty with somefixed probability smaller than 1/2.

Proof. Let X= {X,..., Xm} denote the m input registers, and let Y=
{ Yl,"’, Ym } denote an additional set of m registers. Let tr denote the value that
appears in more than 4m/5 inputs. The majority expander network has four stages (see
Fig. 2). Stage copies the values ofX (the input values) to Y. At the end of stage 1, no
more than 2m/ 5 registers in X tO Y store values smaller than tr, and no more than 2m/
5 registers in X tO Y store values larger than U. In stage 2, the set X is connected to Y
by an (m, e/4, 6, 2-4m)-stochastic halver, where 6 min [e/4, ], moving the larger
values to Y and the smaller values to X. All but em/4 of the m largest values are moved
to Y, and at the end of stage 2 X has no more than em/4 values larger than U and no
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Stage 2

Stochastic

Halver

Stochastic

Halver

FIG. 2. Majority expander.

more than m/ 2 values smaller than ’. Stage 3 copies again the values ofXto Y(erasing

the previous values of I7). At the end ofthis stage d tO I? has no more than_2em/4 values

larger than U and no more than m values smaller than U. In stage 4, Y is connected

to with by another (m, e/4, 8, 2-4m)-stochastic halver, moving the larger values to X
and the smaller values to I7. After the execution of this stage, X ends up with no more

than 3em/ 4 values larger than , and no more than em/ 4 values smaller than U. Thus,

the output has at least e)m copies of the majority value U with probability

2-4m+ 1. I
Using the enforced comparator and the majority expander we can now construct

the fault tolerant comparator that simulates the perfect comparators of the original

network.
DEFINITION. An (e, m, )-fault-tolerant comparator is a construction with two

sets of m inputs, and two sets of m outputs. If the two input sets e-represent the values

1 and Uz, respectively, then, with probability -/, the upper output set e-represents

min U1, //2] and the lower output set e-represents max U, U2].
THEOREM 5. There exists a construction ofdepth O( ) and width O(m) that is a

(5, m, 2 -4m+ 3)-fault-tolerant comparator even if each of the comparators in the con-

struction isfaulty with somefixed probability smaller than 1/2.
Proof. (See Fig. 3.) Let { XI Xm } and { Y Ym } be the two

sets of input registers, let be the upper output set, and Y the lower output set. We use

Majority Expander

Majority Expander

FIG. 3. A fault tolerant comparator that simulates a simple comparison.
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2-67-enforced comparators to compare each Xe to Ye, g 1, m, moving the larger
values to the Y registers and the smaller values to the X registers.

A register Xe might have an incorrect value after the comparison for three reasons:
(a) Xe had an incorrect value before the comparison.
(b) Ye had an incorrect value before the comparison.
(c) The comparison between Xe and Ye was faulty.
The probability that more than m! 15 out of the rn comparisons are faulty is

bounded by

k>m/15 k - <2-4m

Thus with probability 2 -4m at the end of this stage both ) and ]7 -represent
the correct values. Using the bounded depth (1/2, , m, 2-4m+ 1)-majority expander of
Theorem 4, we reduce the number ofincorrect values in each ofthese sets to rn/15.

The following construction is used in the last phase of the network, where one
correct value is extracted from rn log N registers, among which at least e)rn of
the values are correct.

DEFINITION. An (g, e, )-majority preserver is a network with g inputs and g/2
outputs. If at least e)g of the input values are equal, then this value appears in at
least e)g/2 of the output registers.

THEOREM 6. For every e < 1/2, and 0 -< <= log rn there is an explicit construction of
a network ofdepth 0(2 i) and width O(m) that is an (m/2 i, e, 2-3m)-majority preserver,
even ifeach comparator in the construction is faulty with somefixed probability smaller
than 1/2.

Proof. Let g rn/2 ;, ) { X1, Xe/2 and I7 { yl, ye/2 }. Assume that
the g input registers are X tO Y, and the g ! 2 output registers are X. Denote by U the
majority value that appears in at least (1 e)g input registers. The construction has
three stages (see Fig. 4). Stage connects )to 1?by an (rn / 2 i, e / 4, e/4, 2-4m)-stochastic
halver, moving the smaller values to Y. Since Xto Yhave no more than eg values smaller
than , X has no more than eg/8 values smaller than g" at the end of this stage. Stage
2 copies the values of X to Y. At the end of stage 2, X tO Y has no more than 2eg/8
values smaller than U, and no more than (2 + 1/4)eg values larger than U. In stage 3,
is connected to ) by an (m/2 i, e/4, e/4, 2-4m)-stochastic halver, moving the smaller
values to X. At the end of this stage, X has no more than 3eg/8 values smaller than
and no more than eg/8 values larger than U.

Stage
Y

Stochastic

Halver

Stochastic

Halver

FIG. 4. Majority preserver.
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2.3. The complete network. The first part of the fault tolerant network simulates
the comparators of the original sorting network. Let X, .-., Xs denote the N input
registers of the original network. The first log log N levels generate m log N copies of
each input register. Using the log N copies of each original register, we can simulate the
comparators ofthe original network by (, m, 2 -4m / 3)-fault-tolerant comparators, The
original sorting network has no more than N2 comparators; thus, with probability
2-2m+ 3 the outputs of every fault tolerant comparator 5-represents the value of the
corresponding register at the corresponding level of the original sorting network. In par-
ticular, at the end ofthis part ofthe fault tolerant sorting network, each set, -represents
the value that register X outputs in the original network.

The second part ofthe network reduces each set i having at least )m correct
copies to one register Xi storing one correct value. We extract the correct copy by log log N
stages of majority preservers (see Fig. 5). The input to stage i, 0, log log N-
l, is a set of m/2 registers with at least (1 1/2)m/2 correct values. Stage uses an
(m/2 i, 1/2, 2-3m)-majority preserver. The depth of the majority preserver is o(2i), its
width is O(rn), and with probability 2 -3m it produces a set of m/2i+ registers with
at least 1/2)m/2 / registers storing the correct values. After log m log log Nnonfaulty
iterations, we are left with one register storing the correct value.

The depth of the second part of the network is bounded by

’logg N )O( 2 O(1og N).
i=1

log N

registers

m/2 registers

m/S registers

m/4 registers

FIG. 5. Extracting one correct valuefrom a set that represents it.
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The width of the second part is O(mN) O(Nlog N), and with probability
N(log log N)2-3 log N it produces the N correct outputs. Since the depth of any network
that sorts N elements is at least log N, we have proved Theorem 7.

THEOREM 7. Given a sorting network with depth d and width N, there is a fault
tolerant sorting network ofdepth O(d) and width O(Nlog N) that with probability
1/N sorts correctly every list ofN elements, even if each comparison in the network is
faulty with somefixed probability smaller than 1/2.

3. Remarks and open problems. As mentioned before, our technique is applicable
to any comparator based network. Thus we can construct fault tolerant networks ofdepth
O(log N) and width O(N log N) for merging two sorted lists ofsize Neach, or for finding
the maximum ofN elements. The failure probability in both cases is smaller than 1/N
when each comparator is faulty with some fixed probability smaller than 1/2, independent
of the other comparators.

A comparator network for finding the maximum of N elements uses O(N) com-
parators. Thus our fault tolerant version of that network uses O(N log N) comparators.
This bound matches the ft(Nlog N) lower bound proven by Yao and Yao [YY85] for
even a weaker model of faults. The optimality of the fault tolerant sorting network and
the fault tolerant merging network, in terms of width and total number of comparators,
is still open. We showed in the Introduction that some redundancy is essential for small
failure probability, but we do not know if ft(log N) redundancy is necessary.
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DETERMINISTIC DECOMPOSITION OF RECURSIVE GRAPH CLASSES*
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Abstract. The popular class of series-parallel graphs can be built recursively from single edges by combining
smaller components via connections only at a fixed pair of vertices called terminals. This recursive construction
property with a limited number ofterminals is essential to the linear time solution ofproblems on these graphs.
A second useful property of these graphs is that decomposition is deterministic with respect to the series-parallel
rules. This implies that the parse-tree ofdecomposition (which is required by the algorithms) can be determined
in a straightforward manner by repeatedly applying the decomposition rules. Subject to retaining these properties,
we examine how far the series-parallel graphs can be generalized. Corollaries ofour results yield the deterministic
decomposition of the series-parallel and Halin graph classes.

Key words, series-parallel graph, decomposition, recursive graph class, dynamic programming, linear-time
algorithm

AMS(MOS) subject classifications. 05C70, 68R10, 90C39

1. Recursive graph classes.
1.1. Introduction. Recently, much effort has focused on the recognition of certain

recursively constructed graph classes--trees, series-parallel graphs, Halin graphs, partial
k-trees, bandwidth k-graphsuand the development of efficient algorithms for 4/-hard
problems when instances are restricted to graphs belonging to these classes.

The common feature of each recursive graph class is that any sufficiently large
member is composed from smaller members of the same class, joined by merging dis-
tinguished vertices known as terminals. Many structures that occur in such diverse areas
as telecommunications networks, VLSI design, and software systems are hierarchical or
modular, and might therefore be modeled by recursively constructed graphs.

Fast algorithms on these recursive graph classes are typically based on dynamic
programming, so that a solution to a large member can be determined directly from
solutions to the smaller members which constitute it, using a recurrence relation specific
to the problem. If the number of terminals is restricted to some fixed value k, the re-
currence relation can be evaluated efficiently. This in turn leads to an efficient algorithm,
assuming a decomposition tree for any graph in the class can be found quickly. For
example, a decomposition tree for a series-parallel graph can be found easily by repeatedly
applying the series-parallel operations in any arbitrary fashion.

Our aim in this paper is to capture and extend the structure of this deterministic
decomposition property exhibited by the series-parallel class. We introduce a simple 3-
parameter notation for families of composition rules, broad enough to describe any op-
eration that joins k-terminal graphs together by merging terminals. For example, the
series-parallel graphs will correspond to the triple [2, 1, 3 ]. Our principal result is the
identification of those families of composition rules that enjoy the deterministic decom-
position property. In particular, we will show that a family of composition rules
[k, u, r] produces a recursive graph class with deterministic decomposition if and
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only if[k, u, r] has one of the following forms: [2, r- 2, r], [3, r- 3, r], [k, 0, k], or
[k, 1, k + 1]. Even when graph classes are generated from rules involving two or more
triples, we are able to show that a sufficient condition for deterministic decomposition
is that each such triple have one of these forms; thus far, however, a converse necessary
condition eludes us for this case.

1.2. Recursively constructed graph classes. The recursive graph classes mentioned
above (trees, series-parallel graphs, Halin graphs, etc.) can be described by similar defi-
nitions. In order to discuss these classes using a common framework, we first introduce
the following terminology. A k-terminal graph G (V, T, E) has a vertex set V, an edge
set E, and a (possibly ordered) set of terminals T { t, tlTi}

_
V, where TI --<

k. A recursively constructed class C(B, R) in some universal set U is specified by base
elements B

___
U and a finite rule set R {jq, f } where each f Umi --, U is a

recursive composition operation with arity mi’, C is then the closure ofB in Ubyrd, ,
f. Typically, for some k, U is the set of k-terminal graphs and B is a set of connected k-
terminal graphs (V, T, E) with V T. But each such base graph is trivially composed
of individual edges, so it is reasonable and convenient to use C(R) to denote C(B, R)
where B only contains K2.

A decomposition tree of a k-terminal graph G C(B, R) is a rooted tree with vertex
labels g and fsuch that

gv G if v is the root,
fv R if v is an interior node,
gv f(gol, gym) if interior node v has children v, v,, and
go B if v is a leaf.

In previous research as well as the efforts reported here, permitted composition
operations take the same general form. For -< _-< m, let Gi (Vi, Ti, Ei) U, such
that V, Vm are mutually disjoint vertex sets. Let G (V, T, E) U as well. A valid
vertex mapping is a (total surjective) functionf U__< i_-< V -* V such that

vertices from the same Gi remain distinct: v Vi, v2 Vi,f(v) f(v:) v

only (but not necessarily all) terminals map to terminals: v V., f(v) T v
T;
only terminals can merge: v Vi, v: Vi2, i =/= i:, f(v) f(v_) v Ti,
v2 Ti2 (in this case vertices v and v2 are said to be identified); and
edges are preserved: (3i)( { vl, v_ } s El) {f(v),f(v:) } E.

Iff is a valid vertex mapping, then the corresponding m-ary composition operation (also
denoted byf) is written f( G, Gm) G.

With composition operations now precisely defined, note that the resulting graph
G is determined entirely (up to isomorphism) by which terminals from each Ti are
identified and by which vertices are in T. However, it is quite cumbersome to define a
composition operation by writing the corresponding valid vertex mapping. Instead, it is
customary to let f(v) v for v tD_i_ Ti; to list which vertices from the various Ti
are identified byf; and, if Vl, v are merged together, to denote the f(vi) either by
one of the vi or by a new vertex name. Hence, in the remainder of the paper, we will
employ this less formal notation. It is also convenient to write V f(tDt_iz, V)
[.31_i_m Vi and E f(I.31_i_m Ei) [.-Jl_i_m Ei, where these union operators consider
identified vertices to be identical.

To illustrate, let U be the set of 2-terminal graphs. Then the class of series-parallel
graphs is C( { s, p, j } ), where each of s, p, and j is a binary operation that produces a
graph G (Vl t3 V2, { t, t2 }, El t_J E2) when given operands Gi (Vi, { til, ti2 }, Ei),
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FIG. 1. Series, parallel, andjackknife operations.

for 1, 2. These operations are defined as follows (see also Fig. 1; in all figures, doubly
circled vertices denote terminals).

The series operation s identifies q2 with t2 (which then loses its terminal status),
and assigns t t and t2 t22.
The parallel operation p identifies tll with t2 and t12 with t22, and assigns t
tl t21 and t2 t2 t22.
The jackknife operation j identifies t2 with tzl, and assigns t t and t2 =/12
t2 (t22 loses its terminal status).

The study of series-parallel graphs can be traced at least back to Duffin [6 ]. However,
Takamizawa, Nishizeki, and Saito [16] appear to have initiated the development of
linear time algorithms for otherwise hard graph problems when instances are restricted
to such graphs. More recently, Wimer et al. [18 ]-[ 20], [7], Liu and Geldmacher [8],
Wald and Colbourn [17 ], Bern, Lawler, and Wong [5 ], Richey, Parker, and Rardin
10 ], 12 ], 13 ], and others have shown the existence of thousands of such algorithms.
Furthermore, the decomposition tree of a series-parallel graph can be created in linear
time [8], 9], which in turn leads to linear time algorithms for most problems that are
polynomial-time solvable by dynamic programming when instances are restricted to
series-parallel graphs.

The partial k-trees (see Arnborg, Corneil, and Proskurowski [1]-[4]) provide a
generalization ofthe series-parallel graphs. Indeed, the class ofpartial 1-trees is coincident
with the class of trees, and the class of partial 2-trees is coincident with the class of series-
parallel graphs, while Halin graphs are contained in the class of partial 3-trees. Wimer
and Hedetniemi [18 ], [19] show that the class of partial k-trees can be defined as a
(k + )-terminal recursive graph class, and Arnborg, Corneil, and Proskurowski 2 ], 3
show that this class can be recognized in polynomial time by a bottom-up method. The
partial k-trees can also be recognized in O(173 time using the graph minor results of
Robertson and Seymour [14 ], [15 ], but the proof of this fact is nonconstructive and the
recognition algorithms have proven difficult to find.

1.3. Efficient algorithms on recursive graph classes. Given a graph (V, E), the
minimum vertex cover problem seeks a smallest subset VC

_
V such that VC N

{ i, j} 4: for every edge { i, j} E. While this problem is well known to be V’-
hard, in general, it is easy to see how it can be efficiently solved on the recursive class
of series-parallel graphs. Consider a series-parallel graph G (V, T, E) and for each
S T define a property Ps(G) to be the cardinality of a minimum vertex cover VC of
G such that S VC N T.

If G is the base graph K2, then
P(G) o (no such cover exists),
Pt,(G) 1,
Pt2(G) 1, and
et,t2(G) 2.

To develop appropriate recurrence relations for a dynamic programming solution,
we start by constructing multiplication tables for each of the composition operations.
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When G and G2 are composed by an operation fto form G, the multiplication table
for operation fshows which ofthe possible pairs ofsets S

_
T and $2 T2 are compatible.

In addition, the table for f shows the value of the corresponding S
_
T for each such

compatible set pair. Figure 2 gives the multiplication tables for operations s, p, and j.
It is now straightforward to construct the recurrence relations directly from the

multiplication tables. The formulas simply compute the optimal values from among the
compositions of the compatible pairs.

Thus, if G s(G1, G2) then
P(G) min {P(G) + P(G2), Pt,:(G) + Pt,(G2)- 1},
Pt,(G)= min {Pt,(G) + P(G2), Pt,,,t,:(G) + Pt:(G2)- 1},
Pt:(G) min {P G, + Pt:: (G2), Pt,: G, + Pt:,t:: (G2) }, and
Pt,t:(G) min {Pt,,(G1) + Pt:(G2), P,,,t,?_(G,) + Pt,,t::(G2)- 1}.

If G p(G, G2) then
P(G) P(G1) + P(G2),
Ptl(G)= Pt, l(G1)+ Pt2,(G2)- 1,
Pt2 (G) Ptl2 G1 + Pt22 (G2) 1, and
Pt,t2(G) Ptll,t12(G + Pt2,t22(G2) 2.

If G j(G, G2) then
P(G) min {P(G1) + P(G2), P(G1) + Pt2(G2)},
Pt,(G) min {Pt,,(G) + P(G2), Pt, l(G) + Pt,_(G2)},
Pt2(G)= min {Pt,(G)+ Pt,_,(G2)- 1, Pt,2(G)+ Pt2,,t(G2)- 1}, and
Pt,t,_(G)= min {Ptl,,tl(G)+ Pt2,(G2)- 1, Pt,,,,,(G1)+ Pt,,t(G2) 1}.

Figure 3 shows a decomposition tree for a given series-parallel graph, while Fig. 4
shows the dynamic programming solution for the minimum vertex cover problem on
the stated graph, where each 4-tuple has the form (P, Pt,, Pt2, Pt,t,_). The optimal
solution value is simply the minimum value in the 4-tuple associated with the root node
of the decomposition tree (in this case 4).

This is the standard dynamic programming notion that underlies linear time algo-
rithms on series-parallel graphs. The time required is linear because there is only a constant
amount of information to be computed for each node of the decomposition tree, and
the size of this decomposition tree is linear in the cardinality of the edge set of G. Fur-
thermore, it should be obvious that a similar method would work for a class ofk-terminal
graphs, for any fixed value of k, once the decomposition tree for a graph in the class
is found.

As a quick illustration, consider the 3-terminal operation G =f(G, G2, G3 illustrated
in Fig. 5. The recurrence formulas for the minimum vertex cover problem for fcan be

t21t22

tit2

tll i

t t21 t22

t12 t2

t21t22

t2

FIG. 2. Multiplication tables for s, p, andjfor vertex cover.



DECOMPOSITION OF RECURSIVE GRAPH CLASSES 485

FIG. 3. A decomposition treefor a series-parallel graph.

(4, 4, 4, 4)

FIG. 4. Dynamic programming on a series-parallel graph.

stated as follows:

P(G) min {P(G)+P(G2)+P(G3),P8(G1)+P8(G2)+P8(G3)-2 },

P(G) min {PI(G1)+PI(G2)+P(G3)- 1,P1,8(G)+P,8(G2)+P8(G3)- 3 },

P3(G) min {P(G1)+P3(G2)+P3(G3)- 1,P8(G)+P3,8(G2)+P3,8(G3)- 3 },
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P6(G) min {P6(G1)+P(G2)+P6(G3)-1,P6,8(G,)+P8(G2)+P6,8(G3)-3},

P,,3(G) min {P(G)+P,3(G2)+P3(G3)-2,P,8(G,)+P,3,8(G2)+P3,8(G3)-4),

P1,6(G) min {P,6(G)+P(G2)+P6(G3)-2,P,,6,8(G)+P,8(G2)+P6,8(G3)-4 },

P3,6(G) min {P6(G)+P3(G2)+P3,6(G3)-2,P6,8(G)+P3,8(G2)+P3,6,8(G3)-4 },
and

P1,3,6(G)

=min {P,6(G)WP,3(G2)WP3,6(G3)- 3,P,,6,8(G)+P,3,8(G2)WP3,6,8(G3)- 5 }.

Thus, if the values for G, G2, G3 have already been evaluated, then the values for
G can be computed, as shown in Fig. 6. Here the cardinality of a minimum vertex cover
is P3,6(G) 4 with a corresponding cover given by { 2, 3, 5, 6 }.

Note that it suffices to maintain the values of 2k properties in order to solve the
minimum vertex cover problem, given the decomposition tree for a recursively constructed
k-terminal graph. Thus, if the number of terminals were unbounded, the amount of
information required could grow exponentially, or even faster for some problems.

f

FIG. 5. A 3-terminal operation G f(G,, G2, G3).

(oo, 5, 5, oo, 5, 6, 4, 5)

(I, 2, 2, 2, 3, 3, 3, 4) (00,2,2,00,3,3,3,3) (cx:, c, oo, 2, 2, 3, 3, 3)

FIG. 6. Dynamic programming on a 3-terminal graph.
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Ofcourse, many other dV-hard problems also have efficient dynamic programming
solutions when restricted to k-terminal graph classes, once a decomposition tree for the
graph is known. This provides motivation for generalizing to a recursively constructed
graph class that is as large as possible, but which still possesses an efficient algorithm for
recognition and decomposition.

2. Graph decomposition.
2.1. Recursive (k, u, r)-operations. It should be clear by now that the following

condition is essential to the polynomial (often linear) time performance of dynamic
programming algorithms 5 ], 20 ].

Finite terminal set: The number of terminals among graphs in a recursive graph
class must be bounded by some fixed value k.

This section develops additional natural properties that a set of decomposition rules
should satisfy in order to allow efficient dynamic programming algorithms, while the
remainder of the paper will derive conditions under which a set of rules satisfies those
properties.

The initial problem is to develop a very broad class of composition operations. The
terminology should be general enough to describe any operation that joins k-terminal
graphs together by identification of terminals. The remaining problem then will be to
determine which operations behave well. Accordingly, let a c-ary recursive (k, u, r)-
operation be a functionf(G, Gc) G (V, T, E) on k-terminal graphs that satisfies
the following conditions:

TI --< k and Tgl --< k for each Gi (Vi, Ti, Ei),
V=Uc

i=l Wi
E=A Eii=1

T_ t_J= Ti,
olCi=Z;I ITI <=u<r,

It3 i=Zil <r,
Zil TI --< s k + u r >= 0 for each i, and

Vi, N Vi2 Ti N Ti2 for each i 4: i2.
Conceptually, a (k, u, r)-operation joins k-terminal graphs Gi at their common

terminals, producing a k-terminal graph G where there are up to r vertices in G that were
terminals in the constituent G;, and where up to u of these become undistinguished in
the resultant G. It follows that r need never exceed k + u. None of the constituent Gi
can have more than s k + u r >= 0 more terminals than G has. For any 0 =< k =< r,
0 =< u < r, k + u >= r, we let [k, u, r] denote the family of all (k, u, r)-operations. Hence
the series and parallel operations are both in [2, 1, 3 (in fact the parallel operation is
also in [2, 0, 3]).

Now, the recursive operation fcan be represented by a matrix m(f) with d =< r
rows and c columns, such that 0 -< mi,j(f) < Tjl for -< =< d, =< j =< c. The nonzero
elements mi,j(f) of the ith row indicate which terminals of each Gj. are identified to
create the ith new vertex of G. (If an element has value 0, then no terminal from Gj is
used in the creation of this ith vertex.) The first TI rows of m(f) indicate the ordered
set of terminals of G, and the remaining rows indicate new vertices which result by
identifying terminals from the T but which become undistinguished (nonterminals of
G). Ifwe let t(f) TI, then f is completely specified as f= (m, t). Figure 7 illustrates
the matrices for the series, parallel, and jackknife operations, while Fig. 8 shows re(f)
for a 4-ary (3, 3, 5 )-operation G f(G, Gz, G3, G4).
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r (v)

FIG. 7. Matricesfor series, parallel, andjackknife.

Of greater interest, we can show that the Halin graphs are 3-terminal graphs which
can be formed using binary 3, 0, 3 )- and 3, l, 4)-operations. Recall that a Halin graph
is a planar graph whose edge set can be partitioned into a spanning tree with no degree-
2 vertices, and a cycle on the leaves of this spanning tree. The graph in Fig. 9 (a) is Halin
with terminals denoting the root, leftmost leaf, and rightmost leaf.

Now let a hypoHalin graph be a planar graph whose edge set can be partitioned
into a spanning tree and a path from its leftmost leaf to its rightmost leaf, that passes
through the other leaves of this spanning tree (see Fig. 9 (b)). IfH is a Halin graph with
terminals { ll, t2, t3 }, then H can be decomposed by a (3, 0, 3)-operation into a K2 with
edge e {/2, t3 and a hypoHalin graph H- e. The claim is that any nontrivial hypoHalin
graph is decomposable into two smaller hypoHalin graphs. To see this, we can let be
that leaf in H- e which is closest to t3 such that it can be reached from t2 by a path that
passes through neither other leaves nor t, as in Fig. 9 (b). (Alternatively, we could choose
! as that leafwhich is closest to t2 such that it can be reached from t3 by a path that passes
through neither other leaves nor t .) Then H e is decomposed by a 3, l, 4)-operation
into two graphs with terminals { t, t2, ) and { tl, l, t3 }. Finally, (3, 1, 4)-operations
can be used to eliminate degree-1 vertices, thus producing two smaller hypoHalin graphs.
The preceding argument, together with Theorem 7, will be used to show that the Halin
graphs are efficiently recognizable by a natural top-down decomposition scheme.

-O o[
301[

Ioo 31

FIG. 8. G f(Gl, G2, G3, G4).
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FIG. 9. Halin and hypoHalin graphs.

2.2. Deterministic decomposition. A finite terminal set is not by itself sufficient; to
apply an algorithm to a graph, the decomposition tree for the graph must be known.
That is, given a graph G, it must be easy to determine whether or not G is in the class,
and if so to exhibit its decomposition tree. Therefore, a second useful property of a set
of decomposition rules can be stated informally as follows.

Deterministic decomposition: Membership in a recursive graph class can be deter-
mined by simply applying the recursive operations to decompose the candidate
graph, until no remaining subgraph can be decomposed further.

To see why this property is important, we can examine Figs. 10 and 11, which
illustrate the undesirable possibility of nondeterministic decomposition. Both operation

FIG. I0. A (4, 3, 5 )-operation g.
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FIG. 11. A (4, 3, 5)-operation h.

g in Fig. 0 and operation h in Fig. are (4, 3, 5 )-operations; in fact, they decompose
the same graph G. Each ofG, Gz, G3, G4 decomposes easily into base graphs at the next
step by additional (4, 3, 5 )-operations. However, H2 does not so decompose (that would
require a (4, 3, 7 )-operation), so the class containing G decomposes in a nondeterministic
fashion.

When creating a decomposition tree, each step involves splitting a graph G
(V, T, E) with TI =< k into several subgraphs by some (k, u, r)-operation. These sub-
graphs are entirely determined by the selection of up to u undistinguished nonterminal
vertices, which then become terminals. We call the set D of size DI d =< r, i.e., the
original terminals plus the coerced terminals, a disconnecting set, because its removal
from the graph would leave the nonterminals of the various subgraphs in distinct con-
nected components. More formally, denote the components of G D by H, ..., Hm.
The (k, u, r)-operation is only applicable if each ofthe values I’(Hi) 71 D <= k (where
I’ represents the neighborhood set). The operation decomposes G into G1, , Gm, and
possibly some components that are merely edges between terminals, where each Gi is
obtainable from H; by adding the terminals r(Hi) 71 D and the edges from G which
connect them to Hi.

As shown earlier, it is possible to encounter alternative choices for a disconnecting
set; in fact, there may be a choice between one set of size d and another of size d’.
Moreover, it seems entirely too restrictive to completely disallow such graph classes. It
could be that whichever selection is made, a decomposition tree is still guaranteed to be
found if the graph is a member of the class. The intent of deterministic decomposition,
therefore, is not that the decomposition tree for each graph in the class must be unique,
but rather that some decomposition tree will be found for such a graph through a top-
down decomposition procedure without backtracking.

To motivate a precise definition, first observe that a graph’s membership in a recursive
class C depends on its specification of terminals. That is, there could be some graph
(V’, T’, E’) C and vertices x T’, y T’ such that (V’, T’ { x } tA { y }, E’) C.
For example, the graph in Fig. 12 (a) is series-parallel, but would not be if w and y were
its terminals.
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(b)
FIG. 12. Two series-parallel graphs.

Furthermore, it might be best to refrain from making decisions during decomposition,
such as whether to include x or y in the set of terminals, if such a decision could be
postponed until later when additional information might be available. This leads to a
critical observation: operations that allow vertices to be added into the terminal set ar-
bitrarily during decomposition lead to nondeterministic decomposition. To see this, sup-
pose fis an operation such that some x e Ti but x T, and x is not involved in any
identification. Let Gi (V’, T’, E’) where T’ Ti, and select GI, Gi- i, Gi+ 1,

Gm C so that G =f(Gl, Gm) C. But then G =f(Gz, Gi-1, H, Gi+ 1, Gm),
where H (V’, T’ { x } U { y }, E’) C, so arbitrarily choosing H rather than Gi cannot
lead to a decomposition tree.

The point can be made again with the class of series-parallel graphs, where the
jackknife operation arbitrarily selects a vertex to become a new terminal. In Fig. 12 (b),
if x or z is chosen, the graph will decompose completely; but if y is chosen, one of the
subgraphs is not series-parallel.

These outcomes indicate that there should be some minimality requirement on the
size of the set D employed to split the graph, so that decisions regarding which vertices
are to become terminals can be delayed until later during decomposition. Fortunately,
we can develop the decomposition procedure to make certain intelligent decisions in
order to eliminate some obviously inferior selections. Before precisely defining deter-
ministic decomposition, it is useful to introduce the following terminology. Given a k-
terminal recursive graph class C(B, R), we say that a graph G is prime if there exist no
f6 R and k-terminal graphs Gl, Gm such that G f G1, Gm). A prime G
B (usually, this means that G is not a mere edge) is a nontrivial prime.

The above arguments motivate the following definition. A recursive class C(B, R)
satisfies deterministic decomposition if, for any decomposition of a graph G C that
selects only minimal disconnecting sets until each remaining element is prime, it is guar-
anteed that each such prime is trivial. (The minimality condition assures that no dis-
connecting set D will be chosen if there is any proper subset D’

_
D that is also a

disconnecting set, because otherwise the selection of D would contradict the intuition
that the vertices ofD D’ should not be coerced into terminals prematurely.) Therefore
the method used to create a decomposition tree can be described by the top-down pro-
cedure of Fig. 13. A graph G, when decomposed in this manner using the rule set of a
deterministically decomposable class C(R), leads to only K2 subgraphs if and only if
GC(R).

During decomposition of a graph with n vertices, there are O(nu) possible discon-
necting sets to examine for each (k, u, r)-operation in R. The deterministic decomposition
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Let D be a tree with one vertex v such that 9 G.
While D has a leaf v such that 9 B do

If 9, is prime then
Report failure and abort.

Else if g. f(G1,..., G,) uses a minimal disconnecting set then
Let f- f.
Create children vl,..., vc of v with each 9, Gi.

Report that D is a decomposition tree for G.

FIG. 13. Top-down decomposition procedure.

property thus guarantees a polynomial time recognition algorithm. Moreover, the arity
of a (k, u, r)-operation can be bounded by the constant 2 r, since the number of subsets
of the disconnecting set is 2 d 2r; if more than one component receives exactly the
same terminals during decomposition, temporarily leave these together as a single com-
ponent, then perform parallel-type (k, 0, k)-operations as necessary to complete the
decomposition step. In this manner we can guarantee that the multiplication tables used
in the dynamic program will have bounded dimension, and hence each evaluation takes
constant time. Therefore many ff-hard problems are solvable in polynomial time
with dynamic programming algorithms when instances are restricted to graph classes
that satisfy deterministic decomposition. The problem is to determine what sets of op-
erations yield recursive classes that are deterministically decomposable.

The following sections establish succinct conditions on a set of decomposition rules
in order to satisfy the finite terminal and deterministic decomposition properties. These
results provide some insight in response to the question ofhow far series-parallel graphs
can be extended while preserving their desirable properties. For simplicity, we consider
only recursive graph classes that are built from the single base graph K2.

3. Operations that yield nondeterministic decomposition. Our main theorems will
distinguish between "good" and "bad" [k, u, r]-families. In particular, a graph class
C([ k, u, r]) satisfies deterministic decomposition if and only if[k, u, r] has one of the
"good" forms [2, r- 2, r], [3, r- 3, r], [k, 0, k], or [k, 1, k + 1]. The tree diagram
in Fig. 14 illustrates the different cases to be considered in the proof of these theorems.
Most "bad" cases arise from s k + u r > 0, i.e., from allowing a constituent graph
to have more terminals than the composed graph.

We first introduce some notation. Given vertex sets U and W, let UW denote the
edge set { { u, w } u U, w W, u :/: w }. Thus UU denotes a clique on vertices U; in
relevant figures to follow, we will often depict such a clique by merely encircling all the
vertices of U. The following sequence of lemmas establishes that certain operations are
"bad" by exhibiting graphs whose decomposition is nondeterministic with respect to
those operations.

LEMMA 1. C( k, u, r] does not satisfy deterministic decomposition ifs k + u
r > O, 3 <= k < r, andr <= 2k- 2.

Proof. Consider a graph G (V, T, E) defined by
V TUAUB,
T= {t,,...,tr_u},
A {al, ,as+l},
B {bl, bmin(u,k-)}, and
E {t}AtAABtABBt_JB(T- {t}).

Figure 15 illustrates G for the case k 5, u 4, r 7.
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kTu>r

k+u>r

r=k r>k
(a)

k=2 k>3

r <2k-2 r>2k-1
(b,a) (,a)

k+u=r

2<k<3 k>4

(good
k<r<k+l r>k+2

(gooa)

FiG. 14. Outline ofproofoftheorems.

Now, one minimal disconnecting set of G is T tA B, which has cardinality r u +
min (u, k -< r. It splits G into some edges and s + stars, Gi (B
{ tl }, { ai } (BId { l } )), with + min (u, k =< k terminals apiece. Each star Gi then
decomposes into edges at the next step, using a (k, 1, k + )-operation, which is in the
family [k, u, r].

But another minimal disconnecting set is T tO A, which has cardinality k + =< r.

It leaves a subgraph H (V { t }, A tO T { t }, E }A), which has k terminals.
Observe that [V-{t}[ =k+min(u,k- 1)=min(u+k, 2k- 1)>_-r+ 1, sothat
no (k, u, r)-operation could completely decompose H into edges at the next step. Suppose
without loss of generality that b; g D, where D is the disconnecting set used at the next

step. Then there exists a component containing bi and at least k / terminals. But this

contradicts the bound Til -< k for (k, u, r)-operations. Thus no such disconnecting set

D can exist, H is prime, and there is nondeterministic decomposition.
LEMMA 2. C([ k, u, r]) does not satisfy deterministic decomposition ifs k + u

r>O, 3 <-k<r, andr>=2k 1.

Proof. Consider a graph G (V, T, E) defined by
V= TtOAtAB,
T={t,,’",tr-u},
A={ai,.’-,a+,},

FIG. 15. Graph for Lemma 1.



494 R. B. BORIE, R. G. PARKER, AND C. A. TOVEY

B= {b,...,bu},and
E= {t}Ato{{ai, bl}:(l-i)modu<=k-2}toBBtoB(T {t}).

Figure 16 illustrates G for the case k 5, u 6, r 9.
One minimal disconnecting set of G is T tO B, which has cardinality r and which

splits G into some edges and s + stars Gi, each with a central nonterminal ai adjacent
to k terminals. Each star Gi easily decomposes into edges at the next step using a
(k, 1, k + )-operation, which is in [k, u, r].

Another minimal disconnecting set is T LI A, which has cardinality k + =< r. It
leaves a subgraph H (V { t }, A tO T { t }, E { } A), which has k terminals.
Observe that IV- { t }[ u + k >- r + 1, so H cannot be completely decomposed into
edges at the next step with any (k, u, r)-operation. Also note that G has been constructed
such that each A’ cA satisfies I’/4(A’) >-- ]A’] + 1. Let D be the disconnecting set used
at the next step, choose any bi D, and let A’ be the set of vertices in A that are not
included in the component containing bi. So there exists a component containing bi and
at least k + terminals T- { t to (A A’) t_J I’/(A’), which contradicts the bound
ITi[ --< k for (k, u, r)-operations. Therefore no such disconnecting set D can exist, H is
prime, and there is nondeterministic decomposition.

LEMMA 3. C([2, r- 1, r]) does not satisfy deterministic decomposition ifr >= 3.
Proof. Consider a graph G (V, { }, E) defined by
V=AtO{t,b,c},
A {a, ar-}, and
E= {t}AtOAato{{a,,b},{a_,b},{b,c}}.

Figure 17 illustrates G for the case r 5.
One minimal disconnecting set of G is { } tO A, which leads to complete de-

composition using (2, 1, 3)- and (2, 1, 2)-operations, each of which is in the family
[2, r- 1, r].

An alternative minimal disconnecting set of G is { t, b }, which leaves a subgraph
H (V- { c}, {t, b }, E { { b, c} }). Observe that IV- { c}l r + 1, so the discon-
necting set D used at the next step cannot completely decompose H into edges. If
{ a, a2 } D, then some component will contain at least three terminals t, b, ai, where

FIG. 16. Graphfor Lemma 2.
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FIG. 17. Graph for Lemma 3.

ai D. But if { a, a2 } c D, then some component will contain at least three terminals
t, a, a2. Each of these cases contradicts the bound of ITi[ --< k 2 for (2, r 1, r)-
operations, so no such disconnecting set D can exist, H is prime, and there is nondeter-
ministic decomposition. [2

LEMMA 4. C([ k, u, k] does not satisfy deterministic decomposition ifu > O.
Proof. Consider a graph G (V, T, E) defined by
V TUAU{b,c},
T={tl,’",t-,},
A= {a,...,a,},and
E TA LIAA LIA{b} U {b, c}.

Figure 18 illustrates G for the case k 9, u 5.
One minimal disconnecting set of G is T U A, which has cardinality k. It splits G

into some edges and a graph (A U { b, c }, A, { b (A U { c } )), which easily decomposes
into edges at the next step by choosing the disconnecting set A U { b }. This disconnecting
set yields a (u, 1, u + )-operation, which is in the family [k, u, k] because =< u < k.

An alternative minimal disconnecting set is T tO { b }, which has cardinality k
u + -< k and which leaves a subgraph H (V { c }, T tO { b }, E- { { b, c } ). Observe

FIG. 18. Graph for Lemma 4.
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FIG. 19. Graph for Lemma 5.

that IV- { c }[ k + 1, so H cannot be completely decomposed into edges at the next
step using any (k, u, k)-operation. In fact, no matter what sequence of disconnecting
sets is used to decompose H, the operation that finally decomposes H into edges must
have the form (k’, u’, k + ), which is not in [k, u, k]. Thus H does not decompose
completely and there is nondeterministic decomposition, ff]

LEMMA 5. C( k, r- k, r]) does not satisfy deterministic decomposition if4 <= k <=
r-2.

Proof. Consider a graph G (V, T, E) defined by
V= TU{a}UB,
T=(tl,’",tk},
B {bl, br-k+2}, and
E= {{t,,a},{t_,a},{a,b,},{a,b}}UBBB(T-{t,,t2)).

Figure 19 illustrates G for the case k 5, r 9.
One minimal disconnecting set of G is T tO { b, b2 }, which has cardinality k +

2 _-< r. It splits G into some edges and two larger components, both of which decom-
pose into edges at the next step, one by a (k, r- k, r)-operation, and the other by a
(4, 1, 5)-operation which is in [k, r- k, r] because r >= 6.

A second minimal disconnecting set is T tO { a } this choice leaves a subgraph H
(V- { t,, t2 }, T { t, t2 } to { a }, E { { t,, a }, { t2, a } }), which has k terminals.
Suppose D is the disconnecting set used at the next step, and let [D[ d. Observe that
IV- { to, t }[ r + 1, so D cannot completely decompose H into edges using a
(k, r- k, r)-operation. If { bl, b2 } D, then d >= k, the operation corresponding to
Disa(d, d- k+ 1, d)-operation, ands d+ (d- k+ 1)- d>_- 1. Otherwise
{ b, b2 } c D, d >_- k + 1, the operation applied is a (d 1, d k + 1, d)-operation,
ands= (d- 1)+(d-k+ 1)-d>_- 1. But any k, r k, r)-operation must have
s =< k + (r k) r 0, so neither of these two possibilities for D yields an operation
in [k, r k, r]. Hence no disconnecting set D can be employed, H is prime, and there
is nondeterministic decomposition, ff]

4. Deterministically decomposable graph classes. Lemmas 1-5 indicate certain
undesirable families of rules that can lead to nondeterministic decomposition. Our main
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result is that the exclusion of these rules is sufficient to guarantee deterministic decom-
position. To establish this, some terminology and a technical lemma are needed.

We call a vertex subset S a separating set between two other vertex subsets U and
W if every path from each u U to each w Wmust pass through some s e S. As an
example, { a } is a separating set for { tl, t2 and { bl, b2 } in the graph of Fig. 19. We
also define the path function Pa(X), where X is a subset of the nonterminals of a graph
G, to be the maximum number of vertex-disjoint paths from not necessarily distinct
vertices in X to distinct terminals of G. For instance, if G is the graph of Fig. 19, then
Pa({ b, b2 }) 4. Now Lemma 6 establishes a useful result about "good" recursive
operations.

LEMMA 6. Iffis a k, r- k, r)-operation such that either k <= 3 or r <= k + 1, G
f( H, ...), andX is any subset ofthe nonterminals ofH, then Pa(X) PIt(X).

Proof. Obviously Pa(X) <= PIt(X), because the disjoint paths used for G can be
followed outward from X until distinct terminals of H are reached. Suppose Pa(X) <
PI-I(X), and let D be the disconnecting set used by operation f. Then in the decomposi-
tion tree, H must have a sibling H’ (V’, T’, E’) with a (nonempty) separating set S

_
V’ between T’ (3 (D T) and T’ (3 T, such that SI < IT’ f3 (D T)I and IS] <
]T’ A T]. That is, S restricts the number of paths in G between vertices in X and
terminals in T’ N T, but the number of paths in H between X and T’ V (D T) is not
restricted by S because such paths do not pass through S.

Consider D T tO { bl, b2 } in Fig. 19. Let H be the component of G with vertices
B U { t3, t4, t5 }, and let X be the nonterminals { b3, b6 ofH. Then S { a } is the
separating set in H’, the other component.

Therefore

and

k>=lT’l >=[T’V(D-T)[ +[T’f3TI >_-2 +2=4

u=r-k>=[T’A(D-T)]>=2.

Thus if k -< 3 or r _-< k + 1, then Pa(X) PIt(X).
The following theorem now establishes when decomposition is deterministic.
THEOREM 7. The recursive class C(R) satisfies deterministic decomposition ifeach

family ofoperations in R has one ofthefollowingforms:
[2, r- 2, r],
[3, r-3, r],
[k,O,k],or
[k,l,k+ ].

Proof. Suppose each operation in R has one of these "good" forms, and let Go be
a minimum size graph in C(R) among those that decompose nondeterministically. Be-
cause Go C(R), it possesses a decomposition tree DT. Also, by choice of Go, there
exists some disconnecting set D of Go and corresponding operation h R such that
Go h(..- G, "..), where G’o C(R).

It suffices to exhibit a decomposition tree DT’ for G, and thereby reach a contra-
diction; we essentially just restrict the decomposition tree DT of Go to the subgraph G
of Go. Each component graph at a node of DT’ will be a subgraph of a component
encountered in DT, where the components in DT’ are possibly finer because the presence
in DT’ ofterminals from D earlier than in DTcan force additional splitting. Choose any
nonterminal w of G; we find the path in DT’ from the root to the node at which w

This statement resembles the well-known Church-Rosser theorem, which in the domain oflambda calculus
asserts that if an expression has an equivalent normal form, it can be found by successive leftmost reductions.
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becomes a terminal. Since such a path can be found for each nonterminal w using the
same construction DT’, this DT’ completely decomposes G.

Consider the path in DT from the root to the node at which w becomes a termi-
nal, say Gi fi("" Gi+ l, "") for 0 -< =< m 1, where w is a nonterminal of Gm-1
but a terminal of Gm. We next construct a corresponding path in DT’, say G
f(.-. G/I, "") for 0 -< =< m 1, such that w is a terminal in G,. Denote each
ai (li, Ti, Ei) and G (V, T, E). Suppose each J (ki, ri ki, ri) employs a
disconnecting set Di

_
Ti’, observe that each ki >= ki +1. Let f (k, r’i ki; r) have

disconnecting set D’ (Di U D) fq V where D T. Hence T Ti t_J D) f’) V
An example should aid in understanding the above notation. The graph Go

(Vo, To, Eo) in the class C([ 3, 3, 6]), shown in Fig. 20(a), has two possible decompo-
sitions. One 3, 3, 6)-operation3 employs the disconnecting set Do To t3 ( a, c, e } to
decompose Go into the components shown in Fig. 20(b). This operation 3 is the first
step in forming a decomposition tree DT for Go; each of the nonprime components
resulting from is easily decomposed into base graphs with a 3, l, 4)-operation (which
is in 3, 3, 6 ]) at the next level ofDT. Another 3, 3, 6)-operation h utilizes the discon-
necting set D To t.J (b, d, f } to decompose Go into the components shown in Fig.
20(c). Let G (V, T, E) be the component resulting from h in which V
{ t2, b, c, d} and T { t2, b, d}, and select w c. Consider the path in DT from the
root to the operation that makes c into a terminal; the only operation on this path is
J. The construction of a decomposition tree DT’ for G thus begins with an operation
f which uses a disconnecting set D (D0 t_J D) f’) V T t_J ( c } obviously f is a
(3, 1, 4)-operation (which again is in [3, 3, 6]).

It remains to show that each f e R and that each f either can be applied to
decompose the corresponding G or is essentially a null operation (i.e., G G/ 1). For
conciseness, we adopt the conventions that Ui T Ti (the portion of D Ti that is
found in G), W/= Ti T (the terminals of Gi that are separated from w by D), and
S is a minimum cardinality separating set between U and W in Gi (see Fig. 21 ).

To verify that f is in R, it suffices to show that k <= ki and r k <= r ki. But
k= IT’i] ki ITil r’ [D/I, and ri [D/I, so

r;- k;= IDa- TI I(D- Ti)fq V <= Di- Til ri- ki.

(a) Go (Vo, To, Eo)

(b) (3, 3, 6)-operation fo with Do ToO{.....

(c) (3, 3, 6)-operation with D To U {b, d, f}

FIG. 20. Two decompositions ofa graph Go e C([3, 3, 6]).
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FIG. 21. Illustration of Ui, Si, W in graph

Select the smallest l such that k > kt; the applicability ofoperation h to Go guarantees
that any such l >= 1. IfX denotes the set of nonterminals of G, then PG(X) > PGt(X)
and thus Uzl > Szl >- 1. Hence ro ko D T01 >= Uzl >-- 2; referring to the
allowable operations, we see that k0 -< 3. But ko >= k >= uzl / >= 3, so k0 3,
lUll 2, and Sl 1. But T n T01 =< 1, for otherwise k >= lUll + 2 >- 4, which
would deny the validity of h. Similarly at most one terminal from To is reachable by a
path from St without passing through Ut, or else h would again be invalid. Subject to the
minimality requirement on the selection of disconnecting set D and the determination
that Szl 1, there is no place for a third terminal of To, so ko =< 2, a contradiction.
Therefore k =< kt, as desired, which (with r k =< rt kt) implies f e R.

To verify that each f either can be applied to decompose G or is essentially a null
operation (i.e., G G/ 1), it suffices to show that each k/ =< k. Choose the smallest
such that f is not applicable because G+ has more terminals than its parent G; i.e.,
k+ > k. Hence P+,(X) > P(X), where X here denotes the set of nonterminals of
G+ 1. But every operation in R satisfies the conditions of Lemma 6, so P(X)=
P+(X) by operationf R. Furthermore, PGI(X) P(X) by choice of i, which when
combined with the above gives PI+, (X) > P+(X).

Next observe that if the removal of some vertices from Ui could lead to a greater
corresponding reduction in the cardinality of Si, then Si would not be a minimum sep-
arating set, because the elements removed from S; could be replaced by those removed
from Ui. This observation can be expressed as

ISil- Si+,l -< IUil- U;+,l.

Therefore

Pr;+,(x)-P,+,(x)= u/+, I- s;+,l _-< lull- ISl =P;(x)-P(x)=o,

which implies PaI+,(X) <= PGi+,(X), a contradiction, so each k+ _-< k and the proof
is complete.

As an example, the recursive class C([2, 7, 9] U [3, 5, 8] U [5, 1, 6] tO [7, 0, 7])
satisfies deterministic decomposition. Combining Theorem 7 with the preceding lemmas
yields the following result.
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THEOREM 8. The recursive class C( k, u, r] satisfies deterministic decomposition
ifand only if[k, u, r] has one ofthefollowingforms:

[2, r- 2, r],
[3, r-3, r],
[k,O,k],or
[k,l,k+ 11.

Proof. One direction is a consequence of Theorem 7. The other direction follows
from Lemmas 1-5. V1

Finally, a pair of results mentioned earlier can now be seen to follow easily from
the theorems above.

CogoLLhg 9. The biconnected series-parallel graphs (series and parallel opera-
tions, but no jackknife) can be specified as C([ 2, 1, 3]), and thus satisfy deterministic
decomposition.

COROLLARY 10. The Halin graphs are contained in C([3, 1, 4]), and thus satisfy
deterministic decomposition.

5. Conclusions. Our results extend the popular class of series-parallel graphs while
maintaining the property of deterministic decomposition. The following are some natural
directions for further investigation.

Identification of other existing or newly formed graph classes which are generalized
by the (k, u, r)-operations.
Examination of recursive classes for which B contains base graphs other than K2.
A complete characterization of sets of operation families that yield deterministic
decomposition; that is, the discovery of a proof or a counterexample for the con-
verse of Theorem 7. The technical difficulty lies in the complex interactions be-
tween several "bad" operations, or between "bad" and "good" operations, in the
same rule set. While intuition might suggest that such a rule set is unlikely to lead
to deterministic decomposition, it is possible that the ill effects ofa "bad" operation
could always be compensated for by the presence of another operation.

Acknowledgment. The authors acknowledge the very helpful comments ofan anon-
ymous referee, correcting several errors in an earlier version of this paper.
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Abstract. Informally, a (t, w)-threshoM scheme is a way of distributing partial information (shadows) to
w participants, so that any of them can easily calculate a key (or secret), but no subset of fewer than
participants can determine the key. Presented in this paper is an unconditionally secure threshold scheme in
which any cheating participant can be detected and identified with high probability by any honest participant,
even if the cheater is in coalition with other participants. Also given is a construction that will detect with high
probability a dealer who distributes inconsistent shadows (shares) to the honest participants. The scheme is not
perfect; a set of participants can rule out at most + (wT_ ) possible keys, given the information they
have. In this scheme, the key will be an element of GF(q) for some prime power q. Hence q can be chosen
large enough so that the amount of information obtained by any participants is negligible.

Key words, threshold scheme, secret sharing scheme
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1. Introduction. Informally, a (t, w)-threshoM scheme is a way ofdistributing partial
information (shadows) to w participants, so that any ofthem can easily calculate a key
(or secret), but no subset of fewer than t participants can determine the key. Threshold
schemes are also known as secret sharing schemes. A perfect threshold scheme is one in
which no subset of fewer than participants can determine any partial information re-
garding the key.

Threshold schemes were first described independently by Blakley [2 and Shamir
10] in 1979. Since then, many constructions have been given for threshold schemes.
More recently, various researchers have considered the problem of guarding against the
presence of cheaters in threshold schemes, it is conceivable that any subset of the par-
ticipants may attempt to cheat, that is, to deceive any of the other participants by lying
about the shadows they possess. There is also the possibility that the person distributing
the shadows (the dealer) may attempt to cheat. The dealer might distribute an inconsistent
set ofshadows, so that the key cannot be determined correctly, or so that different subsets
of participants would calculate different keys from the shadows they possess. If this is
done without the knowledge or cooperation of any of the participants, we refer to this
form ofcheating as disruption. However, if this cheating is done in cooperation with one
or more of the participants, we call it collusion.

A threshold scheme is said to be unconditionally secure (against cheating) if the
probability of successful cheating is limited to a specified probability even if the cheaters
are assumed to have infinite computational resources. Under the assumption that the
dealer is honest, several constructions have been given for threshold schemes that are
unconditionally secure against cheating 3 ], 8 ], 11 ], 12 ]. We now briefly summarize
the properties of these threshold schemes.

As far as we are aware, the first researchers to address the problem of cheaters in
threshold schemes were McEliece and Sarwate in 8 ]. They use an error-correcting code
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tO construct a threshold scheme in which any group of + 2e participants which includes
at most e cheaters can correctly calculate the key.

Tompa and Woll 12 proceed as follows. The dealer specifies a subset Ko ofthe set
of possible keys K. A key will be accepted as authentic only if it is an element of K0. If
a set of t participants calculate the key to be an element of K\Ko, then they realize that
one ofthem is cheating. The probability of successful cheating is at most lgol/Igl,
even if participants conspire to cheat another participant. However, even though
participants can detect when cheating has occurred, they cannot determine who is cheating.

The construction of Simmons 11 is more general in that it can be applied to most
existing threshold schemes. This method detects cheating only ifat least + participants
exchange their shadows. Define a set S of at least shadows to be consistent if all t-subsets
of S determine the same key. Then a key is accepted as authentic only if there is a
consistent subset of at least + shadows that determine it. If + e participants exchange
shadows and there are at most e cheaters among them, then they possess a consistent
subset of at least + shadows. Unfortunately, the only known method to determine
the existence of a consistent set of + shadows is an exhaustive search.

Finally, Chaum 3] has suggested the following approach. For each bit b to be
communicated to the ith participant, the dealer chooses 2w 2 large random numbers
rj0 and rjl =< j -< w, j 4: i). For each j, r0 and rl are given to participant j. The dealer
gives to the ith participant the bit b and all rb <= j <= W, j :/: i). Then rb is used to

authenticate the bit b (as 0 or 1, respectively) to participant j. This procedure is used
for every bit communicated to each participant.

In the schemes discussed above, it is assumed that the dealer is honest. Also, the
Tompa and Woll scheme and the Simmons construction require that the participants

be able to simultaneously release their shadows in order to ensure that no participant is
able to obtain partial information about the shadows of the other participants before
releasing his own shadow. Simultaneous release of shadows is not required in the Chaum
scheme.

Verifiable secret sharing schemes were introduced by Chor et al. in [5 ]. These are
threshold schemes that provide protection against dealer disruption and collusion. Other
such schemes have been presented by Benaloh [1 ], Goldreich, Micali, and Wigderson
[7 ], and Feldman [6]. These schemes provide computational security only, since they
rely on computational assumptions regarding certain encryption schemes.

Chaum, Crepeau, and Damgard [4] use threshold schemes as a building block in
unconditionally secure multiparty protocols. They tolerate both dealer disruption and
collusion, but require that less than one third of the participants cheat. Under these
assumptions, they describe a scheme that is unconditionally secure and which allows the
key to be determined correctly by the honest participants.

The threshold scheme we present provides unconditional security and gives the
honest participants the ability to identify cheaters, assuming the dealer is honest. Also,
we do not require that the participants simultaneously release their shadows. The properties
of our construction can be summarized as follows.

1. The key is an element ofGF(q), and each shadow is a t-dimensional vector over
GF(q) (q will be some large prime power).

2. Any participant who attempts to cheat will be identified by any honest participant
with probability / (q ).

3. Even ifthere is only one honest participant and the remaining w participants
form a coalition in order to deceive him, their probability ofcheating successfully
is only(w-t+ 1)/(q- 1).
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4. The scheme is nearly perfect. A group of t participants can eliminate at most
+ (wt_t? 1) possible keys and can obtain no other partial information about the

key. If q is large, this will cause no difficulty in practice.
5. The scheme can also protect against dealer disruption, by using a "cut-and-

choose" technique similar to that of 4 ].
Note that to obtain a desired level of security, it may be necessary to choose q to

be quite large. If the number of desired secrets, say r, is small compared to q, then we
can define a mapping from GF(q) to the set of secrets in such a way that for each
secret s the cardinality of the inverse image of s, ]-(s)], is approximately equal
to q/r.

Independently and simultaneously, Rabin and Ben-Or [9] developed a perfect
threshold scheme that has very similar properties to ours. Their scheme is also uncon-
ditionally secure, protects against dealer disruption, and allows the honest participants
to identify cheaters. Their scheme requires each participant to receive 3w 2 elements
of GF(q) from the dealer (in private); while in our scheme, each participant receives
only w + 2t 3 elements of GF(q). However, the dealer requires less computational
power in their scheme. They also extend their construction to protect against dealer
collusion when the total number of cheaters is less than w2.

2. The construction. Our construction is a modification of Blakley’s threshold
scheme 2 ], which we now review briefly. Suppose the participants are denoted Ai, <=
=< w, and the dealer is denoted by D. Let F be a t-dimensional vector space over GF(q),

where q is some large prime power. First, D fixes a line L in F. This line is made known
to all the participants. There are q possible keys, namely, the q points on L. If D wants
to distribute shadows corresponding to a key p, he first constructs a random (t )-
dimensional subspace H that meets L in a point. Then he constructs the hyperplane
Hp H + p. (Note that Hp f3 L p.) Finally, he picks w random points on H, denoted
S <= <= w), such that the points in the set {p } U { Si: N =< w } are in general
position (that is, no j of them lie on a flat of dimension j 2, ifj =< t). The point si is
the shadow that D gives to A (see Fig. ).

Any participants can uniquely determine the hyperplane Hp and then obtain p by
calculating Hp f-I L p. However, a subset of t’ (< t) participants know only that Hp
contains the fiat F of dimension t’ generated by the shadows they possess. For any

Hp
(2, 3)-threshold scheme

$2

L

FIG.
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p’ on L, there is a hyperplane Hp containing F and p’. Hence they have no information
as to the point p. Thus the scheme is indeed a (t, w)-threshold scheme.

To guard against cheating, we modify the threshold scheme. D will distribute extra
information to the participants, along with the shadows. For ease of exposition we first
discuss the case 2. In this case .H is a 1-dimensional subspace, and the hyperplane
Hp is a line. D constructs w random 1-dimensional subspaces, denoted Hi =< -<_ w),
each of which is distinct from H. We do not require that the subspaces Hi <= <= w)
be distinct. D gives to each Aj. the w parallel lines/-/ji Hj + Si, <= <- w, 4 j.
These lines nji are called supershadows. Note that nji is given only to Aj. See Fig. 2.

We must first show that knowledge of the supershadows does not enable any one
participant to determine the key. Let us consider A. He knows that s2 e H2. This does
give him some partial information, namely, that the key p 4:H2 f) L. For ifp H12
L, then p s2, which is not allowed. Similarly, A knows that p 4 ni f"l L, for any i,
2 =< =< w. Also, p 4: H fq L, whereH denotes the line through s parallel to the ni’s.
For this would require that Hp H, but s2 H. ThusA has ruled out w possibilities
for p. However, the key, p, could be any point Po on L other than these w points, since
the line pos will intersect each Hi in a point not on L. Each of these q w possibilities
for p is equally likely to occur.

Hence each participant can rule out w possibilities for the key and knows that the
key is equally likely to be one of the q w remaining possibilities. Thus the scheme is
no longer perfect. However, if q is large relative to w, this will cause no difficulty in
practice. (A variation of this scheme, described in 4, allows only one possible value to
be ruled out for the key in the case 2.)

Next, we consider the possibility that certain participants will cheat, by lying as to
what shadows they possess. In the worst case, w participants, say A (2 <= <= w) will
form a coalition in order to try to convince A1 that the key is some value p’ 4: p. We will
assume that w >- 3, so that the coalition can determine the line Hp and the key p before
attempting to deceive Al. Note that they can also calculate s, since s Hp fq H, for
example.

Suppose A tells A that his shadow is some point s rather than s2. A2 will not
choose s to be any point on L, or any point on the line through sl parallel to L, since
A1 would then realize that A_ is lying. Also, A2 will not choose s to be a point on Hp,

Hp
s3

FIG. 2
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since this would not deceive A1 as to the value ofp. Hence he will choose s to be one
of the remaining q)- 3q + 2 points. For any such choice of s, there is a unique line
H’2 joining s and s2. A1 will be deceived if and only if H’2 H12. Since H2 4: Hp,
there are q possibilities for H2, all equally likely. Each of these q lines through
s2 contains q 2 of the q2 3q + 2 points mentioned above. Thus the chance that A2
deceives A is / (q ). See Fig. 3.

If all the other Ai (2 =< =< w) try independently to deceive A in a similar fash-
ion, the probability that at least one of them succeeds is ( /(q )))w- =<
(w )/(q ). Their best strategy is to conspire; if they ensure that no two of the
lines ssi are parallel, then A will be deceived by one of them with probability equal to
w /(q ). This will be a negligible quantity if q is large compared to w.

If w 2, then the analysis is slightly different. Suppose A2 attempts to deceive A.
IfA2 can obtain the value ofs, then the arguments proceed as before, and A2 can deceive
A1 with probability 1/(q ). (This could happen ifA reveals s to A2 before A2 reveals
s2 to A, for example.) IfA2 cannot obtain the value ofs, then his probability ofdeceiving
A is decreased to /q, since he might choose s to be a point on Hp.

Let us now consider the general case >= 3. Recall that H is a (t )-dimensional
subspace and Hp is a hyperplane. D constructs w random (t )-dimensional subspaces,
denoted H; -< -< w). We require that the intersection of H with j of these H;’s
is a subspace of dimension t -j, ifj =< t. (In the case t 2 this condition reduces to the
previous requirement that the H;’s =< =< w) be distinct from H.) The w super-
shadows D gives to each Aj are the parallel hyperplanes nji nj -b" Si, <= W, 4: j.

One way to select the Hi’s is as follows. First, choose w subspaces ofH, denoted Ki
<- -< w), each of dimension 2, in general position. Then select w points not in

H, denoted qi <- < w). These points need not be distinct. Finally, define Hi to be
the subspace spanned by Ki and q; =< =< w).

First, we show that knowledge of the supershadows does not enable any par-
ticipants to determine the key. Suppose that participants Ai, =< -< t 1, attempt to
determine the key. They know that Hp contains F, the (t 2)-dimensional flat generated
by s, st- 1. They know also that a shadow sj (t =< j -< w) occurs on the line L which
is the intersection ofthe H, =< =< 1. (Since L meets Hp in a point, it has dimension

H12 $3

Hp

$1

FG. 3
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one and is indeed a line.) Note that any two of these lines Lj are parallel, since the
hyperplanes Ho. are parallel (for any fixed i).

We claim that for any j, =< j =< w, Lj and F generate the whole n-dimensional
space (consequently, Lj f) F ). This is seen as follows. Suppose L and Fare contained
in some hyperplane H’, for some j, t -< j _-< w. Since sj Lj, S1, St- - F, and since
the si’s are in general position, we have that H’ Hp. Then L

fq H(t-l)j. It follows that H f3 H fq H2 f3 f3 n(t- 1) has dimension at least one,
which is ruled out by the way in which the hyperplanes Hi were chosen.

Next, we observe that F f3 L . It is impossible that L
___
F since Hp fq L {p }

and F Hp. Also, F and L cannot intersect in a point, for this point would have to be
p, which would contradict the requirement that the shadows are in general position with
respect to p.

It is now easy to verify that there is a unique point p’ on L such that the hyperplane
determined by F and p’ is parallel to each Lj., =< j =< w. Then the key p 4: p’. For ifp
p’, then Hp Ly ; but Sj e Hp L, a contradiction. This enables the participants A;

_-< _-< t to rule out one possible value for the key.
There are in fact other points that can be ruled out as possible values for the key.

We saw earlier that when 2, the w points L f3 Ly (t _-< j _-< w) can also be eliminated
as possible values for p. In general, the number of possible keys that can be ruled out
(other than the point p’) is (w-_t

We can see this as follows. Let jl, , jr- be distinct integers such that <= ji <= w
=< _-< ), and let U be the flat spanned by the Lg =< _-< ). Since the lines

Lj are all parallel, U has dimension at most 1. The flat T spanned by the points sj
_-< _-< t has dimension 2, and is contained in U Hp. As well, L f3 Hp

{ sj }, for any j, _-< j _-< w. It follows that the dimension of U is exactly and T

Next, we observe that it is impossible that L
_

U. Since L Hp p }, this would
force p e T. But then the shadows s, ..., sj.,_ , and p would then be contained
in the flat T having dimension at most 2. Hence either L f) U is empty, or L U is
a point, say r. In the latter case, r cannot be the key, since (as before) the shadows
s,, sj.,_, and r would then be contained in the flat T. Hence, it is possible that
participants can rule out as many as + (w?_t i ) possible values for the key.

Example. Suppose we have a 3, 5 )-threshold scheme over GF(q), for some large
prime q. Suppose L is the line (/3, 0, 0) (/3 GF(q)), S 1, 1, 2) and s2 1, 1, 6).
Thus F is the line (1, 1,/3) (/3 GF(q)). Suppose also that L3 is the line (1 + a, 3 a, 2)
(a GF(q)), L4 is the line + a, -a, ), and L5 is the line (8 + a, -a, 3). (These
three lines are parallel, having direction vector (1, -1, 0).) A and Az would analyze
the situation as follows. Suppose the key is p (x0, 0, 0). Then, Hp is the plane x +
y(xo Xo. This plane intersects L3, L4, and L5 if and only if x0 4: 2. Thus (2, 0,
0) is ruled out as the key. Three other points can also be ruled out. For example, L3 and
L4 generate the plane U having equation x + y 3z -2. U meets L in the point
(-2, 0, 0). If-2 were the key, then Hp would have equation x 3y -2. Hence it
would follow that s3 (, , 2) and s4 (1/4, 43-, 1) (all arithmetic being done in GF(q)).
Then s3, s4, and p are all collinear, a contradiction. In a similar manner, -4 is ruled out
by consideration of L3 and L, and - is eliminated by consideration of L4 and Ls.

The last topic we examine in this section is the probability of successful cheating.
Suppose w participants, say Ai (2 <- <- w) form a coalition in order to try to convince
A that the key is some value p’ 4: p. Their best strategy is to leave 2 of their shadows
unchanged, and lie about the remaining w + shadows. The probability that A1 will
not detect that any particular shadow is a forgery is /(q ), as in the 2 case. The



508 E. F. BRICKELL AND D. R. STINSON

chance that A1 is fooled by at least one of the w + altered shadows is at most
(w- + 1)/(q- 1).

3. A cut-and-choose procedure to eliminate dealer disruption. We can eliminate
the possibility of dealer disruption by using a cut-and-choose procedure, as in 4 and
[1]. Let K be some security parameter (say K 50). Suppose Hp is the hyperplane
a. x c. The following protocol will be repeated K times.

1. D generates a random nonsingular matrix M and a random t-tuple b. D then
computes s; siMT + b and gives s; to Ai in private, =< =< w (the superscript
"T" denotes transpose). So, the s are obtained from the s/. by a random affine
transformation.

2. Depending on a flip f of a three-sided coin, D performs (a), (b), or (c).
(a) If f 1, then D reveals M and b, and each Ai verifies that s siM + b.
(b) If f= 2, then D computes a’ aM-1 and c’ c + a’. b, and reveals a’ and c’.

Then each A verifies that a’. s; c’.
(c) If f 3, then D reveals all values s, =< =< w. Then any Ai can verify that no

t-subset of { s" _-< =< w } is on a fiat of dimension at most 2.
If the dealer can answer all three challenges (a), (b), and (c), then it must be the

case that c a. si, <- <= w (that is, the shadows all lie on a hyperplane) and that the
shadows si are in general position. If the dealer attempts to cheat, he can answer at most
two of the three challenges in any given round of the protocol. Hence the probability of
the dealer fooling any given set of honest participants after K rounds in ()/.

It is also easy to see that no useful information is revealed to the participants by
this protocol. If operation 2(a) is performed in any round of the protocol, then the
participants learn only the affine transformation used in that round. This is of no use in
determining the key. If 2(b) is performed, then the participants obtain the hyperplane
a’. x c’. This tells them nothing about Hp, since any hyperplane can be mapped to

any other hyperplane by means of an afflne transformation.
Finally, let us suppose that operation 2 (c) is performed, and a set of participants,

say Ai (1 =< -< reveal to each other all their shadows. We will show that this
information cannot disqualify any of the possible secrets that could not have been
disqualified already. Define F to be the fiat of dimension of t 2 generated by the

si _-< -< ). Let r be a "guess" as to the value of the secret, and define Hr to be
the hyperplane generated by F and r. (r should not be one of the values that the
participants can eliminate as a possible value of the secret using only their shadows and
supershadows.)

As noted earlier, these participants can compute, for each value j such that
t <- j _-< w, a line Lj such that sj 6 L/. Any two of these lines Lj are parallel. They can
then compute r/= L/f"l Hr, <- j <= w. We will show that the possible list of shadows
(sl, st-1, rt, rw) is compatible with the guess that r is the secret. That is, we
prove that ifthe dealer is honest, then there must be an affine transformation which maps

’..- s)the ordered list of points (s,..., S_l, rt,.. rw) to (s’,..., st-l, st,

Let j denote an affine transformation which maps the ordered list of points
(s, ,&_, rt) to (s, ,St-l,St). We claim that j] (rj) s, for + =<j -< w. This
is seen as follows. Let + =< j =< w. Note that r L fq Hr and s Lj f’) Hp. Since

rj Hr, wecan write rj= alSl + olt-lSt-1 + ottrt, where l_i_tOli 1. Thenj’] (r)
o/isl + + Olt- 1St- + OltSt Z, say. We want to show that z s. Note that z rj

at(st rt). Now rt and st are both in the line Lt, rj and sj. are both in the line L, and Zt
and L are parallel. Therefore, it follows that at(& rt) [3(sj r) for some/3, and
hence z L. Furthermore, fmaps Hr to H,. Since r Hr, we must have z Hp. Then
z L fq H, sj, as desired.
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We already know that the affine transformation chosen by D in step ofthe protocol
maps the ordered list of points (Sl, Sw) to (S’l, "--, s). The composition of these
two affine transformations is again an afflne transformation, and it maps the ordered list
of points (Sl, st-, rt, rw) to (s’, St-l, st, S’w).

It is possible to prove that this protocol is a perfect zero knowledge protocol and
that it remains perfect zero knowledge even for a group of participants. More
precisely, it is possible to simulate executions of this protocol such that the simulated
conversations among the dealer and ofthe participants have an identical probability
distribution to the actual conversations. From the analysis given above, such a simulator
is straightforward to construct using standard techniques such as those used for the perfect
zero knowledge protocol for graph isomorphism given in [7].

Note that we require the existence of a broadcast channel in step 2 of this protocol.
This is a channel in which it is guaranteed that every participant receives the same
information from the dealer (i.e. the values ofM and b in 2 (a); or a’ and c’ in 2 (b); or

sthe s in 2(c)). If a broadcast channel is not used, then the dealer could attempt to
cheat during this protocol by giving different information to different participants.

We also observe that we can still obtain some protection against dealer disruption
even if we never use operation 2(c). For a set of participants can cooperate to check
that the values s they have received in any round of the protocol do not lie on a fiat
of dimension of dimension less than 2. This gives them no information as to the
values of each others’ shadows si, since any ordered list (Sl, "", s) can be mapped to
(s’, s’t) by an affine transformation.

We can also do a cut-and-choose procedure on the supershadows. Here the object
is to convince each participant A; that sj Hij, 4: j, without revealing sj. Suppose the
hyperplane Ha is given by the equation a.x big, <= i, j <= w, 4: j. The following
protocol will be repeated K times.

1. For -< j -< w, D generates a random t-tuple s), and gives s) to A. D then
computes b ai" sj and gives b. to A, < i, j < w, 4: j.

2. Depending on a coin flip f, D performs (a) or (b).
(a) If f "heads, then D reveals all s, < j < w and each A verifies that bj

ai" sj.
(b) If f "tails," then D reveals all s + s), =< j =< w, and each A verifies that

ai’(sj + sj.) bij + b’ij, <= j <= w.
The analysis of dealer disruption is similar to the previous situation. If the dealer

can answer both challenges (a) and (b) in any given round of the protocol, then it must
be the case that a.s9 bi9, <= i, j <= w, 4: j. That is, the shadow s lies on the hyperplane
ai’x bij. As before, the probability of the dealer fooling any honest participants in
all K rounds is 2 -K.

Next, we consider whether any information about the shadows is released by this
protocol. As before, if operation 2(a) is performed in any round of the protocol, then
clearly no information about the shadow is released. If operation 2 (b) is done, then Ai
learns all values sj + sj., but this tells him nothing about any s.

Finally, observe that we require a broadcast channel in step 2, as in the previous
protocol.

Although the protocol protects against dealer disruption, we cannot guard against
collusion of the dealer and any participant. Suppose D colludes with participant A.
D can tell A all the supershadows H and all the shadows si, 2 <= <= w. No collusion
can be detected in the cut-and-choose procedure, sinceA never reveals any information.
Then suppose a group of participants including A, say { Ai’. =< -< t }, attempt to
determine the key. AI can compute the intersection L of the hyperplanes H,
2 -< -< t. Note that LI is a line. If A1 claims that his shadow is any point on L1 other
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than s, then the other participants will not detect that he is cheating, and they will
calculate an incorrect key. In this way, A1 can make the other participants believe
the key is any value he desires.

4. Remarks. There are many variations ofthis threshold scheme. For example, the
threshold scheme could be implemented in a projective space rather than in an affine
space. In the case t 2, less partial information is revealed in a projective setting. D
would fix a line L in a projective plane P. As before, the key p would be a point on L.
D also picks a random line H intersecting L in p and distributes points on H\ {p as the
shadows. Supershadows are obtained as follows. For each participant A;, D picks a point
qg L\ {p } (these points need not be distinct). The supershadow Hij is the line sjqi.
With supershadows defined in this way, each participant Ag can only rule out the point
q; as the key (note that Ai can compute qi as the intersection ofany two ofthe supershadows
he possesses).

Another question is the amount of computation required. The dealer must verify
certain conditions, including that the shadows are in general position. This is not difficult
for small t and w, but could require a lot of time if and w are large. Is there an imple-
mentation of our scheme that is still computationally efficient for large and w?

Yet another issue is the amount of (secret) information that needs to be commu-
nicated in the form ofshadows and supershadows. We ask ifa scheme can be constructed
that requires less information to be distributed.

Finally, we ask if it is possible to construct a threshold scheme that provides un-
conditional security against collusion of the dealer and one or more participants.
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Abstract. The problem of finding Hamiltonian circuits in faulty hypercubes is explored. There are many
different Hamiltonian circuits in a nonfaulty hypercube. The question of interest here is the following: if a
certain number oflinks are removed from the hypercube, will a Hamiltonian circuit still exist? In partial answer
to this question are the following results. First, it is shown that for any n-cube (n >= 3) with =<2n 5 link faults
in which each node is incident to at least two nonfaulty links, there exists a Hamiltonian circuit consisting of
only nonfaulty links. Since as will be shown, there exists an n-cube with 2n 4 faulty links, in which each node
is incident to at least two nonfaulty links, for which there is no Hamiltonian circuit, this result is optimal.
Second, it is shown that the problem of determining whether an n-cube with an arbitrary number of link faults
has a Hamiltonian circuit is NP-complete.
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1. Introduction. In this paper, we explore the problem of finding Hamiltonian cir-
cuits in faulty hypercubes. There are many different Hamiltonian circuits in a nonfaulty
hypercube. The question of interest here is the following" if a certain number of links is
removed from the hypercube, will a Hamiltonian circuit still exist?

The motivation behind this question rests with the recent work on embedding
networks such as tings, grids, and trees in hypercubes BCLR ], BI ], BMS ], C ], C2 ],
C3 ], HJ ], G ], SS ], W]. Such embeddings demonstrate the ability of the hypercube

parallel computer architecture to simulate a wide range of other topologies. In a binary
hypercube ofdimension n, or n-cube, there are 2 nodes and n2 n- links. With so many
nodes and links, fault tolerance and fault tolerant embeddings are issues. Many researchers
have gone to great lengths to show the robustness and fault tolerance of the hypercube,
focusing on the hypercube’s ability to route and reconfigure itself despite faults [B],
CL ], CL2 ], HLN ], HLN2 ], PM ]. The problem addressed in this paper is related

to the fault-tolerant embedding of tings in hypercubes.
In partial answer to our question, we have the following results. First, we show that

for any n-cube (n >= 3) with =<2n 5 link faults in which each node is incident to at
least two nonfaulty links, there exists a Hamiltonian circuit consisting of only nonfaulty
links. Since, as we will see, there exists an n-cube with 2n 4 faulty links, in which each
node is incident to at least two nonfaulty links, for which there is no Hamiltonian circuit,
this result is optimal. Second, we show that the problem of determining whether an n-
cube with an arbitrary number of link faults has a Hamiltonian circuit is NP-complete.
These two results are presented in 2 and 3, respectively.

A binary n-cube can be viewed as an undirected graph of 2 nodes, each node
labelled with a unique n-bit string. There is a link between two nodes if and only if their
labellings differ in exactly one bit position. Two nodes whose labels disagree in exactly
one bit position d are said to be neighbors across dimension d, and the link between
them is said to be on dimension d, where dimension corresponds to the leftmost bit.
For convenience in the rest of the presentation, we will refer to the neighbor of node u
across dimension d as N(u, d) and the link on dimension d incident with u as L(u, d).
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Links will also be denoted by strings of length n over { 0, 1, * } with exactly one *.
For example, *0100 denotes the link between nodes 00100 and 10100 in a 5-cube. We
also use strings of length n over { 0, 1, * } to denote subcubes of an n-cube; a string with
exactly m *’s describes a m-cube. For example, *01 * * denotes the 3-cube involving the
eight nodes 00100, 00101, 00110, 00111, 10100, 10101, 10110, and 10111 of a 5-cube.

2. Hypercubes with a limited number of faults. In order to have a Hamiltonian
circuit, each node would have to be incident to at least two nonfaulty links. We begin
with a lemma that says that any n-cube with -_<n 2 link faults has a Hamiltonian circuit.
This sets the style of proof for later lemmas that ultimately guarantee the existence of a
Hamiltonian circuit in an n-cube with <-2n 5 faults, where each node is incident to at
least two nonfaulty links.

LEMMA 1. In an n-cube with <=n 2 linkfaults,for any node S, there exists afault-
avoiding Hamiltonian path Pfrom S to N(S, ).

Proof. The proof is by induction on n.
Induction Basis. For n < 3, there are no faults. Consider n 3. One of the paths

depicted in Fig. will avoid a single link fault.
Induction Step. As the induction hypothesis, we assume that the lemma is true for

n < k. To prove that the lemma is true for n k, first let F denote the set of faults in
the k-cube and let S ss2. .s. There exists a dimension on which not all ofthe faults
in F agree. (By the way, faults *0100 and *000 do not agree on dimensions 1, 2,
and 3.) This means that subcubes *"" *si*’" * and *... * Y,.* * each have -<k- 3
faults.

Case I. i= 1.
With FI --< k 2, there exists a dimension j 4:1 such that L(N(S, j), is

nonfaulty. By the induction hypothesis, there exists a fault-avoiding Hamiltonian
path P’ from S to N(S, j) in Sl* * * and a fault-avoiding Hamiltonian path P" from
N(N(S, j), to N(S, in Yl* *"" *. The path P consists of P’, L(N(S, j), and P".

S N(S, 1) S N(S,1)

S N(S 1)

FIG.

S N(S,1)
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Case II. 4: 1.
Suppose, without loss of generality, that 2. By the induction hypothesis, there

exists a fault-avoiding Hamiltonian path P’ from S to N(S, in *s2**’’’ *. Let the
sequence of nodes in path P’ be S -= ul, u2, u2k- N(S, ). Since FI =< k 2,
there exists a node ui in P’ such that L( ui, 2) and L( ui / 1, 2) are both nonfaulty. By the
induction hypothesis, there exists a fault-avoiding Hamiltonian path P" from N(ui, 2)
to N(Ui/l, 2) in *g2**""" *. The path P consists of the segment of P’ from S to
L( ui, 2 ), path P" from N( ui, 2) to N( ui +1, 2 ), L( ui +1, 2), and the segment of P’ from
Ui+ to N(S, ).

The next three lemmas concern faulty 4-cubes and 5-cubes. They contribute to the
induction basis for our inductive proof of the existence of a Hamiltonian circuit in a
hypercube with up to 2n 5 faulty links. Interestingly, as the size of the hypercube
increases, the result becomes easier to prove. The most complicated case is the 5-cube;
this is our reason for separating out the 5-cube case. Both Lemmas 3 and 4 contribute
to the argument about the existence of a Hamiltonian circuit in a 5-cube with up to 5
faulty links, each node incident to at least two nonfaulty links.

LEMMA 2. In a 4-cube with <=3 link faults where each node is incident to at least
two nonfaulty links, for any node S, there exists a fault-avoiding Hamiltonian path P
from S to N(S, ).

Proof. The proof is divided into two major cases. Let S sis2s3S4o
Case I. There exists a dimension such that removing all links on will result in

two 3-cubes with <= fault each.
(a) 1.

If there exists a dimension j 4:1 such that L(N(S,j), is nonfaulty, then the
path P consists of the fault-avoiding Hamiltonian path from S to N(S, j)
in sl***, L(N(S, j), and the fault-avoiding Hamiltonian path from
N(N(S,j), to N(S, in Yl***. Otherwise, the three faults must be *2S3S4,
*szg3s4 and *s2s34, in which case, the path shown in Fig. 2 will avoid the faulty
links.

hypercube links
*.:- Hamiltonian path links
:- ----- faulty links

N
FIG. 2
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(b) i4:1.
Suppose, without loss of generality, 2. There exists a fault-avoiding Ham-
iltonian path P’ from S to N(S, in *s2* *. Let the sequence of nodes in P’
be S ul, u2, u7, u8 N(S, ). Since there are _-<3 faults, there exists a

ui in P’ such that L(ui, 2) and L(ui+ 1, 2) are both nonfaulty. The path P
consists of the segment of P’ from S to ui, L(ui, 2), the fault-avoiding Ham-
iltonian path from N(ui, 2) to N(ui + 1,2) in *2" *, L(ui + 1,2), and the segment
of P’ from ui + to N(S, ).

Case II. Otherwise.
The faulty 4-cube must be isomorphic to the one shown in Fig. 3. With the help of

the fault-avoiding Hamiltonian paths and circuits depicted in Fig. 4 for this faulty 4-
cube, the reader can easily verify that, for each pair of adjacent nodes in the hypercube,
there exists a fault-avoiding Hamiltonian path starting at one ofthe two nodes and ending
at the other. If, in the isomorphism, S is mapped to node A and N(S, is mapped to
node B, we would be particularly interested in the fault-avoiding Hamiltonian path
between A and B, where A and B are the two end nodes of one of the nonfaulty links of
the Hamiltonian circuit described in Fig. 4 (a), 4(b), or 4(c), or the faulty links described
in Fig. 4(d), 4(e), or 4(f).

LEMMA 3. In a 5-cube with <-5 link faults where each node is incident to at least
three nonfaulty links, for any node S, there exists a fault-avoiding Hamiltonian path P
from S to N(S, ).

Proof. In a 5-cube satisfying the hypothesis, it is not difficult to see that there is a
dimension whose removal splits the 5-cube into two 4-cubes, each with at most 3 faults.
From here, the proof is divided into two major cases. Let S SlSzS3S4Ss.

Case I. There exists such a dimension 4: 1.
Since each node is incident to at least three nonfaulty links in the 5-cube, within

both 4-cubes, each node will be incident to at least two nonfaulty links. Suppose, without
loss of generality, 2. There exists a fault-avoiding Hamiltonian path P’ from S to
N(S, 1) in *s2***. Let the sequence of nodes in P’ be S ul, u2, u15, u16
N(S, ). Since there are _-<5 faults, there exists a ui in P’ such that L(ui, 2) and
L(ui+l, 2) are both nonfaulty. The path P consists of the segment of P’ from S to ui,

L(ui, 2), the fault-avoiding Hamiltonian path from N(ui, 2) to N(ui+ 1, 2) in *k2***,
L(ui + 1, 2), and the segment of P’ from ui+ to N(S, ).

Case II. Otherwise.
Removing the links on dimension must result in two 4-cubes with _-<3 faults

each. Again, within each 4-cube, each node will be incident to at least two nonfaulty
links. If there exists a dimension j 4:1 such that L(N(S, j), is nonfaulty, then
the path P consists of the fault-avoiding Hamiltonian path from S to N(S, j) in
sl*** *, L(N(S, j), and the fault-avoiding Hamiltonian path from N(N(S, j), to
N(S, in 1 * * * *. Otherwise, the set offaults must be either { *g2s3s4s5, *$293s4s5, *$2s3g4s5,

hypercube links

Hamiltonian path links

faulty links

FIG. 3
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*$2S3S4ff5 }, or { *2S3S4S5, *$23S4S5, *$2S34S5, *$2S3S45, *$2S3S4S . The path shown in Fig.
5 will avoid these faults.

LEMMA 4. It a 5-cube with <=5 linkfaults where each node is incident to at least
two nonfaulty links, for any node S, there exists a fault-avoiding Hamiltonian path P
from S to N(S, ).

Proof. Ifeach node is incident to at least three nonfaulty links, we can apply Lemma
3. So without loss of generality, suppose some node is incident to three faulty links. The
proof is divided into two major cases.

Case I. There exists a dimension such that removing all links on will result in
two 4-cubes with 3 faults each, and within each 4-cube, every node is incident to at
least two nonfaulty links.

(a) i=1.
Since there will be _-<3 link faults on any one dimension, there exists a dimension
j =/= such that L(N(S, j), is nonfaulty. Thus, the path P consists of the
fault-avoiding Hamiltonian path from S to N(S, j) in s*** *, L(N(S, j),
and the fault-avoiding Hamiltonian path from N(N(S, j), to N(S, 1) in
S-l****.

(b) ig=l.

Suppose, without loss of generality, 2. There exists a fault-avoiding Ham-
iltonian path P’ from S to N(S, in *s* * *. Let the sequence of nodes in P’
be S Ul, u, Ul5, u6 N(S, ). Since there are -<5 faults, there exists
a ui in P’ such that L(ui, 2) and L(ui+, 2) are both nonfaulty. The path P
consists of the segment of P’ from S to u, L(ui, 2), the fault-avoiding Ham-
iltonian path from N(ui, 2) to N(Ui+l, 2) in *Y2***, L(Ui+l, 2), and the
segment of P’ from ui +l to N(S, ).

Case II. Otherwise.
Without loss of generality, suppose that the node incident to three faulty links is

00000, and these three faulty links are 00"00, 000"0, and 0000". In order not to fall
into Case I, the remaining two faulty links must not have a or a * in dimension 3, 4,
or 5. At the same time, since each node is incident to at least two nonfaulty links, the
two remaining faulty links must not be incident to 00000. Thus, the two remaining faulty
links must be *000 and * 1000, and so, the faulty 5-cube must be isomorphic to the
one shown in Fig. 6. Figure 7 depicts fault-avoiding Hamiltonian paths and circuits
within the top half of this faulty 5-cube. Note that the bottom half is a 4-cube with no
faults. With the help of Fig. 7, the reader can verify that, for each pair of adjacent nodes
in the hypercube, there exists a fault-avoiding Hamiltonian path starting at one of the
two nodes and ending at the other. If, in the isomorphism, S is mapped to node A and
N(S, is mapped to node B, we would be particularly interested in the fault-avoiding
Hamiltonian path between adjacent pair A and B, where A and B are the two end nodes
of one ofthe nonfaulty links of the Hamiltonian circuit described in Fig. 7 (a), 7 (b), or
7 (c), or the faulty links described in Fig. 7 (d), 7 (e), 7 (f), or 7 (g). For example, with
A and B as marked in Fig. 6, Fig. 7 (a) shows a fault-avoiding Hamiltonian path P’ from
A to B in the top 4-cube. A Hamiltonian path P" exists from X’ to Y’ in the bottom 4-
cube. The path consisting of the link from A to X, the link from X to X’, path P", the
link from Y’ to Y, and the segment of P’ from Y to B is a fault-avoiding Hamiltonian
path from A to B in the faulty 5-cube.

Finally, we have the proof of our first theorem.
THEOREM 1. In an n-cube with <=2n 5 linkfaults, where each node is incident to

at least two nonfaulty links and n >= 3, for any node S, there exists a fault-avoiding
Hamiltonian path Pfrom S to N(S, ).
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Proof. The proof is by induction on n.
[Induction Basis] Lemmas 1, 2, and 4 take care of the 3-cube, 4-cube, and 5-cube,

respectively.
[Induction Step] As the induction hypothesis, we assume that the lemma is true

for n < k. The proof for n k > 5 is divided into two major cases. Let S sis2"" sk,

and assume, for convenience, exactly 2k 5 link faults.
Case I. Every node is incident to at least three nonfaulty links.
With 2k 5 faults in the k-cube (k > 5 ), there must be at least two faults in the

same dimension. Hence, there must be a dimension such that removing all links on
will result in two (k )-cubes with =<2k 7 2 (k 5 faults each. Since each
node is incident to at least three nonfaulty links, within each (k )-cube each node
will be incident to at least two nonfaulty links.

(a) There is such an where :/: 1.
Suppose, without loss of generality, 2. There exists a fault-avoiding Ham-
iltonian path P’ from S to N(S, in *s2* * *. Let the sequence of nodes in
P’ be S ul, u2, u2k- N(S, ). Since there are =<2k- 7 < 2k- 2 faults,
there exists a u in P’ such that L(ui, 2) and L(ui/ 1, 2) are both nonfaulty.
The path P consists of the segment of P’ from S to u, Z(ui, 2), the fault-
avoiding Hamiltonian path from N(ui, 2) to N(ui+l, 2) in *g2**"’*,
L(ui / i, 2), and the segment of P’ from ui 41 to N(S, ).

(b) Otherwise.
For k > 5, there will exist a dimensionj 4:1 such that L(N(S, j), is nonfaulty.
(In order not to fall into Case I (a) and not to have such a dimension j, the set
of faults must be in ( *g2s3s4" "Sk, *S2Y3S4" "Sk, "’", *S2S3S4’’" gg, *S2S3S4"" "Sg }
for k > 5, there are fewer than 2k 5 faults.) Thus, the path P consists of the
fault-avoiding Hamiltonian path from S to N(S,j) in sl**""" *, L(N(S,j),
and the fault-avoiding Hamiltonian path from N(N(S, j), to N(S, in

S-I** "*.
Case II. Some node X is incident to k 2 faulty links.
Let X be incident to faulty links on dimensions dl, d2, dk-2. For k > 5, there

will exist a dimension e {dl, d2, ,dg_ 2 } such that removing the links on dimen-
sion must result in two (k- )-cubes with <-2k 7 faults each; hence, within each
(k )-cube, every node will be incident to at least two nonfaulty links. (In order not
to have such an i, the faulty links not adjacent to X must be confined to the 2-cube
depicted in Fig. 8, i.e., leaving e3 and e4 to accommodate k- 3 > 2 faults.)

(a) 1.
Since there will be -<_k 2 link faults on any one dimension, there exists a
dimension j such that L(N(S, j), is nonfaulty. Thus, the path P consists
of the fault-avoiding Hamiltonian path from S to N(S, j) in sl**"" *,
L(N(S, j), and the fault-avoiding Hamiltonian path from N(N(S, j), to

N(S, 1) in k-l** .*.
(b) i4:1.

Suppose, without loss of generality, 2. There exists a fault-avoiding Ham-
iltonian path P’ from S to N(S, in *s2* * *. Let the sequence of nodes in
P’ be S ul, u2, u2k- -= N(S, ). Since there are =<2k 7 < 2k- 2 faults,
there exists a ui in P’ such that L(ui, 2) and Z(ui+ 1, 2) are both non-
faulty. The path P consists of the segment of P’ from S to ui, L(u, 2), the
fault-avoiding Hamiltonian path from N(ui, 2) to N(ui /1, 2) in *g2**""" *,
L(ui +1, 2), and the segment of P’ from ui /1 to N(S, ).
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This result is optimal since there exists an n-cube with 2n 4 faults, each node
incident to at least two nonfaulty links, for which no Hamiltonian circuit exists.
Simply consider the 2n 4 faulty links: 00"00...00, 000"0...00, 00000...0",
11 *00. 00, 110 *0. 00, 11000. 0 *. Note that, in this scenario, nodes 0000- 00
and 1100. 00 each have exactly two nonfaulty links incident to them. These four links,
000. 00, 0 *00. 00, * 100. 00, and *00... 00 form a cycle by themselves, making

a Hamiltonian circuit impossible for n >= 3. We can, in fact, prove the more general
statement embodied in Lemma 5.

LEMMA 5. For 2 <= m < n, there exists an n-cube with 2 m-l(n m)faulty links,
each node incident to at least m nonfaulty links,for which no Hamiltonian circuit exists.

Proof. The proof is by construction.
First of all, consider an m-cube Qm. Let O-nodes be the nodes that have an odd

number of l’s in their m-bit binary strings and E-nodes be the nodes that have an even
number of l’s. There are exactly 2 m-1 O-nodes and 2m- E-nodes in Qm. Note that all
of the m neighbors of an O-node are E-nodes, and all of the m neighbors of an E-node
are O-nodes in am.

Select an m-subcube am in the n-cube an. For each O-node in am, remove all n
m adjacent links which are not in am so that it is adjacent to E-nodes only. Every one
of the 2 m-l(n m) removed links is distinct. View these removed links as faulty links.
So each node in Qn is incident to at least m nonfaulty links, and there are 2 m-1( g/ m)
faulty links.

Suppose there exists a Hamiltonian circuit HC in Qn. Each O-node in am in HC
must be between two E-nodes in (m. There are 2m- such O-nodes. We need at least
2 m-1 + E-nodes in order to do the job. But there are only 2m- E-nodes in (m. So,
there is no Hamiltonian circuit in Q,.
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3. Hypercubes with an arbitrary number of faults. In this section, we prove the NP-
completeness of the following problem.

Hamiltonian circuit in faulty hypercube (HCFH).
INSTANCE: A k-cube Q with faulty links.
QUESTION: Does Q contain a Hamiltonian circuit comprised of only nonfaulty links?

To this end, we make use of 3-satisfiability.

3-Satisfiability (3SAT).
INSTANCE: Collection C {c,c2, ,Cm} of clauses on a finite set U
{ u, u2, Un } of variables such that cil 3 for =< =< m.
QUESTION: Is there a truth assignment for U that satisfies all the clauses in C?

THEOREM 2. Hamiltonian circuit in faulty hypercube is NP-complete.
Proof. It can be seen that HCFH e NP, since a nondeterministic algorithm can

guess an ordering ofthe vertices and check in polynomial time that all the required links
are nonfaulty links of the hypercube.

We describe a transformation from 3SAT to HCFH. Let U { u, u2, Un } and
C { Cl, c2, Cm } be an instance of 3SAT. Without loss of generality, we assume
that, if a variable uj appears in a clause, it appears either as uj or ff but not both, and
moreover, n 2rlg2nl and m 2rg2(m+2)l 2 (these assumptions can be made valid
by increasing the size of the problem by a constant factor). We will be concerned with
a k-cube, where k 6 + flog2 nq + [log2 (m + 2)q, with nonfaulty and faulty links as
described in the next few paragraphs. We first define three kinds of components: the V-
square component, the C-square component, and the triangle component.

The V-square component is the faulty 4-cube shown in Fig. 9 (a) with 18 nonfaulty
and 14 faulty links. External nonfaulty links connecting this component to the rest of
the k-cube will be incident to only 4 possible entry/exit points: nodes A, E, a, e. Figure
9(b) shows the only three possible configurations for a Hamiltonian circuit’s passage
through a V-square component. The reader may readily verify that the V-square com-
ponent has the property that

(i) entering the component at node A implies an exit at node a, and vice versa,
and

(ii) entering the component at node E implies an exit at node e, and vice versa.
The C-square component is simply the faulty 4-cube shown in Fig. 13 (a) with 15

nonfaulty and 17 faulty links. The entry/exit points for this component will be nodes
A, E, a, e, G, H.

The triangle component is the faulty 4-cube shown in Fig. 10(a) with 17 nonfaulty
and 15 faulty links. External nonfaulty links connecting this component to the rest of
the k-cube will be incident to only 3 possible entry]exit points: nodes A, D, E. Fig.
10(b) shows the only two possible configurations for a Hamiltonian circuit’s passage
through a triangle component. The reader may verify that the triangle component has
the property that

(i) entering the component at node D implies an exit at either A or E,
(ii) entering the component at node A implies an exit at D,
(iii) entering the component at node E implies an exit at D, and
(iv) all of the nodes in the component must be visited in one pass through the

triangle.
We view the k-cube as a 4(m + 2) row by n column mesh of 4-cube components

following the pattern prescribed in Fig. 11. V-squares will correspond to the variables of
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the 3SAT instance, while C-squares will correspond to the clauses. More specifically, the
V-squares ofcolumnj are related to variable uj, and entering/exiting these squares from
the A-side corresponds to a true setting of the variable while entering/exiting from the
E-side corresponds to afalse setting. The ith block of C-squares will correspond to clause
ci. Triangles help to assign truth values to variables.

To complete the description of the faulty k-cube, we need to specify the nonfaulty
links between the 4-cubes in the mesh. There are three kinds of nonfaulty links between
4-cubes: V-links, C-links, and VC-links. V-links are connections between V-squares and
V-squares, and between triangles and V-squares; they follow the pattern shown in Fig.
12. C-links are connections between C-squares within a block, and they follow the ring-
like pattern shown in Fig. 13(b). Finally, VC-links are the connections between V-
squares and C-squares; Fig. 14 explains (there are no VC-links in thejth column ofblock
if neither uj nor ff belongs to ci). The reader may verify that all ofthese links are indeed

hypercube links; i.e., the graph described is indeed a subgraph of a nonfaulty k-cube. All
of the rest of the links between 4-cubes are considered faulty.

It is easy to see that the construction of this faulty k-cube can be accomplished in
polynomial time. All that remains is to show that C is satisfiable if and only if this k-
cube Q has a Hamiltonian circuit comprised of only nonfaulty links.

Suppose there exists a Hamiltonian circuit P in Q. In our construction of Q from
the 3SAT instance, each literal of clause ci introduces a pair of VC-links that "hook"
onto the two C-squares for ci. Examine the C-square in Fig. 13(a). The fact that the
links (A, B), (h, a), (d, e), and (E, F) must be included in Hamiltonian circuit P
forces that:

(i) the link (A, a) and VC-link entering/exiting from node A cannot coexist
in P;
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(ii) the link (A, a) and the entering/exiting link from node a cannot coexist in P;
(iii) P must either include both the VC-link entering/exiting from node A and the

entering/exiting link from node a, or neither;
(iv) the link (E, e) and the VC-link entering/exiting from node E cannot coexist

in P;
(v) the link (E, e) and the entering/exiting link from node e cannot coexist in P,

and
(vi) P must either include both the VC-link entering/exiting from node E and the

entering/exiting link from node e, or neither.
So by Fig. 13 (b), for the two C-squares of a literal for ci, P must either include both

the VC-links that are hooked onto them, or neither. Looking down a particular column
j ofthe mesh, we further observe that, in order for P to indeed be a Hamiltonian circuit,
entering/exiting the top triangle at node .4 (analogously, node E) implies that all V-
squares in the column will be entered/exited only at node A or node a (node E or node
e), and the bottom triangle will also be entered/exited at node A (node E). Figure 15
illustrates the two possible configurations for a Hamiltonian circuit’s passage through
column j. Thus, our procedure for obtaining a satisfying truth assignment t:U --{ T, F} for C from P is to simply look at the first row of triangles. IfP includes the path
from D to E to A in the triangle at the top of column j, then t(uj) T; otherwise,
t(uj) F. To see that this truth assignment satisfies each of the clause ci C, consider
the ring of C-squares for ci. The very fact that P enters/exits this ring via a pair of VC-
links joining 4-cubes in some column j means that the truth assignment for u causes ci
to be satisfied. Thus, is a satisfying truth assignment for C.

FIG. 12. The V-links.
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Conversely, suppose that U --* { T, F} is a satisfying truth assignment for C. We
first describe a simple circuit P which visits all of the nodes of triangles and V-squares.
If t(uj) T, then P will include:

(i) the path from node A to node a within each of the V-squares in column j of
the mesh,

(ii) the path from node D to A within each of the two triangles in column j, and
(iii) the nonfaulty links going from node A to node a between triangles/V-squares

and V-squares in column j.
If uj) F, then P will include
(i) the path from node E to node e within each of the V-squares in columnj ofthe

mesh,
(ii) the path from node D to E within each of the two triangles in column j, and
(iii) the nonfaulty links going from node E to node e between triangles/V-squares

and V-squares in column j.
P also includes all of the nonfaulty links from node D to node D between triangles.

To make our circuit include all of the nodes of C-squares as well, and thus arrive at
a Hamiltonian circuit, we modify P. For each clause ci C, there will be a literal, involving,
say, variable u, in clause ci that is true under the truth assignment t. If the literal is u,
Fig. 16 illustrates the modification that will include the nodes ofthe C-squares for clause
ci in the circuit. Let C-square(i, j, and C-square(i, j, 2) be the two C-squares corre-
sponding to u and ci. The sequence of the nodes in the C-squares traversed by P is:
the path from A to G in C-square(i, j, ),
followed by the path from G to H in C-square(i, j + 1, ),
followed by the path from H to G in C-square(i, j + 2, ),
followed by the path from G to H in C-square(i, n, ),
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is replaced by:

th column

FIG. 16

followed by the path from H to G in C-square(i, 1, ),
followed by the path from G to H in C-square(i, 2, ),
followed by the path from G to H in C-square(i, j 1, ),
followed by H, h, a in C-square(i, j, ),
followed by a, h, H in C-square(i, j, 2),
followed by the path from H to G in C-square(i, j 1, 2),
followed by the path from G to H in C-square(i, 1, 2),
followed by the path from H to G in C-square(i, n, 2),
followed by the path from G to H in C-square(i, n 1, 2),
followed by the path from H to G in C-square(i, j + 1, 2),
followed by the path from G to A in C-square(i, j, 2).
A similar modification will do the trick if the literal is ff. Such modifications will give
the desired Hamiltonian circuit.

4. Concluding remarks. In summary, we showed that there exists a Hamiltonian
circuit consisting of only nonfaulty links in an n-cube with =<2n 5 link faults, in which
each node is incident to at least two nonfaulty links. Since there exists an n-cube with
2n 4 faulty links, in which each node is incident to at least two nonfaulty links, and
for which there is no Hamiltonian circuit, this result is optimal. In addition, we found
that 2m-(n m) faulty links are enough to destroy the existence of a Hamiltonian
circuit in an n-cube, in which each node is incident to at least m nonfaulty links, 2 =<
m < n. The problem of determining the minimum number of faulty links in an n-cube,
where each node is incident to at least m nonfaulty links, so that no Hamiltonian circuit
exists is still open.

We also showed that the problem ofdetermining whether an n-cube with an arbitrary
number of link faults has a Hamiltonian circuit to be NP-complete. This result imme-
diately implies that the problem of determining whether an n-cube with an arbitrary
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number of link faults has a torus which includes all of the nodes is NP-complete since a
Hamiltonian circuit is a special case of torus. This result also implies that the problem
of determining the largest ring in an n-cube with an arbitrary number of link faults is
NP-hard.
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Abstract. An edge coloring model is described for dealing with a special type ofcyclic scheduling problem:
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ofA are cyclically consecutive. Let T(p, G) max, ; Pe e e A A is a bundle or a triangle }. A graph G is
called ice-perfect if, for any assignment p of values Pe to the edges, there exists an interval cyclic edge T(p, G)-
coloring. We show that a graph is ice-perfect if and only if it is a triangle or a bipartite outerplanar graph.
Applications to scheduling in flexible manufacturing systems are mentioned.

Key words, scheduling, edge coloring, production, flexible manufacturing systems, open shop, cylindrical
scheduling
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1. Introduction. In production it is often the case that one must manufacture a
collection of items on processors in a cyclic way: there is a so-called production cycle
that is repeated continuously.

Consider an open shop scheduling problem: a collection of processors P1,
is given with a set ofjobs J1, J. Each job J consists of a set of tasks Tlj, T2j,
Tmj with processing times Plj, P2, Pm. Task T0 of Jj. has to be processed on Pi no
two tasks To., Tk of the same job J can be processed at the same time. Furthermore, no
processor can work on two tasks at a time. We also assume that the tasks TI, ..-, T,j
can be processed in any order. No preemptions are allowed when processing a task.

Let T be the total processing time of the jobs (in an open shop); if the production
cycle is repeated, tasks that are being processed at the beginning and at the end of the
production cycle can be considered as nonpreempted; they are simply continued at the
beginning of the next cycle. Figure (a) shows an example of an open-shop scheduling
problem; it is not difficult to see that the minimum value of the total processing time T
is 7. The corresponding schedule is shown in Fig. (b). Now let us assume that the
production schedule is repeated; in such a case we have a processing time T 6 for each
production cycle. Such a cylindrical schedule is shown in Fig. (c).

In some cases, an additional requirement must be taken into account: there should
be no idle time between processing of the various tasks of the same job. The reason for
that may be that there is not much storage space in an automated workshop; the various
tasks forming a job correspond to manufacturing a batch of identical parts that all must
go through a specified set of machines. Once a batch is introduced into the workshop,
we would like to have it processed without interruptions. Similarly, it is desired that each
processor works with as few interruptions as possible. In a cyclic problem, there will be
at most one idle period in each cycle. The main reason is to have a continuous-time
interval available for performing maintenance in each cycle. Such circumstances arise,
for instance, in a flexible manufacturing system.
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processors jobs

J1 (Pl P21, P31 (2,0,4)

J2: (P12, P22, P32) (2,3,0)

J3: (P13, P23, P33) (2,3,0)

(a) open shop scheduling problem

(b) non-cylindrical

P1 Tll T12 T13 Tll T12

(c) cylindrical with

FIG. 1. An open-shop cylindrical scheduling problem.

Schedules satisfying these requirements are called compact. From now on, all sched-
ules must be compact, unless otherwise mentioned.

When the production cycle is repeated, we call such a problem a nonpreemptive
open-shop cylindrical scheduling problem (NOSCS).

Let us associate with a NOSCS a graph-theoretical model as follows: each job J/
and each processor Pi corresponds to a node. Each task To is represented by an edge
[Pi, Jj]. Then, there exists a production cycle (i.e., a cylindrical schedule) with total
processing time (or length) T if and only if we can assign to each edge [Pi, J] a set of
Pij cyclically consecutive integers in { 1, ..., T} such that no two adjacent edges share
a common integer and furthermore all integers assigned to an (inclusionwise) maximal
set of mutually adjacent edges are also cyclically consecutive in { 1, T}. Figure 2
shows such a model for the example in Fig. (c).

Clearly, a lower bound on the length T of a cycle is given by

T(p max { max Z Pij, max Zi Pii }.
j

We will examine here when a cylindrical schedule in T(p) time units does exist.
More precisely, we will characterize graphs for which, given any assignment of values P0
to its edges [Pi, J/], a cylindrical schedule in T(p) time units can be found.

The graphs used here will have no loops; if, in addition, they have no multiple
edges, they are simple graphs. An induced subgraph Gx, (X’, E’) of G (X, E) is
obtained by taking a subset X’ of the node set X of G and by introducing into E’ all
edges of G with both endpoints in X’. A partial graph H (X, F) of G (X, E) is
obtained from G by possibly removing some edges from E. A partial subgraph
Hx, (X’, F’) is a partial graph of Gx,.
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J1 ( 1, . P1
3, 4, 5,

3,4/
5,6

J2 P2

J P
FIG. 2. A graph-theoretical representation ofthe schedule ofFig. l(c).

A classical edge k-coloring ofG is an assignment of one color in { 1, k } to each
edge in such a way that no two adjacent edges have a color in common. The smallest k
for which G has a classical edge k-coloring is the chromatic index of G; it is denoted by
q(G). Moreover, we denote by ZX(G) the maximum cardinality of a set of mutually
adjacent edges.

A graph G is called line-perfect 7 if, for every partial graph H, the trivial inequality
q(H) >_- A(H) is satisfied with equality.

All graph-theoretical terms not defined here can be found in [2] and [5].

2. Chromatic scheduling. In this section we will develop a graph-theoretical model
that will allow us to study a variation of open-shop problems (see and 3 for related
problems and basic definitions). Let us assume that we have a collection ofjobs J1,
J, with processing times pl, p,; a set of renewable resources R, Rp is given.
One unit ofeach Rk is available at any moment and each job requires at most two specific
resources during its processing. Since a resource cannot be shared by two or more jobs
at the same time, no two jobs using the same resource can be processed simultaneously.

We can associate a graph G with this data as follows: each resource Rk corresponds
to a node ofG and each job J using resources R,, Rv is an edge Jj [Ru, Rv with weight
pj. Note that by introducing fictitious resources if needed, we may assume that each job
uses exactly two resources.

We want to find a cylindrical schedule in T time units; this corresponds to an
assignment of pj cyclically consecutive integers in { 1, T} to each edge associated
with Jj. These integers will be called colors; they correspond to the time periods during
which Jj will be processed during the cycle. No two adjacent edges can share a color due
to the resource availability constraint.

This assignment must satisfy an additional requirement; we need to introduce some
notation before formulating it.

A bundle B(x) in a graph G is the collection ofedges adjacent to node x. We denote
by /(G) the set of all triangles and bundles in G.

The assignment of colors to the edges of G must be such that the colors associated
to the edges of any set A in /(G) must form a set of cyclically consecutive colors in
{ 1, T). IfA is a bundle B(R), it means that resourceRmust be used continuously
(without interruptions) during each cycle of the cylindrical schedule. Note that the graphs
G in this section are not necessarily bipartite, so (G) may contain triangles in addition
to the bundles of all nodes.

Such a coloring of the edges of G in T colors will be called an interval cyclic edge
T-coloring (or, shortly, ice T-coloring).
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Let Pe be the weight assigned to each edge e of G and define

(2.1) p(A)= Z(pe:erA) for each A 6 ’(G),

(2.2) T(p, G)=max {p(A): ArI(G) }.
Denote by X’(G, p) the smallest T for which G (with weights Pe on its edges e) has an
ice T-coloring. Clearly we have

(2.3) X’(G,p)>=T(p,G).

In the next section, we will characterize graphs for which (2.3) is an equality whatever
integral weights are given to their edges.

Observe that, ifpe 0 is given to edge e, this corresponds to removing edge e from
G. So, when requiting that (2.3) holds for any assignment of nonnegative integers Pe to
the edges e, we will in particular require it to hold for every partial subgraph of G (i.e.,
every graph obtained by removing some edges and some nodes from G).

Similar problems concerning noncylindrical schedules have been examined in [9].
Upper bounds on the total completion time of cylindrical and noncylindrical schedules
have been derived from graph-theoretical models in [10].

3. Ice-perfect graphs. We first give the following two definitions.
A graph G is ice-perfect if, for any choice of integral weights Pe for the edges e,

we have

(3.1) X’(G,p) T(p, G).

If (3.1) holds for any choice of weights Pe in N { 0, 1, 2, 3, 4 }, we will say that G is
Nice-perfect. Observe that an ice-perfect graph is trivially Nice-perfect. It can also be
easily seen that a Nice-perfect graph is line-perfect.

We observe that when we are considering ice T-colorings, we may assume without
loss of generality that the graphs are simple; in terms of scheduling, all jobs involving
the same pair of resources are merged into one new job. If (2.3) holds as an equality
before merging the parallel edges, it will also hold after merging and conversely. This
assumption will simplify the graph-theoretical statements and the proofs.

We will now examine some examples of graphs; for the odd cycle C2k +1 (k >= 2)
with Pe for each edge (see Fig. 3(a)), we have T(p, G) 2 and X’(G, p) 3, so
C2k +1 is not ice-perfect (it is not even line-perfect). For the flag in Fig. 3 (b), the values
Pe shown give T(p, G) 4. We may without loss of generality color c, d] with ( 1, 2 ),
[a, c] with { 3 }, and [b, c] with { 4 }. Then there is no color that can be used for
[a, b]: such a color should be cyclically adjacent to both 3 and 4 and different from
both. So the flag is not Nice-perfect.

The graph K2,3 (i.e., a triangle and an isolated edge) is not Nice-perfect as can be
seen from Fig. 3 (c).

Observe that a triangle is, however, ice-perfect. A mouth M(x, y) consists of three
node-disjoint chains of the same parity (with length at least two) that link nodes x and
y. Figure 4(a) shows an odd mouth and Fig. 4 (b) an even mouth with weights Pe in N.

For this odd mouth we have T(p, G) 6; without loss of generality we may color
[x, a with { 1, 2 }, [x, bl with { 3, 4 }, [x, c with { 5, 6 } then [a2k, y] must get one
color in { 1, 2 ), b2r, y] one color in { 3, 4 }, and c2, y] one color in { 5, 6 }. This cannot
give an ice 6-coloring (colors cannot be cyclically consecutive at y). So an odd mouth
is not Nice-perfect.

For the even mouth in Fig. 4(b) we have T(p, G) 5. Without loss of generality
we color [x, a ], [x, b], and [x, c] with { 1, 2 }, { 3 }, and { 4, 5 }, respectively; then
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(a) the odd cycle C2k+1 (k 2)

0 0

(c) the graph K2,3

(b) the flag

FIG. 3. Some graphs that are not ice-perfect.

a2k, a2k + 11, b2r, b2r+ 11, and Cs, C2s + 11 get also { 1, 2 }, { 3 }, and { 4, 5 }, respectively.
Now b2r/l, Y] may receive either { 4, 5, } or { 5, 1, 2 } because ofthe cyclic consecutivity
requirement on [br+l, y]. In any case, colors and 5 will be given to [b2r+l, y]. But
[a2k/ 1, Y], which could have { 3 } or { 5 }, must then get { 3 }. So [C2s/ 1, Y], which could
have { 3 } or { }, has no available color. So an even mouth is not Nice-perfect.

In a graph G, a cutnode is a node whose removal increases the number ofconnected
components of G. A graph is nonseparable if it is connected .(nontrivial) and it has no

(a) odd mouth

a2k.2 a2kol a2k+lal , 0 ,
b2r-2 b2r-

C 3
% c2 C2s’2 C2s’1 C2s

’ 0 ’ 2s*l

(b) mouth

FIG. 4. More nonice-perfect graphs.
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cutnode. A block in G is an inclusionwise maximal nonseparable induced subgraph of
G. We will now characterize the blocks ofan ice-perfect graph. We need some additional
definitions.

A graph is planar if it can be embedded in the plane in such a way that edges do
not intersect. A graph is outerplanar if it can be embedded in such a way that all its
nodes lie on the same face (usually chosen as the exterior face).

It is known that a graph is outerplanar ifand only ifit has no subgraph homeomorphic
to K4 or K2,3 except K4 e [6]. It follows that a bipartite graph is outerplanar if and
only if it contains no mouth.

It is not difficult to see that any embedding on the plane of a bipartite outerplanar
graph can be obtained in the following way.

Consider an elementary even cycle Co containing an edge e [x, y]; a handle
H(e is an odd chain (of length at least three) linking x and y (the intermediate nodes
of H(el are new nodes). Note that Co U H(e is still bipartite (and planar). We may
now repeat this operation by choosing an edge e2 el in G Co U H(e and introducing
a handle H(e2) to obtain a graph G2. A graph that can be obtained by starting from an
even cycle Co and by repeatedly introducing handles H(e ), H(eq) on distinct edges
e, eq is called a bipartite edge cactus (or bec graph).

PROPOSITION 3.1. Let G be a bec graph and let p be an assignment ofnonnegative
integral values to the edges ofG; then, for any k >-_ T(p, G), the graph G has an ice k-
coloring.

Proof We will give an algorithm which produces an ice k-coloring in G.
Assume G is obtained from an initial cycle Co by choosing successively an edge e,

introducing a handle H(e ), and an edge e2 with a handle H(e2) and so on.
Let k >= T(p, G). Let { 1, k } be the set of colors. We traverse the cycle Co by

giving each edge e alternately Pe cyclically consecutive colors ending with k andPe cyclically
consecutive colors starting with (--k + ).

At this stage, observe that each edge e [x, y] in Co with colors l, + 1, r
satisfies the following"

(3.2)

Each one of the sets of colors S(x),S(y) on edges adjacent to x and to y,

respectively, forms a cyclic interval in { 1, k }. Both S(x) and S(y)

have as an endpoint or both have r as an endpoint.

Now assume that edge e [x, y] has received colors/1, r. According to (3.2),
we may assume that r is an endpoint ofS(x and ofS(yl (the other case is symmetric).
Starting at x, we color the edges e of H(e) by giving them alternately Pe cyclically
consecutive colors starting with r + and Pe cyclically consecutive colors ending with

rl. Such colors can always be found in { 1, k } since k >-_ T(p, G). We observe that
(3.2) still holds for each edge different from the already used e.

By repeating this construction for each new ei and for its handle H(e/.) we get an
ice k-coloring of G.

We will consider that a block may con.sist of a single edge (it is also a graph with
two nodes which cannot be disconnected by removing less than two nodes).

We may now state the following theorem.
THEOREM 3.2. For a graph G, thefollowing statements are equivalent:
(a) G is ice-perfect;
(b) G is Nice-perfect;
(c) G is a bipartite outerplanar graph or a triangle.
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Proof
(a) (b). The proof is trivial.
(b) (c). Let G be a Nice-perfect graph. We will characterize the blocks of G. So,

let B be a maximal two-connected induced subgraph of G. If B is a triangle, we have
necessarily G B since the flag and K2,3 are not Nice-perfect and we are done. If B is
an edge, there is nothing to prove. So, assume B is a nontrivial block. It is bipartite since
C2k +l is not Nice-perfect (for k >- 2).

Using the same procedure as in the construction ofbec graphs we define a collection
el, ep of distinct edges ofB with handles H(el ), H(ep). This shows that B can
be reconstructed in the reverse order (by introducing handles H(ep), H(ep_ 1),
H(el )); hence B is a bec graph and G is bipartite and outerplanar.

(c) (a). If G is a triangle, then it is ice-perfect. Assume now that G is bipartite
and outerplanar; each block is outerplanar. Let k T(p, G) for an assignment p of
nonnegative integer weights Pe to the edges of G. According to Proposition 3.1, each
block of G has an ice k-coloring. We can then number the blocks B1, Bs in such a
way that each Bi (i >= 2) is linked by a single cutnode to the graph generated by the
blocks Bj with j < i. Take B1 with its ice k-coloring; then B2 has also an ice k-coloring.
By possibly permuting cyclically the colors 1, ..., k in B2 we may get an ice k-coloring
ofB2 such that all edges adjacent to the cutnode x linking B and B2 have different colors.
This is possible since k >- T(p, G). We thus obtain an ice k-coloring of B1 t_J B2. By
repeating this construction for B3, B4, Bs, we will obtain an ice k-coloring ofG. []

4. Applications to scheduling. Production in cycles occurs frequently in industrial
manufacturing processes. Such a situation will, as mentioned earlier, happen in flexible
manufacturing systems: in a single time shift, several production cycles may be performed
in a row. This may be an efficient way of working with a production system that is
adequately set up for manufacturing a given product mix; the appropriate tools have
been loaded in the tool magazines of the NC machines. Minimizing the length of the
production cycle will be an objective of crucial importance.

The above model can provide a way ofhandling such a problem: it can be expressed
as a cylindrical open-shop scheduling problem in some cases.

REFERENCES

K. R. BAKER, Introduction to Sequencing and Scheduling, John Wiley, New York, 1974.

[2] C. BERGE, Graphes, Gauthier-Villars, Paris, 1983.
[3] J. BLAZEWICZ, W. CELLARY, R. SLOWINSKI, AND J. WEGLARZ, Scheduling under Resource Constraints:

Deterministic Models, Baltzer AG, Basel, 1986.
[4 M. COCHAND, D. DE WERRA, AND R. SLOWINSKI, Preemptive scheduling with staircase and piecewise

linear resource availability, Zeitschrift fiir Operations Research, 33 (1989), pp. 297-313.
5 M. C. GOLUMBIC, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
6 F. HARARY, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[7] D. DE WERRA, On line-perfect graphs, Math. Programming, 15 (1978), pp. 236-238.
[8], On the two-phase method for preemptive scheduling, European J. Oper. Res., 37 (1988), pp.

227-235.
[9],Almost nonpreemptive schedules, Ann. Oper. Res., 26 (1990), pp. 243-256.

10] D. DE WERRA AND A. HERTZ, Consecutive colorings ofgraphs, Zeitschrift fiir Operations Research, 32
(1988), pp. 1-8.



SIAM J. DISC. MATH.
Vol. 4, No. 4, pp. 535-549, November 1991

(C) 1991 Society for Industrial and Applied Mathematics

007

BOUND SMOOTHING UNDER CHIRALITY CONSTRAINTS*

ANDREAS W. M. DRESSer AND TIMOTHY F. HAVEL

Abstract. Procedures for determining the feasibility of lower and upper bounds on Euclidean distances of
fixed dimension play a central role in the analysis of many kinds of scientific data. Shown in this paper is how
results from graph optimization theory can be used to solve the feasibility problem in one dimension, subject
to the condition that the order of the points along the real line is known. The solution is used to derive a
PSPACE, O(n3. n!)-time sequential algorithm for finding one-dimensional representations subject to arbitrary
distance (and order) constraints. The wider applicability of these results in measurement theory is discussed,
in particular, Roy’s elegant proofs of the classical representation theorems for interval orders and semiorders,
and they are used to obtain a new representation theorem for a ternary relation called e-collinearity.

Key words, distance geometry, molecular conformation, preference relations
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1. Introduction. The motivation for this work originally came from the geometric
theory of molecular conformation. It is therefore useful, and may perhaps enhance this
article’s interest, to introduce some of the basic terminology and ideas of this field (for
a complete account, the reader is referred to [4]).

The conformation of a molecule is the set of its possible spatial structures, or con-
formers. Most of the information that is available on the conformations of molecules
can be formulated in terms of lower and upper bounds on their interatomic distances
4 ], 6 ], 14 ]. IfA denotes the set ofatoms in the molecule, the lower and upper bounds
constitute functions 9, v A A --* R, which are

(B Nonnegative: k, v >_- 0;

(B2) Symmetric:X(a,b)=X(b,a),v(a,b)=v(b,a)foralla,bA;

(B3) Compatible: X =< v as functions;

and which

(B4) Vanish on thediagonal:X(a,a)=v(a,a)=O for all aA.

In addition, the bounds must satisfy certain consistency relations, for example,
X(a, b) <- v(a, c) + v(c, b) for all a, b, c A, which follow from Menger’s intrinsic
characterizations of the Euclidean metric (cf. ).

Another important form of chemical information concerns the orientation or
chirality of rigid tetrahedra of atoms in the molecule: If r A --* R is a function that
assigns to each atom a A its Cartesian coordinates r(a) in some possible conformer of
the molecule, for a given indexing A { a, an } of its atoms the chirality of each
quadruple is given by

(1) X(ai,, ,ai4)’--sign det
7r(ai,) "tr(ai2) "/r(ai3) "/r(ai4)
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where -< i < < i4 =< #A (#A cardinality ofA). If we extend this to a function
Xa." A 4 _. { 0, -t--1 } by antisymmetry, it has been shown that this function determines
(and is determined by) the oriented matroid structure associated with the afflne point
configuration r(A) 7 ]. In practice, only a rather small number of quadruples in the set
of all quadruples will have a fixed chirality in all of the molecule’s possible conformers,
and hence the available chirality information typically takes the form of a function :
A 4 2{o,+1}, which assigns to each ordered quadruple the set of its possible chiralities.

We call the triple of functions (, v, x) the distance geometry description of the
molecule. The conformation of the molecule it defines is the set

(2) II(X, v, ;)’= {r’A--R3l)t(a,b)<= liar(a)-r(b)II v(a,b)and

x,(a,b,c,d)(a,b,c,d)Va,b,c,dA }.
The first and foremost question that arises in analyzing such a description of a mole-
cule is whether or not the given chemical information is geometrically feasible, in that
II( , v, ) 4: . We call this thefundamental problem ofdistance geometry. There exist
two main approaches towards answering this question, both of which yield useful sup-
plementary information:

(I) Coordinatization. Find the Cartesian coordinates r e II( ), v, :) of a feasible
spatial structure.

(II) Bound smoothing. For all a, b e A, determine the following extrema:

(3) Xn( a, b inf r( a r( b r II( , v, ),

(4) vn(a,b)’=sup ([lr(a)-r(b)l] rII(X,v,)).
Although the problem of determining the feasibility of a given distance geometry de-
scription is at least NP-hard in all dimensions 22 ], Tarski’s work on quantifier elimination
shows that it is decidable 24 ]. To date, however, no general algorithm for this problem
is known which is efficient enough to be useful in any but the most trivial of cases. The
coordinatization approach has proved most useful as a means of deriving sufficient con-
ditions for feasibility, whereas the bound smoothing approach is most useful for the
purpose of deriving necessary conditions.

The difficulty of the three-dimensional problem has prompted us to study the one-
dimensional case first, where the analogue of chirality is just the order of pairs of points
along the real line. It turns out that the one-dimensional problem also has a number of
interesting applications, particularly to the theory of measurement in the social sciences,
cf. 19 ], 20 ]. In this field an important goal is to be able to represent empirically observed
relations by means of relations among a set of points along the real line. These latter
relations are typically statements concerning the order of or distances between pairs of
points, and include for example:

1. The interval order problem. Given a binary relation
_
A A, do there exist

two functions tg, ff’A -- R such that 0(a) < if(a) and alb p(b) < O(a),
for all a, b A?

2. The semiorder problem. Given a binary relation
_
A A, does there exist a

function p A - R such that alb p(b) + < o(a), for all a, b A?
Thus these representation problems can be viewed as special, one-dimensional cases of
the fundamental problem of distance geometry.

Our purpose in this paper is to present a simple and elegant solution to the one-
dimensional version of the fundamental problem in the case that the order of the points
along the real line is known, so that : for some (now scalar-valued) function r
A -- R. From this, it is possible to solve both the coordinatization and bound smoothing
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problems ((I) and (II) above) for any distance geometry description (X, v, ) by enu-
meration of all linear orders that are consistent with the given chirality constraints X.
We also discuss the potentially widespread (and in part already known; cf. [20], [2 1])
applications that this result has to measurement theory, and give as one example a char-
acterization of a ternary relation we call e-collinearity.

2. A simple theorem. We begin with an almost trivial proof of a result that is well
known to graph theorists (cf. [26]). In the following A denotes a set, and , denotes
the complete digraph A on A with arc weights 60 "A A -- R. In addition, relative to
60 we define the set

II’= { r RA r( b r( a <= o( a b }

and for any subset II RA we define the function 60n A 2 R U { _+ }"

(6) (a,b)--wn(a,b)’:sup (r(b)- r(a) r II).

We call any r c II a realization of 60, and := 60n the limits associated with 60. It is
easily seen that the limits associated with are just g, i.e., 60n

THEOREM 1. The set II is not empty ifand only if4 contains no closed directed
cycles of negative total weight. Under these circumstances the associated limits for a,
b c A are given by

(7) o(a,b)=o(a,b):=inf (60(a,al)+ +60(an,b) al, ,ancA),

i.e., by the lengths ofthe shortest paths in .
Proof. If for a map 60 A A -- R there exists some r A -- R with r(b)

r(a) =< 60(a, b) for all a, b c A, then obviously for any cyclic sequence ao, al,

an ao we must have

60(ao, a + 60(al, a2) + + 60(an 1, ao)

(8) >=(r(a)-r(ao))+(r(az)-r(a))+’" + (vr(ao)-r(a,_ ))

Vice versa, if this condition holds for any ao, al, an ao c A, then -60(an, al) <=
60(al, a2) + + 60(an-l, an) for all al, an cA. Hence for any fixed x cA the map

rx" A R defined by

(9) rx(a)’=inf(60(x, al)+60(al,a2)+ +60(an-l,an)+60(an,a) al, ,ancA)

for every a c A is well defined and satisfies -60(a, x) =< rx(a) --< 60(x, a). Moreover, for
any fixed a c A it satisfies

7rx(b)’=inf (60(x,a)+ +60(an,b) al, ,ancA)

(10) -< inf (60(x, a + + 60( an 1, an) + 60(a,,, b) al, an cA and an a)

r(a + o( a, b

and therefore 7rx(b) rx(a) =< 60(a, b) for all a, b c A, as desired.
To show finally that (a, b) is indeed equal to the length 3(a, b) of the shortest

directed path connecting a to b in ] (or, more precisely, the infimum over all such
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paths), we observe that if II 4: and therefore 71"a ( IIw for all a e A we have

(a, b)= sup (r(b)- r(a) r e II)

-<inf(o(a,a)+... + o( a,, b a an eA

11 ?o(a,b)= r(b)= r(b)-r(a)

_-<sup (Tr(b)- r(a) r II)

(a,b)

for all a, b A. If II , on the other hand, we have simply (a, b) 3(a, b) -for all a, b A. Vq

Remark 1.A. If in addition to the map w "A - --* R we are given two maps r/, ’"A -- R together with a realization r e II such that r/-_< r =< ’, we necessarily have

(12) n( b) f( a) <-- r( b) r( a) <= ?o( a, b).

That this condition is also sufficient for the existence of such a realization follows easily
from Theorem 1, since if A’: A t3 { } and we define w" A’ A’ --* R by

(13) w’(a,b)

w(a,b) if a,b6A,

’(b) if a and bsA,

-r/(a) if b=, anda6A,

0 ifa=b=,,

then II, 4: if and only if there exists no closed directed cycle of negative total w’-
weight in A’, that is, if and only if we have

(14)
O<=w’(,,a)+oY(a,a)+ +o’(an,b)+w’(b,,)

(a)+o(a,a)+... +o(a,,b)-n(b).

This is equivalent to having r/(b) ’(a) <- 3(a, b) for all a, b e A, while -’ :A tO
{ } --* R is in II, if and only if 7r A -- R: a - r’(a) 7r’(,) is in II and satisfies

Remark 1.B. It follows in particular that for every subset B
_
A every map ra

B ---* R with

(15) 7ra(b2)-Tra(bl) <=o(bl,b2)
for all b, b2 B can be extended to a map r II. Indeed, an extension r A -* R of
ra is in II if and only if

(16) r/a(a) := sup (zra(b)-go(a,b))<=r(a)<= ’a(a) inf (ra(b)+go(b,a))
bB beB

and 7r(a2) 7r(a) =< (al, a2) for all a, a, a2 ( A\B. Moreover, for all a, a2 ( A\B
we have

(17)

r/a(a2 ’a(a
sup (ra(bz)-go(a2,bz)-Zca(b)-go(b,a))

bl,b2 B

=< sup (o(b,b2)-o(a2,bz)-o(b,a))
bl,b2 B

=< sup (o(bl,a)+Co(a,az)+o(az,b2)-ff(a2,bz)-ff(b,a))
b,b2 B

(al,a2).
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Remark 1.C. IfA is finite, Theorem remains true even if w is allowed to take on
the value + occasionally; indeed, any time this happens the value + may be replaced
by the sum --Za,bA min (0, w(a, b)) (or any larger value) without creating any closed
directed cycles of negative total weight (unless such cycles existed before). This is not
true ifA is infinite, as shown by the example A := Q, w(a, b)’= if a < b, w(a, b)’=

if a > b and w(a, b) 0 if a b. In other words, ifA is infinite and w A A -R tO { } satisfies w(a, a) >= 0 for all (orjust for one) a e A, then this does not necessarily
imply (a, b) > - for all a, b e A, and hence it does not guarantee the existence of
some map r" A -- R with r(b) r(a) =< w(a, b) for all a, b e A.

3. Some corollaries. It seems that Roy was the first to apply Theorem in the
context of measurement theory [20], [21], where it enabled him to obtain new combi-
natorial characterizations of interval orders and semiorders. It has also been used by
Doignon [5] to characterize semiorders with multiple thresholds, and by the present
authors to obtain a finite "forbidden subgraph" characterization of strong double semi-
orders 9 ], as proposed in Cozzens and Roberts 3 ]. It seems to us, in fact, that Theorem
provides a very natural and powerful basis for every task dealing with the numerical

representation of relational systems describing inexact ordinal and metrical information.
To support this contention, let us summarize existing results which show how Theo-

rem can be used to obtain streamlined proofs of the equivalence of all the known
characterizations of interval orders and semiorders. An interval order is a binary relation

A A on a finite set A such that

(S For all a A" --’ala.

($2) Foralla, b,c,dA’(albandcld)(aldorctb).

A semiorder is an interval order that satisfies the following additional axiom"

($3) Foralla, b,c,dA’(albandblc)(atdordlc).

THEOREM 2 (cf. Fishburn [12]). If 1 is a binary relation on a finite set A, then
thefollowing statements are equivalent"

(i) satisfies the axiom ($2) above.
(ii) There exist two functions O, p A -- R such that for all a, b A, alb

p(b) < O(a).
(iii) There exist two functions O, p A R such that for all a, b A, alb

p( b < O(a) as well as --’alb O(a < p( b
(iv) The digraph IA (A { +1 }, 1) whose arcs are given by

(18) ’= {[(a,-),(b,+)]lalb}tO{[(b,+),(a,-)]l-alb}
contains no closed directed cycles.

In particular, 1 is an interval order, i.e., it satisfies S in addition to ($2), ifand
only if there exist two functions O, p A -- R such that O( a) < p( a) for all a A and
p(b) < O(a) alb for all a, b A, if and only if the digraph I’A (A {+_1},
1 tO { a, + ), a, a A } contains no closed directed cycles.

Proof. We shall prove these statements in the sequence (iv) (iii) (ii)
(i) (iv).

(iv) (iii) Let us assign weights to the arcs of the complete digraph A on A
{ +1 } by the rule

if[x,y]6
(19) w(x, Y) -1

c otherwise.

Then A contains no w-negative cycles if and only if A contains no directed cycles at
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all. In this case, by Theorem there exists a mapping r A { + } R such that

(20) r(b,+)-r(a,-)<=o((a,-),(b,+))=-I if alb,

r( a, r( b, + =< o( b, + ), a, =-1 if --’alb.

Thus if we define 0(a) r(a, -) and (a) 7r(a, +) for all a A, we have if(b) <
0(a) ,=, ab as well as if(b) > 0(a) ---ab, as desired.

(iii) (ii) is trivial.
(ii) (i) Suppose we have a, b, c, d A with ab and c ld, so that b(b) < 0(a)

as well as k(d) < 0(c). Hence --’ald
c b, as desired.

(i) (iv) We prove this by seeking a contradiction to the assumption that we have
found a minimal counterexample. Since the digraph A is bipartite, any such cycle
therein is of the form

(21) [(x,+),(a,-),(b,+),(c,-),(d,+), ,(x,+)]

where alb, and its length obviously exceeds two. But then alb, c ld, and cb
together with ($2) implies ad, so we can omit (b, + and (c, to get a shorter cycle
[(x, +), (a,-), (d, +), ..., (x, +)]!

We next prove the famous Scott-Suppes theorem on semiorders 23 ], together with
later characterizations due to Roberts [17 and Roy and incke [21].

THEOREM 3. Let 1
_
A A be a binary relation on a finite set A. Then the

following are equivalent"
is a semiorder.

(ii) There exists a function A -- R such that p(a) > (b) + alb.
(iii) is antisymmetric and there exists a linear order "-<" onA which is compatible

with 1, in the sense that

(22) ab a - b, and

(23) a - b - c and ac) ab and bc),

where is the symmetric complement ofl, given byab (albandba).
(iv) The digraph on A whose arcs are given by

in every one ofits closed directed cycles.
Note that "-<" and 3 together determine via alb a - b and-ab.
Proof. We shall prove this in the order (i) (iv) (ii) (iii) (i).
(i) (iv) To prove this result, we make use of the following, purely combinato-

rial lemma.
LEMMA 3.A. If1

_
A A and { a, b] A A a, b [b, a] }, then

a minimal cycle [ao, al, i.[,an= ao] A
n+l with [ai_lia ] , IO .;for all i=l,...;n and #{i

necessarily has length n <- 4.
Proof. We may assume without loss of generality that either n >= 5 and that

[ao, a], [a, a2] , [a2, a3] , or [ao, a], [a2, a3] , [a, a2] , or

ai- l, ai
the cycle [ao, a3, an- , an ao] would be shorter and still would not have more

-arcs than -arcs, while if [ao, a3]
so [ao, a, a2, a3, a4 ao would be a shorter cycle, again with at most as many -arcs
as -arcs. [5]

In view of this lemma it is enough to show that if
_
A A is a semiorder, then

any cycle ao, a, an ao]
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arcs (cf. Fig. ). Indeed for n this holds by axiom (S ); for n 2 it holds since
aotal and al a2 would imply aolao or a al by ($2), contradicting (S1); for n 3
it holds since aola and ala2 implies the impossibility aola2 by ($2) and (S1);
finally, it holds for n 4 since aola and aa2 implies aorta3 or a3la2 by ($3),
while aolal and a2la3 implies aola3 or a2la, this time by ($2).

(iv) (ii) From our definition of a forbidden cycle, it is obvious that alb implies
--’ba. We now define a weighting of the complete digraph on A as follows:

(24) o(a,b):

-1 -e ifab,

if aJband a 4 b,

0 ifa=b,

ifbla

for all a, b e A. If the digraph (A, tO J) contains no forbidden cycles, then for
sufficiently small e > 0 the above weighted digraph contains no negative cycles, from
which it follows by Theorem that there exists a function 7r :A -- R with 7r(b)
r(a) -< w(a, b) for all a, b e A. By our choice of weights w(a, b), this implies that
7r(a) > r(b) + if and only if alb, so (ii) holds with r := o, as desired.

(ii) (iii) We choose our linear order on A in the obvious way: a -< b o(a) <
o(b). Then alb p(a) > p(b) + a >- b is clear. In addition, a >- b >- c and
ac implies o(a) > o(b) > o(c) and o(a) o(c) -< 1, so that 0 < o(a) o(b) <
o(a) o(c) =< and o(b) o(c) < o(a) o(c) =< 1, i.e., ab and bc, as desired.

(iii) (i) Since alb a - b a 4 b, (S1) is fulfilled. To verify ($2), assume
a, b, c, d e A and alb as well as c d. If b d there is nothing to prove; otherwise, by
symmetry, we may assume b -< d. Now cdimplies c >- d >- b by (22), and therefore
cb by (23) and c d. Hence either cb or blc. But blc cannot hold by (22),
since c >- d b, so we get c b, as desired.

To verify ($3), assume a, b, c, d e A and alb as well as bc. Again, if b d
there is nothing to prove. If b -< d, then bc implies d >- b >- c by (22) and therefore

$1.

$2.

FIG. 1. The minimalforbidden cycles are the digraphs shown above, together with all digraphs obtained
by contraction thereof. The labels on the left refer to the axioms for a semiorder, by which these cycles are
excluded. The solid arcs are in the semiorder, while the dashed are in its symmetric complement.
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--’cd by (23) and blc. Hence either cd or dc. But cd would contradict d >-
b >- c by (22), so we get dc, as desired. Similarly, d -< b implies ald. []

We remark that, according to [17], the ternary relation 90j,.<) defined by

(25) 90j,.<) := { [a,b,c]eA a -< b -< c or ab or bc}
satisfies the axioms Tl-T7 of "e-betweenness," which was considered there as part of a
systematic study of"tolerance geometries." These axioms constitute a natural relaxation
of Tarski’s betweenness axioms [25 ]. It has also been shown by Roberts [18] that for
any such 3

_
A satisfying T l-T7, there exists a semiorder

_
A 2 and a linear order

"-<" on A, compatible with , such that 3 3..<), where

(26) J J { { a, b }
_
A ---ab and --’ba }

as above. Hence the equivalence (iii) <: (ii) established in Theorem 3 above can be
viewed as a simple proof of yet another result of Roberts 18 ], which states that .___ A
satisfies the axioms T l-T7 of e-betweenness if and only if there exists a map r :A - R
and some e > 0, say e 1, such that

(27) 3={[a,b,c]6A3[ Ir(a)-r(b)l + Ir(b)-r(c)l Ir(a)-r(c)l +2e}.
Finally, we observe that Theorem provides us with a simple solution to the fun-

damental problem of distance geometry in one dimension, provided that the chirality
information is complete so that the order of the points along the real line is known.

THEOREM 4. Let , v A 2 R be two symmetric functions which satisfy B )-
(B3), and let x :A 2 -- {-1, 0, +1} be a function with x(a, b) -x(b, a) and
x( a, b) 0 v( a, b) O, for all a, b A (as in ). Also suppose that the binary
relation "-<" on A defined by

a-< b and a b ifx(a,b) 1,

(28) a-<b and a)’-b ifx(a,b)=O,

a b and a >- b ifx(a,b) =-1,

for all a, b A is a weak order. Then we have II( , v, ) II, where

(29)
v(a,b) ifa- b,

w(a,b)’:-(a,b) ifa >__b.

Proof. Under the given conditions, for all r RA and a, b A, we have

r(b)-r(a) [ Ir(b)-r(a)l <-_v(a,b) ifa- b,
(30)

-Ir(b)-r(a)l <-_-X(a,b) ifa>- b,

if and only if (a, b) =< r(b) r(a)l --< v(a, b), so that 7r II r 6 II(, v, ), as
desired. []

4. Algorithms. Theorem 4 enables us to solve the fundamental problem ofdistance
geometry in the one-dimensional case, by the enumeration of all weak orders that are
compatible with a given chirality function ;. In addition, if the given distance geometry
description is feasible, they enable us to calculate the associated Euclidean limits, and to

A weak order is one that is transitive and strongly complete, but for which a -< b -< a is possible even
when a 4: b.
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compute a one-dimensional representation r :A -- R. In this section we shall give a
formal statement ofan algorithm that does this reasonably efficiently (although ofcourse
not in polynomial time), and discuss its wider complexity-theoretic implications. For
simplicity, we shall restrict ourselves to the case in which an embedding (injective rep-
resentation) is sought, because then it is sufficient to consider only chirality constraints
ofthe form ;(a, b)

_
{ _+ } for all a, b A (a 4: b). Hence the only weak orders needed

are linear orders, which can be represented by permutations. We also assume that the
atoms A have been ordered as a, ..-, a,, and refer to them by their indices.

The enumeration of permutations is most simply done by means of a recursive
procedure. If n is a global variable giving the number ofpoints, this procedure uses three
global n by n arrays: The first of these, B, holds the given lower and upper distance
bounds in its lower and upper triangles, respectively, i.e., B[j, i] k(ai, aj) and
B[ i, j] l)(ai, aj) for all -< < j =< n. The second, X, is an antisymmetric array which
contains the chirality constraints, i.e., X[ i,j] r(aj)- 7r(ai > 0 in any admissible
representation r :A -- R, or X[ i,j] 0 ifthe order ofTr(ai and r(a) is unconstrained.
The third, S, will hold the smoothed lower and upper Euclidean limits in its lower and
upper triangles when the procedure is completed. The following formal procedure fills
in the details (wherein comments are delimited by "#" and newlines).

# Main procedure: all arguments are global to subsequent routines.
procedure Embed (n,B,S,X) # The name is historical in origin.

# Initialize P (the initial permutation), S (the array to contain the
# smoothed bounds) and T (the arc weights for the initial permutation).
if X 2, then P := array 2, ]) else P := array([ 1, 2 ]) endif;
fori:= lton- ldoforj:=i+ ltondo

S[i,j] := 0, S[j, i] :=
enddo enddo;
T:= array(I--.2, 1.--2);
T[, ] := 0, T[2, 2] := 0, T[P[], e[2]] := B[, 2], T[P[2], e[]] := -B[2, ];
# Real_Work is TRUE if bounds and chiralities are feasible.
if not Real_Work( P,T
then print( ’Infeasible constraints.’ );
else print( ’Smoothed bounds:’ ), print( S );
endif;

end.

At the kth level ofthe recursion we have a permutation P of[ 1, , k -< n] together
with an array of shortest path lengths T, which were computed at the previous level;
initially, k=2, P= [2, 1]if X[2, 1] or[1,2]otherwise, T[1, 1]:- T[2,2]:=0
and T[P[1], P[2]] := B[1, 2], T[P[2], P[1]] := -B[2, 1] as above. (By starting with
k := 2 and P initialized this way we avoid the redundant computation of the inversions
of permutations.) To generate all possible permutations of[l, ..., k + that contain
P as a subsequence, we simply insert k + between the hth and (h + )th members of
P for all h 0, k (where insertion between 0 and means prepending and insertion
between k and k + means appending). If this insertion is not compatible with the
chirality constraints in X, we try to insert k + at the next position in the sequence.

The new arc weights W[ i, j] are then equal to those in T for =< i, j =< k, whereas
the arc weights W[P[ i], k + 1] and W[k + 1, P[ i]] will be equal to the corresponding
upper bounds or to the negative lower bounds, depending on whether P[ i] comes before
or after k + in the new permutation. The arc weights for each compatible permutation
are then tested for the presence of negative cycles; since the digraph changes only by the
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addition of a (k + )th node at each level of the recursion, this is most efficiently done
by updating the old matrix of shortest path lengths T, rather than computing it from
scratch (the details ofhow the corresponding procedure Update does this may be found,
for example, in 10]). The bounds and chiralities are feasible, of course, if any one of
the permutations of[l, ..., k] can be completed to give the order of the points along
the real line in a representation. Altogether, we get:

# Here we do the real work of recursively enumerating all X-compatible permutations.
function Real_Work( P,T

k := size of P);
if k n #End of recursion: output representation for the given permutation P.
then print( ’Representation for’, P ), print( New_Representation( n,T ) );

New_Limits( P,T );
return ( TRUE );

endif;
# Otherwise, try to insert the (k + )th point at each possible position in P.
feasible := FALSE, W := array( 1... k + 1, 1... k + );
for h := 0 to k
do fori:= to k do for j := ltokdo W[i,j]:= T[i,j];

# Set up new arc weights for the new permutation
# while checking its compatibility with X.
fori:= ltoh
do if X h, i] then next h; # skip rest of h-loop

w[e[i], k + 1] := B[e[i], k + 1];
w[k + ,e[i]] := -B[k + ,e[i]];

enddo;
fori:=h+ ltok
do ifX i, h then next h; # skip rest of h-loop

W[P[i], k + 11 := -B[k + 1, P[il];
W[k + 1, e[i]] := B[e[i], k + 1];

enddo;
# Update shortest paths in digraph on { 1,. ., k } by paths
# through new node k + (this can be done in O(k2) time; a
# FALSE return indicates that a negative cycle was found).
if Update( k + 1,W )
then Q := array([e[1...h], k + 1, P[h + 1..-k]]);

# Q is the next permutation (which becomes a new copy
# ofP inside the following recursive call to Real_Work).
if Real_Work( Q,W then

feasible := TRUE;
endif endif;

enddo;
return( feasible );

end.

The recursion ends when k n. At this point, we compute a representation r

A -- R of the bounds, and revise our current estimate of the Euclidean limits in S. The
representation is computed by putting down each new point r(ai at some random
position within the range implied by the current limits (shortest path lengths) and the
previously chosen points { r(aj) [j 1, 1}. This works because Remark 1.B
guarantees us that every possibility within this range can be extended to a complete
representation.
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# This function returns a representation R between the limits for this permutation.
function New_Representation( n,T )

R := array(1...n), R[1]:= 0;
for := 2 to n
do lo_lim := max (R[i] T[i,j] J 1...i- 1);

up_lim:=min(R[i]+T[j,i] [j= 1...i- 1);
# Random returns a random number between its arguments.
R[ i] := Random lo_lim, up_lim);

enddo;
return ( R );

end.

Finally, since the upper and lower limits on the distances over all representations
in which the order of the points on the real line is that specified by the complete per-
mutation P are given by the directed path lengths relative to W and their negatives,
respectively, for each pair of indices P[ i], P[j], the revised estimate of the Euclidean
upper limits is obtained by taking the larger ofthe previous estimate in S and the shortest
path between them relative to IV, while the revised estimate ofthe Euclidean lower limits
is obtained by taking the smaller of the previous estimate and the negative of shortest
path between them, i.e.,

# This procedure returns the new estimate of the Euclidean limits updated
# by the limits T for the permutation P.
procedure New_Limits( P,T

fori:= ltondoforj:=i+ lton
do ifP[i] < e[j]

then S[P[i], P[j]] := max (S[P[i], P[j]], T[P[i], P[j]]);
S[P[j], P[ i]] := min (S[P[j], P[ i]], T[P[j], P[ i]]);

else S[P[j], P[i]] := max (S[P[j], P[i]], T[P[i], P[j]]);
S[P[ i], P[j]] := min (S[P[ i], P[j]], -T[P[j], P[ i]]);

endif;
enddo;

end.

This algorithm for computing the one-dimensional Euclidean limits extends our previous
work 8 on computing the limits implied by the triangle inequality alone.2

Since matrices of shortest path lengths among #A n nodes can be updated for the
addition of a new node in time O(n2) [10 ], the above algorithm establishes that in one
dimension the fundamental problem can be solved in time O(n3.n!). Recent work in
computational semialgebraic geometry [13 ], [15 has shown that the complexity of
deciding the feasibility of any system of polynomial inequalities Pl >= O, ..., Pm >= 0
is s<v2) where v is the number of variables and s = deg (Pk) is the sum of the
total degrees. Assuming that we have no nontrivial chirality constraints, clearly the funda-
mental problem in all dimensions is equivalent to such a polynomial system with
pk(’tr) := Do(r) X2(ai, aj) or pk(Tr) := t)Z(ai, aj) Do(r for k 1, m 2(),
where Do denotes the squared distance of ai, a A and r (Rd)A gives the coordinates
of the atoms (cf. (2)). In one dimension the number of variables is v nd n, and

The program itself has been implemented in the MAPLE symbolic programming language 2 running
on a Sun 3/160, and is available upon request from Timothy Havel.

Since only rational arithmetic is needed by the algorithm, no special model ofcomputation over the reals
is needed.
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since the squared distances all have degree two, s 2m 4.() 2n(n ), so the
complexity of the general algorithms applied to these systems of polynomials is n (n-).
Because n! is asymptotically proportional to ne-nn by Sterling’s approximation, the
above algorithm improves upon the general algorithms in terms of asymptotic (as well
as absolute) time.

The example X(ai, aj) and v(ai, aj) n 2 for all ai, aj E A with no chirality
constraints shows that these worst-case time bounds are actually tight, so that our algorithm
cannot be expected to reliably solve problems with n greater than about 10. In many
cases, however, much larger problems may be within reach. We point out that the average
performance ofthe algorithm could be substantially improved upon by using the method
ofgenerating topological sorting arrangements described in 16 to find all X-compatible
permutations, in which case the amount of time it required would only be proportional
to the number oflinear orders that are compatible with the chirality information encoded
by :. If we restrict the input to those functions ; for which the associated digraph on A
with arc set { [a, b] E A 2 :(a, b) { } } contains a directed path through all ofA as
a subgraph (so that there exists at most one compatible linear order), this modified
algorithm actually runs in polynomial-time. More general improvements in the algo-
rithm’s average performance can be obtained by deriving chirality information from the
available distance information. For example, for all a 4: b 4 c 4 a in A one knows a
priori that

(31) v(a,c)<- X(a,b)+ X(b,c) = x(a,b).(b,c)4: 1,

so that any permutation containing a, b] need not be extended in any way that gives
b, c]. Similar preclusions also exist on four and more points, but it is doubtful that the
time it may take to check them would be compensated for by the time they saved.

5. e-Collinearity. Since the e-betweenness relation that (25) defines can be studied
in arbitrary metric spaces, Robert’s characterization provides us with conditions under
which e-betweenness in metric spaces can be translated to e-betweenness for points on a
line. We now show that a similar relation in metric spaces, which we call e-collinearity, is
sufficient to guarantee that the metric space as a whole is one-dimensional to within e.

Hence let A be a finite set and let t9 A A -- R be a function such that
(i) t9(a, a) 0 for all a e A.
(ii) t9(a, b) t9(b, a) > 0 for all a, b eA with a 4: b.

Clearly, all metrics on A are examples of such functions (which are sometimes called
semimetrics). Given an e > 0, we define a triple a, b, c e A to be e-collinear (with respect
to ) if

(32) Ip(a,b)+tg(a,c)+p(b,c)-2 max (p(a,b),p(a,c),p(b,c))[ <=.
Note that if tg(a, b) [r(a) r(b)ll for some 7r A -- R and all a, b e A, then
all triples in A are 3. e-collinear.

THEOREM 5. Let t9 A A -- R be a function which satisfies conditions and
(ii) above, and suppose (rescaling if necessary) that tg(a, b) >= for all a, b A with
a 4 b. Then iffor some 0 < e < all triples in A are e-collinear, there exists a function
r A -- R such that tg(a, b) [Tr(a) 7r(b)ll --< e, provided that #A 4: 4.

Remark 5.A. The map tgo { 1, 2, 3, 4 } -- R given by

0 ifi =j,

(33) i,j-- ifi=j+l (mod4),

2 ifi=j+2 (mod4)
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in which every triple is 0-collinear shows conclusively that the condition #A 4:4 cannot
be eliminated.

Proof: We define the interval of any a, b e A by

(34) [a,b]:= {ceA (a,b)>=max ((a,c),(b,c))}.
We claim the map A A -- 2A [a, b - [a, b] satisfies the following properties for
all a, b, c e A:

(I1) a, b a, b] [b, a];

(12) a Ib, c] or b la, c or c la, b;

(13) a e [b, c] and b e a, c] a b;

(14) c e la, b] [a, c]
___

[a, bL and c e [b, d] for all d e [a, c].
Properties (I and (12) are obvious from the definition. Property (13) follows since the
assumptions imply that p(b, c) p(a, c) >- p(a, b), which together with e-collinearity
implies o(a, b) =< e < and hence o(a, b) 0, that is, a b.

To prove (14), we observe that the assumptions imply

(35) -e <- -p(a,b)+ p(a,c)+ p(b,c) <=e
and

(36) - =< p(a, c) + p(a, d) + p(c, d) =< .
Therefore

(37) -2e -< p(a, b) + p(a, d) + o(c, d) + (b, c) =< 2e.

In view of the fact that

38 2p( b, d) -< 2 max (b, d), p( b, c), p( c, d) -< (b, d) + (b, c) + (c, d) + e,

i.e.,

39 p(b, d) _-< p(b, c) + p(c, d) + e,

this implies that

p(a, b) + p(a, d) + p(b, d) =< 3e.

It follows that

(40) p(b, d) -< p(a, b) + 3e p(a, d)) =< p(a, b)

as well as

(41) p(a,d)<=p(a,b)+(3e-p(b,d))<=p(a,b),

i.e., d a, b]. So indeed we have a, c]
_
a, b], as claimed. In addition, we get

(42) -e -< p(a, b) p(a, d) p(b, d) =< ,
which together with (37) implies

(43) -3e =< p(c, d) + p(b, c) p(b, d) =< 3e.

Together with < , we get p(c, d), p(b, c) =< p(b, d), i.e., c [b, d] as desired.
Hence we may invoke the following lemma, whose proof we shall outline after

finishing the proof of the theorem (it may well be folklore).
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LEMMA 5.A. A map A A -- 2A" [x, y] x, y] satisfies conditions (I1)-(14) if
and only ifeither

(i) #A 4 and there exists an ordering of A, say A [a, b, c, d], such that
[x,y]= {x,y} if either x=y or {x,y}{{a,b}, {b,c}, {c,d}, {a,d}}, and
a, b] b, d] {a, b, c, d};

(ii) There exists a linear ordering "-<" ofA, uniquely determined by ". ]" up to
inversion, such that for x -< y we have Ix, y] { z lx -< z -< y }.

Because of this lemma, we may henceforth assume that there exists such a linear
order "-<" on A such that a -< b -< c implies p(a, c) >= o(a, b), o(b, c) and hence

44

Let us therefore define a (nonsymmetric!) map w "A A -- R by

t( a, b + e if a -< b
(45) w(a, b)’= 0 ifa b,

-p(a,b)+e ifa>-b.

We claim that for all a, b, c A we have

(46) w(a, c) =< w(a, b) + w(b, c).

It is sufficient to check this only for the cases a -< b -< c and a -< c -< b. In the first case
we have indeed

w(a, c) p(a,c)+ e <= p(a,b)+ p(b,c)+ 2e
(47)

=w(a,b)+w(b,c)

while in the second case we have

(48)
w(a, c) p( a, c) + e <= p( a, b)- p( b, c) + 2e

o( a, b + w( b c

as claimed.
It now follows from Theorem that there exists some r" A -- R such that r(b)

r(a) _-< w(a, b) for all a, b A, i.e., such that for a -< b we have

(49) O<p(a,b)-e<=r(b)-r(a)<=p(a,b)+e

and hence r(b) r(a) Ir(a) r(b)l as well as

(50) [o(a,b)-[ 7r(a)- r(b) --< e.

Proof ofLemma 5.A. The lemma is obvious if #A =< 3; br #A 4, 5 it can be
proven by a straightforward case by case analysis. To prove the lemma for #A > 5 we
use induction with respect to #A together with the fact that two linear orders define the
same "interval map" . A A -- R if and only if they are either the same or are
inversions of one another.

Hence take some a A and let "’<a" be the linear order on A\a such that
x, y { z x "<a z -a y} which exists by the induction hypothesis. Similarly let "’<b"
be the linear order which exists on A \b by induction (a 4: b). Without loss of generality
we may assume that "’<a" and "’<b" agree on A \ { a, b }. We now define a relation
"(" on A by

(51) x " y’:: X " y or X "by

if { x, y } 4: a, b }, while we put a -< b if there exists some z A \ { a, b } such that
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either (1) z "b a and a b, z], or (2) a "(b Z "a b, or (3) b "<a z and b [a, z];
otherwise we put b -< a. We verify that "-<" is a well-defined linear order on A and that
for x -< y we have Ix, y] { z lx -< z -< y }, as claimed. Vq
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OBNOXIOUS FACILITY LOCATION ON GRAPHS*

ARIE TAMIR"

Abstract. This paper discusses new complexity results for several models dealing with the location of
obnoxious or undesirable facilities on graphs. The focus is mainly on the continuous p-Maximin and p-Maxisum
dispersion models, where the facilities can be established at the nodes or in the interiors of the edges. For the
general (nonhomogeneous) case it is shown that both models are strongly NP-hard even when the underlying
graph consists of a single edge.

For the homogeneous p-Maximin model it is proven that even the problem of finding a -approximation
solution is NP-hard, and a polynomial heuristic which provides a 1/2-approximation to the model is presented.
Tree graphs are considered, and new algorithms with lower complexity bounds for several versions ofthe model
are presented.

For the p-Maxisum problem we show that the homogeneous case is NP-hard on general graphs. Turning
to the homogeneous case on trees, a certain concavity property is identified and then utilized to improve upon
the best known methods to solve this model.

Key words, location theory, obnoxious facilities, network center problems

AMS(MOS) subject classifications. 05C35, 90C27, 68A20, 90B05

1. Introduction. Let G (V, E) be an undirected graph with node set V=
{Vl, Vn} and edge set E. Let EI m. Each edge has a positive length and is
assumed to be rectifiable. We refer to interior points on an edge by their distances (along
the edge) from the two nodes of the edge. Let A (G) denote the continuum set of points
on the edges of G. The edge lengths induce a distance function on .4 (G); for any x, y
in .4 (G), d(x, y) will denote the length of a shortest path connecting x and y. Also, for
any subset r_ A(G), d(x, Y)= Infimum {d(x, y)l y Y}.

LetX { Xl, xv } be a finite set ofpoints in A (G). Define the following matrices
D(X, X) and D(V, X)"

D(X,X)={d(xi,x.i)}, <=i,j<=p

D(V,X) {d(v,x)}, <=i<=n, <=j<=p.

Let f(X) =f(D(V, X), D(X, X)) be a real function which is isotone in the components
ofthe matrices/(V, X) and D(X, X). (A real function g defined on Rg is isotone if for
any w and z in R g, w _-< z implies g(w) -< g(z).) A variety of location models in the
literature are defined by optimizing various forms of fover classes of subsets X A (G),
XI p. For example, the unweighted 1-center of the graph G is obtained by setting

p and minimizing the function

f(D(V,X),D(X,X))= Maximum {d(v,x)l <=i<=n}
over all points Xl in A (G).

Using location theory terminology, the set Xis referred to as the set ofnew facilities,
e.g., suppliers, that must be set up, and the set Vis identified as the set ofexisting facilities,
e.g., customers. Conventional or ordinary location models are frequently defined by
minimizing an isotone objective f, since the goal is to minimize some function of the
distances between all facilities.

In this paper we consider the location of obnoxious or undesirable facilities, e.g.,
garbage depots and nuclear reactors. Thus, our interest is in studying maximization
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models with isotone criteria. The reader is referred to the recent papers by Moon and
Chaudhry [25] and Erkut and Neuman [11 ], which survey analytical models and ap-
proaches as well as various applications for the location of obnoxious facilities.

In this study we focus on maximizing the following two particular objective functions
which seem to be the most popular among researchers interested in obnoxious facility
location. The last section of this paper will be devoted to two other related optimization
criteria.

Let aij, <-_ <= n, <= j <= p, and ij, =< i, j <= p be nonnegative weights.

The p-Maximin problem. This model, which has also been labeled as the p-Dis-
persion model, has the following objective function to be maximized:

J](X) Minimum {Minimum { oid(vi,x)l <=iNn, <=j<=p},
(.)

Minimum {13o( d(xi,x) <= 4:j <=p } }.

The/-Maxisum problem. This maximization model is defined by the objective

(1.2) j(X)= Z ol.(jd(1)i,xj)- Z {J(jd(xi,xj)
i=lj=l i=lj=l

By the homogeneous versions of the above models we refer to the case where the
new facilities { xl, xp } provide and receive identical services. Formally, in the ho-
mogeneous case/30. 1, _-< i, j <= p, and aij ai, for <= =< n and <= j <= p.

2. The/-Maximin problem. The p-Maximin problem is NP-hard when defined on
a general graph, even for the homogeneous case in which/3i 1, =< 4: j <= p, a0, <= <= n, <= j =< p; that is, we want to maximize the minimum distance between
new facilities. Note that if each xi, <= <= p, is further restricted to a node, then the p-
Maximin model generalizes the independent set problem 14 ]. Therefore, the discrete
version is also NP-hard. For the continuous case we show that ifthere exists a polynomial
procedure to find an e-approximation solution with e > , then P NP.

PROPOSITION 2.1. Let e be a real number satisfying e > . Let z* denote the optimal
solution value ofthe p-Maximin problem. The problem offinding a set X { xl xp }
in A( G) such thatf(X) >= ez* is NP-hard. (X is called an e-approximation solution.)

Proof. Consider the case where ai , <= <= n, <= j <= p, and/3o 1, <=
4: j <= p. We reduce the independent set problem on a graph G 14 to the p-Maxi-

min problem. Given an undirected graph G (V, E), V { vl, Vn}, suppose
that each edge is of unit length. Consider the graph G (V i, E ), where V V tO
{ u, un }, E E tO { (vl, u), (l)n, Un)}. For =< =< n let the length of the
edge (vi, ui) be 1/2.

To complete the proof we show that G has an independent set of cardinality p if
and only if every e-approximation solution X for the p-Maximin problem on G satisfies
3] (X) > 2. Suppose first that G has an independent set of cardinality p, i.e., there exist
v

__
v, Vl p, and for each pair of distinct nodes, l)i, l)j E V, d(Pi, l)j) 2. Define

V* V by V* { uil vi E l? }. Then, if ui and u are two distinct nodes in V* we have
d(ui, uj) >= 3. In particular, the optimal solution to the p-Maximin problem on G is at
least 3. Therefore, ifX is an e-approximation with e > , j] (X) >= 3e > 2.

Next suppose that X= {xl,-.., xp} is some e-approximation solution with
f (X) > 2. If xi, <= <= p, is on some edge (vt, Igt), <= <= n, replace xi by ut. If X is
on some edge (vt, vq), where d(xi, vt) <= d(xi, Vq), replace xi by ut. LetX be the solution
obtained in this process. (Note that by the construction all the elements in X are distinct.)
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It is easily seen thatj (X > 2. Therefore, J (X >= 3. Define V Vby-- { viluic:X }.
Then V is an independent set of G of cardinality p. V]

The above proposition suggests that unless P NP there is no polynomial e-ap-
proximation algorithm for the homogeneous p-Maximin problem on a general graph
with e > ]. However, there exists a simple polynomial greedy algorithm which generates
a 1/2-approximation solution. We will consider a slightly more general model for this
homogeneous version of the p-Maximin problem.

Let D and S be two nonempty compact subsets of A (G). The homogeneous p-
Maximin and p-Minimax problems are defined as follows.

The homogeneous p-Maximin model on D. Find Xp { xl, xp }, a set of p
points in D, such that Minimum <_i4j<=p { d(xi, xj) ) is maximized.

The homogeneous p-Minimax model on D and S. Find X, { xl, x, }, a set
ofp points in S, such that Maximumxz { d(x, X) } is minimized.

Let R, and rp denote the optimal solution values of the above two models, respec-
tively.

We also introduce the following related problems. Let r > 0.

The r-cover problem on D and S. Find p p(r), the smallest integer value, and
points x, x, in S, such that d(x, X,) <= r, for every x in D. (X, { xl, x, }.)

The r-anticover problem on D. Find q q(r), the largest integer, and points xl, ,
Xq in D, such that d(xi, xj) >= r, <= 4 j <= q.

The open r-anticover problem on D. Find q q/(r), the largest integer and points
x, xq in D, such that d(xi, xj) > r, <= 4 j <-_ q.

The above types of cover problems generalize and unify several models cited and
discussed in the literature, e.g., 11 ], 20 ], 25 ].

LEMMA 2.2. Let D and S be two compact sets of A( G), and let p >= 1. Then
the solution values to the homogeneous p-Maximin and p-Minimax models satisfy
R,+ <-_ 2r,.

Proof. Let r > 0. Let Xq { x, Xq }, q q+( 2r), be a solution to the open
2r-anticover problem, and let Yp { yl Y, }, P P( r), be a solution to the r-cover
problem. Since d(xg, xg) > 2r, <= j <= q+(2r), we need at least q+(2r) points in S
to ensure a coveting of a distance not exceeding r to each point in Xq. Thus, p(r) >=
q/(2r), for every r > 0.

Let r r,. Since p(r) <= p we obtain q+(2r,) _-< p. There exist p + points in D
such that the distance between each pair of distinct points is at least Rp + 1. IfR+1 were
strictly greater than 2r,, we would have q+(2rp) >_- p + 1, contradicting q+(2rp) _-< p.
Hence, Rp+ <= 2rp. [-1

We now introduce a 1/2-approximation heuristic to the p-Maximin problem on D.
This heuristic is motivated by the 2-approximation procedure for the p-Minimax model
given in Dyer and Frieze 9 ]. The idea of the procedure is to construct a sequence ofp
points such that each point is as far apart from the preceding set of points as possible.

ALGORITHM 2.3
Step O. Choose an arbitrary point xl in D. Let XI {x }.
Step 1. While j < p do

Determine xi / in D by d(xi / 1, Xi) Maxx D { d(x, Xi) }.
Let i+ d(x + 1, Xi) and set Xi + Xi t_J { xi + }.
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THEOREM 2.4. Let X,, {x xp } be the set ofpoints generated by Algorithm
2.3. Then Xp is a 1/2-approximation solution to the p-Maximin problem on D, i.e.,

d(xi,xj) >= 1/2Rp, <= 4=j <=p.

Proof. Let X {x, ..., xp } be the set of points generated by the algorithm.
Consider the subset Xp_ { x, xp_ 1}, and view it as a feasible solution to the
(p )-Minimax problem with S D. By construction, for each x in D, d(x, Xp_ ) -<

d(x, X_ l) R. Therefore, Rp >- rp_ i.

From Lemma 2.2 we obtain

Again, by construction, d(xi, xj) >= Rp, <= 4 j <- p, and the result follows.
It should be noted that when G is a tree and S A(G), the homogeneous

p-Maximin problem is equivalent (dual) to the homogeneous (p )-Minimax prob-
lem, 2 ], [20 ], [27 ], more commonly known as the (p )-center problem. The
inequality in Lemma 2.2 holds as an equality. There exist several polynomial algo-
rithms to solve the p-Minimax problem on a tree network for various cases of D. Fo-
cusing on the case studied in this paper, i.e., D A (G), and using the above duality re-
sult to solve the (p + )-Maximin model, we can use any of the known algorithms that
solve the p-Minimax model, 1], [2 ], 13 ], 22 ], 32 ]. The algorithms with the
known lowest complexity bounds appear in 13 ], [22 ]. The algorithm in 22 has an
O(n log2 n) bound when we implement the improvement in [7 ], while that of [13] is
O(n min(p, n)log(max (p/n, n/p))). Note that the latter bound dominates the
former only when p O(log n).

The only published algorithm that solves the p-Maximin problem on a tree graph
directly appears in ]. While the algorithms for the p-Minimax problem use a simple
O(n) procedure to solve the main subroutine, the r-cover problem, the algorithm in [1]
for the p-Maximin relies on an O(n log n) scheme to solve the r-anticover problem.

Due to the importance of the r-anticover problem, we next present a very simple
linear time algorithm to solve this problem on tree graphs. We will consider the following
generalization of the r-anticover problem studied also by Moon and Goldman 26 ].

The generalized antieover problem. Let r and ri, <= < n, be a collection of n +
positive numbers. Find q q(r), the largest number, and points x, Xq in A (G),

such that

(2.1) d( vi, xj) >= ri for -< <= n and <= j <= q,

(2.2) d(xi,xj)>=r for <=i=/=j<=q.

Moon and Goldman [26 have presented a complicated algorithm to solve the above
problem on a tree. However, the exact complexity of their algorithm is not specified. In
contrast, our algorithm is quite simple and has a linear complexity.

The first phase ofour algorithm identifies the feasible set for the points { xi } induced
by the constraints (2.1). It is easy to see that the intersection of this feasible set with any
edge of the tree is a segment (subedge) of the edge. Therefore, we characterize in linear
time the endpoints in A (G) of all those subedges. We augment all these endpoints to the
node set of the tree (note that at most 2 (n nodes are added), and update the edge
set accordingly.

In the second phase we solve an r-anticover problem with the additional supposition
that the points { x; } can only be located on a distinguished specified subset of edges.
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Tree terminology and notation. Let T (V, E), V { )1, )n }, be an undirected
tree with n >_- 3. We define the following partial ordering on the nodes and edges of T.
Suppose that T is rooted at some node which is not a tip (leaf), i.e., its degree is at least
two. Without loss of generality let vl be the root. Let vi and vj be a pair of distinct nodes.
V is a descendant of vj if vj is on the unique path connecting v to I) Furthermore, if I)

and vj are also connected by an edge in E we say that vi is a son of vj, and vj is the father
of vi. vi is the son endpoint of this edge, and vj is its father endpoint. Note that Vl has
no father and every tip node of T has no sons. For each node vi, which is not the root,
we use e(i) to denote the edge of T connecting v; to its father.

For each node vi which is not a tip we let Ci denote its set of sons. If all nodes in Ci
are tips then C; is called a cluster.

If (vi, vj) and (vj, Vk) are two distinct edges in E, and vj is a father of vi and a son
of Vk, then we say that (vi, vj) is a son of (vj, Vk), and (vj, Vk) is a father of (vi, vj). An
edge (vi, vj) is called a tip edge if its son endpoint vi is a tip of the tree.

Phase I. Identify thefeasibility subedges. Suppose that the tree T (V, E) is rooted
at some node, say Vl. Given the constraints (2.1) our task is to identify for each edge in
E, the subedge which is consistent with (2.1). Such a subedge, if it is not empty, will be
identified by its two endpoints. Using the father-son relationship induced by the rooted
tree, we label these two endpoints as the son and father endpoints, respectively.

The procedure to identify the subedges is based on scanning the tree twice. First,
starting with the tips of the tree we recursively compute the son endpoints for all edges.
The father endpoints are also computed recursively while starting at the root, scanning
all its descendants according to the partial ordering and terminating at the tips.

Step 1. Let/)i be a node in V.
If I) is a tip of the rooted tree set i r.
If vi is not a tip set
i Maximum { r, Maximum { d( vi, v) vj Ci } }.

Step 2. Let v be a node in V.
If vi is the root of the tree set i i.
If v is not a root let vj be the father of vi.
Set 8i Maximum { i, ej d(1)i,/)j) }.

We are now ready to compute the endpoints of all the feasibility subedges. Let
(vi, vj) be an edge of the tree, where vj is the father of vi. If i -" j > d(1)i,/)j) the feasi-
bility subedge is empty. Otherwise, the son endpoint of the subedge is the point x on
(vi, vj) satisfying d(vi, xi) i, and its father endpoint is the point yj on (vi, vj) satisfy-
ing d(yj, vj) ej. If xi yj the feasibility subedge is reduced to a point.

It is clear that the above procedure yields the endpoints of all subedges in O(n) total
time. We augment the endpoints to the node set of the tree and update the edge set
accordingly. In particular, if an original edge has a nonempty subedge it will be replaced
by either two or three new edges in the augmented tree. We then solve a modified r-
anticover problem on the augmented tree.

Phase II. The modified r-anticover problem. This phase corresponds to constraints
(2.2). Let T (V, E) be a rooted tree. Let V be a subset of V and let E be a subset of
E. Given a positive real r, find q q(r), the largest integer, and points x, Xq, where
xi, <= <= q, is in V or is on some edge in E such that d(xi, xj) >= r, for =< q:
j<-q.

ALGORITHM 2.5. The algorithm starts with the rooted tree and recursively processes and
eliminates its clusters. (Without loss of generality assume that no node in V is on an
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edge in E .) The main step, the elimination of a cluster, is an improved and modified
version of the O(n log n) procedure presented by Chandrasekaran and Daughety for
the standard case, i.e., E E. Our algorithm will run in O(n) time.

Consider a cluster with a father vi, and let Ci be the set of its sons. (Note that each
son of vi is a tip of the current updated tree.) Let Vk be the father of vi.

The cluster elimination procedure.
Step 1. For each vj in Ci apply the following: Suppose first that vj is in V If

d(v, vi) >= r, add v to the set of selected points and remove the edge (v, vi) from the
current tree. If d(v, vi) < r set Xj d(v, vi). Next, suppose that vj. is not in V If the
edge (v, vi) is not in E remove it from the current tree. Otherwise, compute

[d(v,vi)]tJ= r

(As usual, [a/is the largest integer that is smaller or equal to a.) If tj >- 1, select t points
on the edge (v;, vj) as follows: The first point is vj itself and the others are selected such
that the distance between consecutive ones is r. Update the tree by reducing the length
of (v, vi) by rtj. If the modified length Xj. is zero, remove the edge (vi, v) from the cur-
rent tree.

Step 2. Define Jl { j] < r2 } and J2 { j lr > >= r/2 }. (If both Jl and J2
are empty the cluster is eliminated. Stop.) If J1 is nonempty let j( in J1 be an index
satisfying j(l) Maximum { jlJ J1 }, and for eachj Jl,j 4: j( ), remove the edge
(v, vi) from the current tree. Set J1 {j(1)}. If J2 is nonempty let j(2) in J2 be an
index satisfying Xj(2) Minimum { jI J 6 J2 }.

Step 3. If Jl is empty, then for each j 6 J2, j 4: j(2), add the tip of the modified
edge (vj, vi), obtained after the above length reduction, to the set of points already
selected and remove that edge from the current tree. Go to Step 5 with u v2) as the
only son of vi, and d( u, vi) X(2). If J1 is nonempty and J2 is empty go to Step 5 with
U l)j(1) as the only son of vi, and d(u, vi) Xj(1). Otherwise, go to Step 4.

Step 4. (J1 and J are nonempty. If X( -" kj(2) < F, remove the edge (vj( ), l)i)
from the current tree, set J1 and go to Step 3. If X(1) + Xj(2) >- r, then for each j e
J2, add the tip of the (modified) edge (v, vi) to the set of points already selected and
remove that edge from the current tree. Go to Step 5 with u vj.(1) as the only son of vi,

and d( u, l)i) kj(1).
Step 5. (u is the only son of v, and d(u, vi) is the length of the edge (u, vi).)

Consider the edge (vi, v), connecting vi to its father. If (vi, v) is in E or if d(u, vi) +
d(vi, v) < r, replace the pair of edges (vi, v), (u, vi) by a single edge (u, vi) having the



556 ARIE TAMIR

length d(u, vi) + d(vi, l)k) and augment this new edge to E if it is not already there.
Stop.

If(vi, vk) is not in E and d(u, vi) + d(u, vk) >- r, add the point u (the tip of the
edge (u, v)) to the set of points already selected, and remove the edges (u, vg) and
(v, vg) from the current tree. Stop.

The complexity of the cluster elimination procedure is linear in its size. Therefore,
when we apply this procedure recursively to the original tree until we reach its root, it
terminates in O(n) time. q(r) is given by the cardinality of the set of points selected in
this process.

The validity of the above algorithm follows from the arguments given in Chandra-
sekaran and Daughety [1] who provided an O(n log n) algorithm to solve the standard
r-anticover problem, i.e., E E.

We note that the above O(n) procedure for solving the generalized r-anticover
problem can be implemented, as in [2] and [22 ], to yield a polynomial algorithm to
maximize the following homogeneous p-Maximin problem on a tree T (V, E).

Find a set of points Xp { xl, xp } in A (T) maximizing the objective

2.3 f (x1,"’, Xp) Minimum IMinimum { Ol d( "li, Xp) }, Minimum { d(xi, Xj) } 1"
t <= iN <= i4:j<=p J

We demonstrate the approach with the case p 1. We show how to use Phase I of
the above algorithm to improve the complexity of the best known algorithm to solve the
1-Maximin problem on a tree. Drezner and Wesolowsky [8 have solved this model on
a path graph in O( n time. Tamir 30 has presented an O(n log n) algorithm for paths,
and an O(H(T) log2 n) algorithm for a general tree graph T, where H(T) is a parameter
depending on the topology of the tree. (H(T) is always bounded between n and n2.)

We now provide an O(n log 2 n) algorithm, using the above. Let x* be an optimal
solution to the 1-Maximin problem. Then there exists a pair of distinct nodes vi and va
of the tree such that x* is on the unique path connecting v and vj and aid(vi, x*)
ajd(vj, x* (Since p we write x* for x*1, and ai for ai, <= <= n.) Thus, we have
the following proposition.

PROPOSITION 2.6. Let z* be the optimal solution value to the 1-Maximin problem
on a tree. Then z* is an element in the set R,

(2.4) R=(d(v’vJ) l<i4:j<n]a;-+a7
z* is fully characterized by thefollowing property. Let z be a positive real and consider
the problem offinding whether there exists an x in A (T) such that

(2.5) d( vi,x - z/oli, <= <- n.

Then, z* & the largest element in the set R, defined by (2.4), such that the system (2.5)
is feasible.

Given a positive real z, the feasibility of(2.5) can be solved by Phase I above. Setting
ri z/ai, <= <- n, we note that (2.5) is feasible if and only if Phase I identifies at least
one nonempty feasible subedge. Thus, the feasibility of (2.5) can be tested in O(n) time.

With this linear time test we can implement the sophisticated search procedures of
[7] and [22] and locate z* in R in O(n log2 n) total time.

We have presented above a polynomial time algorithm to solve the homogeneous
p-Maximin problem on a tree. In contrast, the next result shows that the general (nonho-
mogeneous) case is NP-hard even on a single edge.
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PROPOSITION 2.7. The p-Maximin problem is strongly NP-hard even when the un-
derlying tree consists ofa single edge.

Proof. Let G (V, E), V { v, vn }, be an undirected graph with unit edge
lengths. We reduce the Hamiltonian path problem on G [14] to the n-Maximin model
on a single edge tree. Let d(1)i,/)j), -< 4: j _-< n be the distance between vi and vj on G.
Consider the problem of locating a set of n points { Xl, "", Xn } on the (real) interval
[0, n 1], such that IX Xj[ . d(l)i, l)j), <= 4: j <- n.

We claim that G has a Hamiltonian path if and only if the above location problem
is feasible. Suppose first that (vi(), vi(,,)) indicates the node permutation on a Ham-
iltonian path. Define the n points on the interval by setting Xi(k) k 1, k 1, , n.
Using the triangle inequality for the distance function on G, we obtain [xi- xj[ >-
d(v, v), for all _-< 4: j =< n. Conversely, suppose that xit) < xi(2 < Xitn) indicates
the locations of the n points on [0, n 1]. By the constraints Xi(k) Xi(.-l) >--
d(vi(c), l)i(k- 1)) 1, k 2, , n, and Xi(n) Xi(I) n 1, we must have Xi(k) Xi(k_ 1)

1, k 2, n. Therefore, (vi(), Vi(n)) indicates a node ordering of some Ham-
iltonian path on G. [2

Remark 2.8. We have not dealt here with exact algorithms to solve the p-Maximin
problem on general graphs. We briefly note several related references and results.

Consider first the homogeneous case of 1.1 ), where ai , -< =< n, =< j =<
p,/3o 1, =< i, j =< p. We can use the approaches in Tamir 28 and 29 for the related
homogeneous p-Minimax problem, and derive similar results for this case of the p-
Maximin model. In particular, we have obtained a result, similar to [29, Thm. 5], iden-
tifying a finite set containing the optimal objective value. Exact algorithms to solve the
discrete version of this case, where the points selected must be nodes, appear in Erkut
10 and Kuby 21 ].

Referring next to the general form of 1.1 we note that the model can be solved in
polynomial time when p is fixed. We have derived such an algorithm by adopting the
approach used in 28 for the p-Minimax problem. We skip the details since the algorithm
is practically inefficient due to its high complexity bound, which is exponential in p. For
small values of p the algorithm can be significantly accelerated by using recent devel-
opments in linear programming. For example, it is shown in Tamir 30 that for p 1,
the optimal solution can be obtained in O(mn) time.

Remark 2.9. We have mentioned above that Algorithm 2.3 is based on the heuristic
of Dyer and Frieze [9 which generates a 2-approximation solution to the continuous
symmetric p-Minimax model. We note in passing that the proof of Proposition 2.1 can
be used to show that if there exists a polynomial heuristic to find an e-approximation
solution, with e < -, to the p-Minimax problem, then P NP. We conjecture that this
result actually holds for any e < 2. Similarly, we conjecture that the result in Proposition
2.1 holds for any e > 1/2.

3. The p-Maxisum problem. We start by showing that the general model is NP-
hard even for the trivial case where the graph consists of a single edge. We need the
following lemma.

LEMMA 3.1. Let T V, E) be a tree graph. Then there is an optimal solution X *

to the p-Maxisum problem, where each x X* is a tip of T.
Proof. Let Xbe an optimal solution to the p-Maxisum model. Let u(X) denote the

number of points in X that are not tips of T. Among all optimal solutions to the model
let X* have the additional property that u(X) is minimized.

Suppose e X * is not a tip ofX *. Fix all points in X * but , and view the objective
j as a single variable () function. For every fixed point y on the tree, the function
d(y, ) is convex on every path in T. Thus,J() is convex on every path in T. Therefore,
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its maximum is attained at a tip of T. This contradicts the minimality property of
X*.

PROPOSITION 3.2. The p-Maxisum problem is NP-hard even when G is a graph
consisting ofa single edge.

Proof. Consider the model with aij O, <- <= n, <= j <= p. From Lemma 3.1
there is an optimal solution X*, where each x e X* coincides with Vl or v2, the two
nodes of G. Therefore, the p-Maxisum model reduces to the following Maximum cut
problem, which is known to be NP-hard [14]:

Find a subset S___ { 1,2, ,p }, such that 0 is maximized.
ieSjtS

For comparison purposes, it is interesting to note that the minimization of 1.2) on
a tree graph can be performed in polynomial time by solving a sequence ofO(n) minimum
cut problems on a graph with O(p) nodes [19].

We will later show that the homogeneous model can be solved in O(np) time on
tree networks. However, on general graphs even the homogeneous model is NP-hard.
Hansen and Moon [16] have considered the discrete version of the homogeneous case
(with the additional supposition that otij 0, _--< =< n, -< j _--< p), where the points
x, , Xp must be selected among the nodes ofG. They have shown that the independent
set problem 14 on a general graph is reducible to their model. Combining their reduction
with the construction in the proof of Proposition 2.1, we obtain the following result for
the (continuous) p-Maxisum problem.

PROPOSITION 3.3. The p-Maxisum problem (1.2) is NP-hard on a general graph
even when ao O, <= <= n, <=j <= p, tij 1, <- i,j <= p.

Proof. Let G (V, E), V {v, v,}, be a graph with unit edge lengths.
Let G’ (V, E’), be a complete graph with V as its node set. If e is in E let its length
be one, otherwise set it equal to two. Extend G’ to G" (V", E") as follows: V" V U
{u,, ..., u,},E"= E’U {(Vl, u), ..., (v,, u,)}.For _-< i_-< n, letthe length ofthe
edge (vi, ui) be one. Consider the homogeneous p-Maxisum problem on G", with all the
a-coefficients being equal to zero. It is easy to verify that the graph G has an independent
set of cardinality p if and only if the solution value to the above p-Maxisum problem on
G" is equal to 4p(p ). fq

When p is fixed 1.2) can be solved in polynomial time on general graphs. Consider
first the single facility case, i.e., p 1. Church and Garfinkel [6 have studied this model
and provided an O(n 3) algorithm to find the optimal location of the new center x. We
can improve this bound by using the following observation. Suppose that we restrict the
new center to be located on a given edge. Then for each node vi, ail d(v, x is a concave
piecewise linear function on this edge, and it has at most one breakpoint there. Thus,
the objective (x) is piecewise linear and concave. The maximum point ofj on a given
edge can be obtained in O(n) time using the recent general algorithms developed by
Zemel [35 ]. Therefore, we conclude that the 1-Maxisum problem on a general graph
can be solved in O(mn) time, provided that the distances between all the nodes
are given.

The case p 2 can also be solved by using a similar approach. In this case the
objective takes on the following form:

(3.1)
n 2

J(x,xz)= Z Z aid(v,x)+(2+2)d(x,x2).
i=lj=l
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When Olil ai2 0 for =< =< n, the problem reduces to the problem of finding
the generalized diameter of a graph. The latter has been solved by Chen and Garfinkel
[5 ]. They have identified a discrete finite set of points that will include at least one
optimal solution. Specifically, there is an optimal solution where xj, j 1, 2, is either a
node, or else there exists a node v; and a simple cycle containing vi and xj whose length
is 2d(vi, xj). To maximize (3.1) we solve O(m2) restricted subproblems. A subproblem
is obtained by restricting Xl and x2 to be located either on the same edge or on a given
pair of edges. In either case we can easily verify that J(Xl, x2) is piecewise linear and
concave over the restricted domain. Furthermore, due to the nature of(xl, x2), the
algorithms in Zemel [35] are applicable in this case and the optimal solution to a sub-
problem can be obtained in O(n) time. Therefore the global maximizer of (3.1) can be
computed in O(m2n) time.

The above approach can be generalized to yield an O(mPn) algorithm to solve the
p-Maxisum problem (1.2) for every fixed p.

In light of Propositions 3.2 and 3.3 we focus now on the homogeneous case when
the graph is a tree. The objective takes on the following form:

p p p

(3.2t j(X)= Z X l-id(l)i,Xj) -J- Z Z d(xi,xj)
i=lj=l i=lj=l

Ting [34] has presented an O(np2) algorithm for this model. Hansen and Moon
[16 have studied the case where ci 0, _-< _-< n, and restricted the p new facilities to
the nodes, allowing no two to be located at the same node. Their algorithm also has the
O( np21 complexity bound.

We improve the above complexity bound by reformulating the objective (3.2). The
new formulation will identify useful concavity properties.

Using Lemma 3.1, we may assume that each of the p points x, ..., xp is a node
of the given tree. For _-< =< n, let Yi denote the number of new points (facilities)
established at node vi. The optimization model is now formulated as:

(3.3)

Maximize (y, Yn)

subject to
n n

J(Yl, ,Yn) aid(re, l)j)yj + d(vi, l)j)yiyj
i=lj=l i=lj=l

n

y p, y nonnegative and integer, j 1, n.
j=l

LEMMA 3.4. Let T V, E) be a tree with nonnegative edge lengths, { We }, e e E.
Then the quadratic f2(y, yn) defined by (3.3) is concave when restricted to the
hyperplane

Yl Y6Rn, X Yj=P
j=l

Proof. It is sufficient to establish the concavity for the quadratic portion of J.
Suppose that the tree is rooted at node Vl and v is not a tip. Consider an edge e e

E, and let V be the subset of V consisting of all nodes that are disconnected from Vl
by the removal of e. It is easy to verify that We, the length of e, will appear exactly
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2( {ilvi Ve} {jll)j V- Ve} YiYj) times in the quadratic expression. Therefore,

, ., d(1)i, l)j) yiyj E2We YiYj
i= j= il Ve} {jlvj V- ge}

ilvi Ve} {Jlvj V- Ve}

Using the constraint

Yj=P,
j=l

we obtain

d(vi, l)j)yiyj 2We 19 Yi-- Yi
i= j= eE ilvi I/’e} ilvi: Ve}

which is a concave function. [3

The concavity result of Lemma 3.3 can be utilized to yield an O(np) algorithm to
solve (3.3). The objective in (3.3) is now formulated as:

eeE {jlvje V- Ve} il Ve} {jlvje Ve} ilvi Ve}

+ 2pWe i-- 2We i
eeE {ilvi Ve} eE {ilvi ge}

Letting

e: We( E Olj-- aj) + 2pWe,
{jlvj V- Ve} {Jlvj Ve}

(3.4) j(Yl, ,Yn)--eEl’e Z Yi 2We Yi
ilvi Ve} eeE \ ilvi Ve}

ilvi Ve}

Note that the coefficients { e }, e e E, can easily be computed in O(n) total time.
To simplify the presentation we augment a node v0 to the given tree T (V, E)

and connect v0 to vl, the current root of T, by an edge which is consistently labeled
e( ). We view v0 as the super root ofthe augmented tree, T (V tl { v0 }, E tO { e( } ).

For each e in E, let Te (Ve, Ee) be the subtree induced by Ve. In particular, we
note that Te() T (V, E) Ve(1) Ee(1)). We maximize (3.4) recursively by considering
its restriction to the subtrees { Te }. We will start at the tips of the tree and recursively
proceed until we reach the super root of the tree. (To simplify the notation we delete
and ignore the constant term in (3.4) while maximizing j(y, y,).)

For each edge z of the augmented tree T that is not a tip edge define

(3.5) J(z’y): E l’e Yi Z 2We Yi
e {il ve} eE {ilvi Ve}
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and

(3.6)

F2(z:k) Maximum IJ(z: Y)
ilvi6 Vz}

Yi k, Yi nonnegative and integer =< =< n}.
The solution value to our model is given by F2(e( ):p).

PROPOSITION 3.5. For every edge z, F2(z:k) is concave in k, i.e., the difference
function F2 z :k + F2 z :k is monotone nonincreasing.

Proof. The result follows directly from the concavity ofthe functionj(z:y).

ALGORITHM 3.6. To compute the optimal solution value to our model, F2(e( ):p),
we give the recursive equations for computing F2(z:k) for all edges z and integer -<
k<=p.

We use the tree terminology presented above. We start the recursion by defining F2
for edges z having the property that their son endpoint, say vi, is such that Ci is a cluster.
Consider such an edge z e(i), and let vi be its son endpoint. (Recall that for each son
vj of vi e(j) denotes the edge connecting vj to vi.) Then

(3.7) F2(z:k) Maximum I le(J)YJ-- 2We(j)y} yj k,
{j vj Ci} {j [13j Ci} {j lj Ci}

nonnegative integer, _-<j_-< n}.Yj

In general, when vi is a node and Ci is not a cluster, we have the following"
Suppose that vi is the son endpoint of an edge e(i). Then

(3.8) F2(e(i)’k)=Maximum I , (F2(e(j)’kj)+ff,ej)kj-2Wej)k])l kj=k,
{jl vj Ci} {jl vj Ci}

nonnegative integer =<j =< n}.
Using Proposition 3.5 we note that the maximization defining F2(e(i):k)is a special

case ofthe standard discrete resource allocation model with a separable concave objective
function. Using known algorithms for the latter model (see, e.g., [18, Chap. 4 ]), we
conclude that the complexity of computing F2(e(i):k) for all values of k 1, p
combined is O(IClp). Therefore, the total effort for computing the optimal solution to
the homogeneous p-Maxisum problem on a tree is

o p IGI =O(np).

The above O(np) algorithm was motivated by the case where p is relatively small.
For example, the complexity is linear when p is fixed. We now show that the model is
polynomially solvable even when p is a variable integer given as part of the input.

Consider the representation of the objective function in (3.4). For each edge e(j)
of the rooted tree define

Zj Yi.
vi Ve(j)}
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The homogeneous p-Maxisum problem is now formulated as an integer quadratic pro-
gram with a separable objective.

Maximize Ie(j)Zj- 2We(j)Z
j=l j=l

subjectto

(3.9) zi>= _, zi, <=j <= n, and vj. is not a tip node,
{ilvifj}

zj is a nonnegative integer, =<j-< n.

We note in passing that Lemma 3.1 implies that there is an optimal solution
{ y’, y* } to (3.4) where y[ 0 if node vi is not a tip. Therefore, there is an optimal
solution { z*1, z,* } to (3.9) with

zj z[,l=<j=<n, and v is not a tip node.
{ilvifj}

It is now easy to observe that the constraints in (3.9) represent a flow problem on the
tree where p units of a single commodity are to be transferred from the tips of the tree
to its root vl. Therefore, (3.9) is a special case of the flow model discussed in Minoux
[24 ]. Applying his approach to our tree flow problem yields an O(n log p) algorithm.
By implementing more sophisticated data structures we were able to reduce the bound
to O(n2 log n log p). For the sake of brevity we skip the details and present, instead, a
polynomial algorithm whose bound is independent ofp.

Consider first the fractional relaxation obtained from (3.9) by deleting the integrality
constraints on the variables. Let be an optimal solution to the fractional relaxation and
let - be the complexity bound to compute .

We apply the proximity results in the recent paper by Granot and Skorin-Kapov
15 ]. Specifically, given , the problem of finding the integer solution to (3.9) is now
reduced to a flow problem ofthe same type, where p, the number of units that must flow
into the root node, is replaced by some polynomial in n. Thus, the linear constraints,
defined by a totally unimodular flow matrix, are independent ofp. (Note that p appears
only in the linear portion of the objective in (3.4) and (3.9). Therefore, p will appear
only in the linear portion of the objective of the reduced problem.) The solution to the
reduced integer quadratic program can be obtained by the algorithm in Minoux 24 ],
mentioned above. The running time will depend (polynomially) on n only, i.e.,
O(n 2 log2 n).

To conclude we now have an O(z + n 2 log2 n) algorithm to solve (3.9), where z is
the complexity bound to compute a solution to the fractional relaxation of (3.9). To
solve the latter we apply the algorithm in Chandrasekaran and Kabadi 4 ]. Since p does
not appear in the quadratic portion of the objective, r is independent of p. It depends
(polynomially) on n and the sizes of the edge lengths.

The algorithm in 4 is a general quadratic programming algorithm. We have de-
veloped a special purpose, strongly polynomial algorithm to solve the fractional relaxation
of (3.9) with - O(n2). This algorithm is presented in 31 ].

Remark 3.7. The above algorithm for the (continuous) p-Maxisum problem is
based on Lemma 3.1, which limits the search for the optimal solution to the set of tip
nodes. This algorithm can easily be modified to the case where the solution is originally
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confined to any other discrete set of points on the tree. We can even allow upper bounds
on the total number of points in { x, xp } that can be established at each one ofthe
points in the given discrete set. The version of the problem discussed by Hansen and
Moon 16 is of that nature. They have confined the p new facilities to the node set, but
allow no pair of these to be located at the same node. Therefore, their model can also
be solved in O(np) time.

Remark 3.8. The O(np) bound applies to a general tree graph. Improvements are
possible for several special cases. For example, suppose that T (V, E) is a star tree, i.e.,
T is a cluster where Vl, its root, is the only node which is not a tip. In this case the
solution to the problem is given by F2(e( ):p) where F2(e( ):p) is defined by (3.7) for
z e( and k p. Therefore, the p-Maxisum problem is reduced to the standard
discrete effort allocation problem with a separable concave quadratic objective. The latter
problem can be solved in O(n) time 18 ].

Remark 3.9. For exact algorithms to solve the discrete version ofthe homogeneous
p-Maxisum problem with cij 0, -< -< n, -< j =< p, on a general graph the reader is
referred to Erkut, Baptie, and Von Holenbalken 12 ], Hansen and Moon 16 ], and Kuby
21 ]. There are also several related papers cited in [16 ].

4. Related optimization models. We have studied above the two most common
objectives used for locating obnoxious facilities, the p-Maximin and the p-Maxisum
criteria. There are several other models mentioned in the literature (see the surveys in
[11 and [25 ]). In this section we discuss briefly two models that we find to be more
challenging combinatorially. We report on some of our results and pose a few open
problems.

The first model that we consider has been introduced and motivated by Moon and
Chaudhry [25]. They have labeled it as the p-Defense problem.

Find points { x, xp } in A(G) that will maximize the following objective:
p

(4.1) J(x, ,x,)= Minimum {d(xi,xj)ll <-j<-p,j4:i}.
i=1

The second model has been recently suggested by Ting in his Ph.D. disserta-
tion 34 ].

Find points { x, x, } in A (G) that will maximize the following objective:
p p

(4.2) f4(x, ,xp)= ., aMinimum {d(vi,xj)l <=j<-_p} + ., ., d(xi,x).
i=1 i=lj=l

We are not aware ofany analytic or algorithmic results for these two models. How-
ever, few results and approaches discussed above in 2 and 3 can be modified and
applied for models (4.1) and (4.2). For example, both models are NP-hard when defined
on general graphs. (The same result holds even when we consider the discrete versions
and confine the points { x, x, } to the node set of the underlying graph.)

Turning to tree graphs, the recursive solution approach of 3 seems to be applicable
for (4.1) and (4.2) as well. However, this recursive approach is discrete in nature, and
therefore it requires the optimal points to belong to some prespecified discrete set of
points. Moreover, this set must be of polynomial cardinality if we wish the solution
procedure to be ofpolynomial complexity. If such a set is identified we reduce the model
to its discrete version by augmenting the points in this set to the node set of the tree.
Indeed, we have used the recursive approach and constructed polynomial algorithms of
complexity O(pZn3) and O(pZn2) for the discrete versions of (4.1) and (4.2), respectively.
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Therefore, to obtain polynomial procedures for solving the continuous version we need
to identify a discrete set that includes at least one optimal solution. Such a set is called
a finite dominating set (FDS).

There are several continuous network location models for which an FDS of poly-
nomial cardinality has been found. More recently, Hooker, Garfinkel, and Chen [17 ],
have unified most ofthese models by identifying common convexity-concavity properties.
However, we could not see how to apply their framework to (4.1) and (4.2). Even for
tree graphs the objectives in (4.1) and 4.2 do not seem to possess the convexity conditions
needed in the general framework of[17 ]. By using a direct approach we have been able
to prove that the set of tip nodes of a tree constitutes an FDS for the following general-
ization of (4.2):

(4.3)
p p

j(x, ,xp) a/Minimum {d(vi,xj)l <=j<-_p} + ijd(xi,xj).
i=1 i=lj=l

LEMMA 4.1. Let ci, <= <= n, ij, <- i, j <= p, be nonnegative numbers. Suppose
that G (V, E) is a tree graph. Then there exists an optimal solution { x, x }
maximizing fs(x, xp) such that x. is a tip ofthe tree, <= j <= p.

For the sake of brevity we skip the details of the proof. Unlike the proof ofLemma
3.1, which exhibits a similar result, our proof of Lemma 4.1 is fairly involved. In fact,
we have not been able to identify any convexity property, which usually suffices for the
existence of a maximum solution at the extreme points. Surprisingly, (4.2) might have
isolated maximum solutions which contain some nontip nodes even for the case where
the tree is a path connecting a pair of nodes.

Example 4.2. Consider the four node path tree depicted in Fig. 4.1, with
d(Vl, V2) d(v3, I)4) 1, and d(1)2,/)3) 2. Let p 3. Let c o/4 0, o2 0/3 1,
B0 1, -< i, j _-< 3. An optimal solution satisfying the property in Lemma 4.1 is x
Vl, x2 x3 v4. An isolated optimal solution that contains a nontip node is x Vl,

x2 v4, and x3 is the midpoint of the path connecting V and v4.
Next we turn to the p-Defense problem, defined by (4.1), on tree graphs. As men-

tioned above, we have constructed a polynomial recursive algorithm to solve the discrete
version of the model when the p points are restricted to the node set of the tree. So far
we have not been successful in our attempt to obtain an FDS of polynomial cardinality
(in n and p) for the continuous problem on a general tree. For a star tree we have
identified an FDS of O(n3p2) cardinality.

When the graph is a path connecting two tip nodes the solution to the p-Defense
model coincides with the unique solution to the homogeneous p-Maximin problem. It
has been conjectured that this result holds in general. However, this is not the case even
for star trees. First, we observe the following simple result for the p-Defense model.

*PROPOSITION 4.3. Let { x l, "", x } be an optimal solution to (4.1). Define I
{ lx[ x., for some <-j <- p, j }. Suppose that I is nonempty. Then there exists
a point x* in A (G), called a barrier, such that the set { yl, y, }, defined by

x* ifieI,
Yi= x[ otherwise

is optimalfor (4.1).

FIG. 4.1
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FIG. 4.2

If G is not a path and p is sufficiently large, every optimal solution to the p-Defense
problem has a barrier point. No optimal solution to the p-Maximin problem has a pair
of points xi, xj., 4 j, with d(xi, xj.) 0. The following example demonstrates that the
two problems might have different optimal solutions even ifthe solution to the p-Defense
problem has no barrier point.

Example 4.4. Consider the star tree in Fig. 4.2. Let the edge lengths be d(vl, v2)
6, d(vl, v3) 2, d(v, v4) 1. The unique solution to the 3-Defense problem consists
of the nodes v2, v3, and v4. The unique solution to the 3-Maximin problem consists of
v2, v3 and the midpoint of the path connecting v2 and v3.

5. Summary. We have considered obnoxious facility location on graphs using the
p-Maximin and p-Maxisum criteria. These criteria are defined by 1.1 and (1.2), re-
spectively.

For the general (nonhomogeneous) case we have shown that both models are strongly
NP-hard even when the underlying graph consists of a single edge.

The other main results for the homogeneous p-Maximin problem are as follows.
Unless P NP there is no polynomial e-approximation algorithm for the problem on a
general graph with e > . A 1/2-approximation for the same model is given by the following
greedy heuristic. Construct a sequence ofp points such that each point is as far apart as
possible from the set of points selected before.

Turning to tree graphs we present a linear time algorithm for the (homogeneous)
r-anticover problem and apply it to get polynomial time algorithms for the homogeneous
p-Maximin problem. For example, we improve upon previous results and solve the single
facility case in O(n log2 n) time.

For the p-Maxisum problem we have shown that the homogeneous case is strongly
NP-hard on general graphs. Focusing on the homogeneous case on tree graphs we have
presented an O(np) dynamic programming scheme for its solution. We have then iden-
tified useful concavity properties and reformulated the model as a maximum concave
separable quadratic flow problem. This formulation has led to polynomial and strongly
polynomial algorithms for this homogeneous p-Maxisum problem.

In 4 we briefly discuss two other models dealing with the location of obnoxious
facilities.

Acknowledgment. The current simple and elegant proof of Proposition 2.7 is by
Brandon. It improves significantly upon the original proofthat was based on a complicated
reduction.
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PLANE TREES AND H-VECTORS OF SHELLABLE CUBICAL
COMPLEXES*

CLARA CHAN?
Abstract. Stanley first defined the generalized toric h-vector, a fundamental combinatorial

invariant of polyhedral complexes (and more general objects). In the case where the complex is
simplicial, this invariant can be computed by shelling, or taking apart the complex in a certain order.
This paper shows how any shellable complex with cubical facets can be dealt with analogously. Based
on a result of Shapiro the h-vector of any shellable cubical complex is formulated in terms of certain
classes of plane trees.

Key words, cell complex, face poset, generalized h-vector, preorder, shelling
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1. Background. For general background and terminology on posets, see [2,
Chap. 3].

Let /5 be a finite graded poset with 0 and such that for all x,y E /5, we
have #(x,y) (-1)r(y)-r(x), where # is the Mhbius function of/5, and r is its
rank function. Then /5 is called Eulerian. Let P /5_ {}. For all t E P, let
Pt (s P"

_
s < t}. Let dbetherankofP. Nowdefine f(P,x) andg(P,x)

inductively by
1. f(,x) g(,x) 1
2. f(P, x) ,ep g(P, x)(x 1)d-’()

3. g(P,x) v’[d/2J (ki ki )x where ki is the coefficient of x in f(P,x)A-i=O --1

Then deg f(P,x) d, and the h-vector of P is given by h(P) (h0, hi,"., hd), with
hi kd-i from above.

Fact. (See [1] for details and proofs.) When P is simplicial, i.e., Pt is Boolean for
all t P, we have

d d

i-0 i--0

where fi is the number of elements of rank + 1 in P. Moreover, for any Eulerian/5
we have the Dehn-Sommerville equations hi hd-i for all 0 _<

_
d, so that g(P, x)

completely determines f(P, x).
Example. The face poset d of a d-dimensional cube is Eulerian (see [2, (3.8)]).
The following result was proved by Gessel (see [1]).
PROPOSITION 1. We have

[d/2J
1 () (2d-2k)(x_l)k

k--O

Based on this result, Shapiro gave the following description of g(Ld, x) in terms
of plane trees (see [2, Ex. 3.71g]). If two vertices in a plane tree share an edge, we
call the lower vertex a child of the upper, and write an(i) for the number of n-vertex

Received by the editors July 9, 1990; accepted for publication (in revised form) December 13,
1991.
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plane trees in which exactly vertices have more than one child.

PROPOSITION 2. We have

Ld/2J
g(Ld, x) E ad+l(i)xi.

i--O

Proof. Since there is only one tree on one vertex, we have a(i) 5o. By
removing the root, we see that a plane tree on n > 1 vertices is determined by the
ordered set of trees rooted at children of the original root. See Fig. 1.

FIG. 1.

Let N denote the natural numbers, and let P denote the positive integers. For
all u 6 N, v 6 P, let [u]v be the set of all (u, , uv) P such that ’= u u,
and [[u]] the set of all (Ul u) e Nv such that,"’, -i=1 u u. We have

n-1

an(i) an- (i) + E E E abl (t).. "ab(tj) for n > 1.

Let z En>I :’i>o an(i)Yxn" Then z x + xz + xyz2/(1 z), so

11 (1-v/l+4(x2-x2y-x)) -E((l+xy-x)z - k
1{2k_2 2klk s-k )sx 18)x

k>l s-O

1E E n--Ls, n-s- )(n; )(y_ 1)X
n>l

/)4k(X2 x2y X)kk
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by Proposition 1.

DEFINITION. A finite graded poset P with } is lower Eulerian if Pt is Eulerian
for all t E P. So for all lower Eulerian P, we can define f(P,x) as in the Eulerian
case.

Example. Let P be a finite graded poset with ) such that for all t E P we have
Pt isomorphic to Lr, for some r. In this paper, a cubical (d- 1)-complex Q is a
geometric realization (see [2, (3.8)]) of such a poset P of rank d. Thus, the face poset
PQ of a cubical complex Q is lower Eulerian, and we can define the h-vector of Q by
h(Q) h(PQ).

DEFINITION. Given any cubical (d- 1)-complex Q, a shelling of Q is an ordering
(F1,.’., Fr) of its facets such that for all > 1 we have that Fin (F1 U... U Fi-1) is
a union of (d- 2)-faces homeomorphic to a ball or sphere. If such an ordering exists,
then Q is called shellable.

2. H-vectors of shellable cubical complexes. Let Q be a shellable cubical
(d-1)-complex with a given shelling. Let F be a facet of Q, and I the intersection of
F with previous facets in the shelling. If I is a union of 0 _< _< d- 1 antipodally
unpaired (d-2)-faces and 0

_
j <_ d-l-i pairs of antipodal (d-2)-faces, the h-vector

contribution by F is tEPF\Pi g((P2)t,x)(x- 1)d-r(t), where r is the rank function of
PQ. We will call F an (i, j)-facet (with respect to the given shelling) and denote its h-
vector contribution by fd(i, j, x) dEk=obd(i,j,k)xk (So fd(O,d--l,x) g(nd-,x),
for example.) Let bd(i, j, --1) 0 for all i,j. See Fig. 2.

FIG. 2. Let Q be the boundary of the
(abcd, ab’cd’, a’b’ cd, abc’d, a’bc’d, a’b’ c’d). (0, O)-]acet:
a’b’cd, abc’d; (1, 1)-facet: a’bc’d; (0, 2)-facet: a’b’ c’d’.

three-dimensional cube with shelling
abcd; (1, O)-]acet: ab’cd’; (2,0)-facet:

Note. Given a shelling of Q, if we let si,j be the number of (i,j)-facets in the
shelling, then it is clear that f(Pe,x) ,i,j si,jfd(i,j,x). Thus h(Q) is given by the
sum of the h-vector contributions by facets of Q.

LEMMA 1. For all 0

_
k

_
d we have that bd(0, 0, k) is the number of d-vertex

trees such that exactly k vertices have at most one child.
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Proof. It is clear that fd(O,O,x) (x- 1)f(Ld-l,X) + g(Ld-l,X). We also have
(x- 1)f(nr,x) xr+lg(Lr,x-1)- g(Lr,x) (see [1]). Thus by Proposition 2 we have

L(d-1)/2J

X
-Ifd(O’O’x)=xdg(Ld-1 )= Z

k-0

a (k)x

with ad(k) as defined earlier. The lemma follows. []

LEMMA 2. For all 1

_ _
d- 1 and 0 <_ k

_
d, we have

bd(i, O, k) bd(i 1, O, k) + bd-1 (i 1, O, k) bd-1 (i 1, O, k 1).

Proof. The lemma is true if and only if for all _> 1 we have

(I) fd(i,O,x) fd(i- 1, O,x)- (x- 1)fd-l(i- 1, O,x).

It is easy to see that an ki, 0)-facet contributes everything that an (i-l,0)-facet con-
tributes to the h-vector, except for the contribution by a (d-2)-face that intersects
the previous facets in i-1 antipodally unpaired (d-3)-faces. From this we deduce
(1). 0

LEMMA 3. For 0

_
k

_
d, 1

_ _
d- 2, and 1 <_ j <_ d-l-i, we have

bd(i,j,k) bd(i,j- 1, k) + 2bd-l(i,j 1, k)- 2bd-i(i,j 1, k 1).

Proof. Equivalently, we need to show that for all 1 _< _< d-2, 1 <_ j

_
d-l-i,

we have

fd(i,j,x) fd(i,j 1, x)- 2(X- 1)fd-l(i,j 1, x).

Similarly to the proof above, we deduce (2) by comparing the h-vector contribution
by an (i,j)-facet with that contributed by an (i,j-1)-facet. []

3. The connection to plane trees. At this point we introduce some plane tree
terminology.

DEFINITIONS. An n-tree is a plane tree on n vertices. Two children of the same
vertex are siblings. A vertex is a fork if it has more than one child; otherwise it is a

nonfork. A vertex with no siblings is an only child. A child of the root vertex is a root
child. If a vertex has a sibling to its left and right, it is an inner child. In this paper,
the vertices of all plane trees are ordered recursively by root first, and then subtrees
of the root, from left to right. This is called preorder. See Fig. 3.
If the ith vertex in an n-tree has exactly one child, we will call this vertex an i’.
For 1

_
j <_ n-2, if the (n- j)th vertex is followed (in preorder) by an inner, only,

or root child, we will call this vertex a j". For all j

_
n- 2, let Cn(i,j,k) be the

number of n-trees with exactly k nonforks which are neither 1 ’, , nor 1", ,j".
Let cn(O,n- 1, k) an(k) as defined earlier, and cn(i,j,-1) 0 for all i,j.

We now can state our main result.
THEOREM 1. Let F be a facet of a cubical (d- 1)-complex with given shelling. If

dF is an (i,j)-facet, then the h-vector contribution by F is ’k=O cd(i,j, k)xk
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FIG. 3. (a) Preorder; (b)i’-vertices; (c) j"-vertices.

Proof. We must show that bd(i,j,k) cd(i,j,k) for all 0 _< k _< d. First
we consider the case j 0. Since there is no such thing as 0 or 0", we have
Cd(0, 0, k) bd(0, 0, k) for all -1 _< k _< d by Lemma 1. So by Lemma 2, it suffices to
show that for all l _< _< d-1, 0 _< k <_ d we have

(3) cd(i, O, k) cd(i 1, O, k) + Cd- (i 1, O, k) Cd- (i 1, O, k 1).

Now given any (d- 1)-tree with s nonforks which are not 1, t, we can get a d-tree
with s/l nonforks not 1, t by inserting a vertex between the (t + 1)th vertex and
its parent. (In Fig. 4, circled vertices are nonforks that are not 1, t.) This map

FIG. 4. d 9, 3, s 4.

is injective. From this observation (3) easily follows.
Now consider j > 0. As noted in the last section, fd(O, d- 1, x) g(Ld, x),

so the theorem holds for j d-1. By the definition of shelling, 1 _< j _< d-2
l_<i_< d-2. Fix suchi. Nowcd(i,0, k) =bd(i,O,k) for all-l_< k_<dfrom

above, so by Lemma 3, it suffices to show that for all 1 _< j _< d- 1- i, 0 _< k _< d we
have

(4) cd(i,j,k) cd(i,j 1, k) + 2Cd-(i,j 1, k) 2Cd_(i,j 1, k 1).

Given any (d 1)-tree with exactly s nonforks not 1,..., nor 1",.. ., j" we can get
a d-tree with exactly s + 1 nonforks not 1 ,.. nor ,..., in two ways: (In Figs.
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5 and 6, circled vertices are nonforks that are neither 1, i’ nor 1, j.)

1. Insert a vertex between the (d- 1 -j)th vertex and its parent.

FIG. 5. d=9, i=2,j=4, s=3.

2. Replace the (d- 1 -j)th vertex and its offspring by a single leaf. If there
is a (d- j)th vertex in the cropped tree, call this vertex v, and reinsert the
removed subtree so that its root has v as a sibling on its immediate right. If
no such v exists, insert the removed subtree so that it is the rightmost subtree
directly under the root.

FIG. 6. (a) d 9, 2, j 4, s 3; (b) d 9, 1,j 3, s 4.

These two maps are injective and have disjoint images. The identity (4) follows. []

Example. Let Q be the rhombic dodecahedron shown in Fig. 7, with shelling

(afeg, cged, edab’, b c el, arc’d, abcg, ab c g, a f’cd, bce’f, e d ab, c g’ed’, a’fe’g).

We have so,o 1, sl,0 2, s2,0 6, 81,1 2, 80,2 1. So f(Q,x) (x2 + x3)
2(2x2)+6(x+x2)+2(2x)+(l+x)=l+llx+llx2=x3.
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FIG. 7. (a) fa(0,0, x) x2+x3; (b) f3(1,0, x) 2x2; (c) f3(2,0, x) x+x2; (d) f3(1, 1, x) 2x;
(e) f3(0, 2, x) 1 + x.

Acknowledgment. I thank Richard Stanley for his helpful advice.
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Abstract. Although originating in hydrology, the classical Horton analysis is based on a geo-
metric progression that is widely used in the empirical analysis of branching patterns found in biology,
atmospheric science, plant pathology, etc., and more recently in tree register allocation in computer
science. The main results of this paper are a large deviation rate and a central limit theorem for
Horton bifurcation ratios in a standard network model. The methods are largely self-contained. In
particular, derivations of some previously known results of the theory are indicated along the way.

Key words, random tree, bifurcation ratio, large deviation, central limit theorem

AMS(MOS) subject classifications, primary 60F10,60F05,60C05; secondary 86A05,60J85

1. Introduction. River systems around the world are known to hydrologists
largely with the aid of maps. This has led to a number of interesting statistical/
geometrical observations about rivers, which are understood to varying degrees of
empiricism and mathematical rigor. In the present paper we consider a statistic in-
troduced by Horton [19], called the stream order statistic, to measure the bifurcation
complexity in river networks. Among other things, this statistic has been used to
provide an estimate on the total length of rivers in the United States at roughly three
million miles; see Leopold [21]. In addition, applications to other naturally occurring
branching patterns can be found in Horsfield [17], [18], Berry and Bradley [3], Borchert
and Slade [4], Steingraeber, Kascht, and Frank [25], Aho, Sethi, and Ullman [1], Fla-
jolet and Odlyzko [11], Flajolet and Prodinger [10], Flajolet, aaoult, and Vuillemin
[12], and Vauchaussade and Viennot [26], to name a few. Some of these and other
references can also be found in Jarvis and Woldenberg [20].

For a theoretical formulation of Horton’s order analysis, geomorphologists and
hydrologists consider an idealized river network represented by a rooted binary tree
digraph having n degree-one vertices representing sources; consult Shreve [24] and
Chartrand and Lesniak [6] for some of the graph theory terminology. The number n
of sources is called the network magnitude. Edges of the graph connecting sources to
adjacent junctions (degree three vertices) are called external links, and those between
two junctions are called internal links. The edge incident to the root is called the
stem. The stem is regarded as an external link if and only if n 1; otherwise the
stem is internal. Each external link is said to have order one. An edge incident to
two order-one links is then defined to have order two. We now proceed inductively as
follows. An edge has order k > 1 if and only if it is incident to two edges of order and
j such that either j k- 1 or j and max{i, j} k. A stream (and its order)
is defined as a maximal connected path of incident edges of the same order (which
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is then taken to be the stream order). Thus the order-one streams are precisely the
(order-one) external links. The maximal order taken over streams in the network is
called the network order.

Fluctuations in network statistics are represented by assuming all networks of
the same magnitude n to be equiprobable, called the random model. Because of an
inherent imprecision in the small scale details of large river networks, we typically
would like robust (large source number) asymptotics for the network variables. Precise
asymptotics on the expected (i.e., phase average) network order (maximum stream
order) have been obtained by Meir, Moon, and Pounder [22], who show that for
fixed n, the expected order is 1/2 log2 n + O(1). Shreve has conjectured on the basis
of computer simulation that the location of the mode should also roughly coincide
with this value, the details of which are clarified by the results of Meir, Moon, and
Pounder [22]. Note that for a given value of n, the largest network order possible is
1 + log2 n. Our focus here is on the asymptotics for sample averages of the lower-order
streams and links. Specifically, let Li,n and Si,n denote the sample numbers of links
and streams, respectively, of order in a network of magnitude n. These represent
the sample values we compute from a network map. The ratios L2,n/LI,n L2,n/n
and S2,n/SI,n S2,n/n are called Horton link and stream number bifurcation ratios,
respectively. Empirical forms of Horton’s laws refer to the asymptotic stability of
these ratios for basins of large magnitude.

Noting a simple mean and variance computation by Werner [27], Gupta and
Waymire [15] provide the theoretical counterpart in the form of a law of large num-
bers for the stream number bifurcation ratios and Mesa [23] for the link numbers; see
also Gupta and Waymire [14] for a related overview. The purpose of the present paper
is to provide a description of the fluctuations in the form of central limit theorems and
large deviation rates where possible. We consider two statistics, the stream number
bifurcation ratio and the link number bifurcation ratio. We first obtain a large de-
viation rate for the former ratio, from which a central limit theorem will also follow.
Although we have not obtained the corresponding descriptions of the fluctuations for
the link number bifurcation ratio, the computations given in 4 suggest that similar
results should hold for this ratio.

Some very interesting results have already appeared in the literature, which pro-
vide Gaussian asymptotic approximations to combinatorial enumerations, e.g., see
Carlitz et al. [5], Harper [16], Flajolet and Odlyzko [Ii], and Bender [2]. In particu-
lar, Bender [2] provides a general condition for the asymptotic normality of a doubly
indexed sequence of positive numbers that essentially requires a pole in the bivariate
generating function. Bender [2] also gives a number of interesting example applica-
tions. However, these results do not seem to be applicable to the present problem
since the singularity in the bivariate generating function is not a pole; see the remark
at the end of the next section.

The precise statements of main results are given in 2. Various other results
are obtained along the way, including the laws of large numbers, which serve to unify
the previously known asymptotics and exact formulae for stream and link number
probabilities and their expected values. In addition, a few new exact formulae are also
provided in this connection. The proofs of the main results are given in 5. Both the
calculation of large deviation rates and the central limit theorem rest on the natural
recursive structure of random model described in 3. An analysis of the asymptotic
form of the factorial moments of the distribution of stream and link numbers is given in

4, which may be read independently of the proofs of the main results. In particular,
we obtain the correct factorial moments of a Poisson distribution with parameter
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A n for the asymptotic (in n) factorial moments of the bifurcation ratios, but the
(correct) asymptotic Gaussian approximation to this Poisson distribution is wrong for
the bifurcation ratios (i.e., right mean, wrong variance parameter). These factorial
moment calculations illustrate the delicacy of the problems due to the occurence of
c c effects.

2. Statement of results. Let 2,, denote the collection of rooted binary tree
graphs of magnitude n. Then, according to a classic (1858) formula of Cayley, its
cardinality Inl is given by

(2.1) lanl 2n- 1 n

The random model is defined by the probability measure P, which assigns probability
]n- to each T n. The random variables L,n,S,n, denoting link numbers and
stream numbers of order i, respectively, are defined on u as in the Introduction. The
random variables u(n) L2,n/n and (n) S2,n/n are referred to as link and streamL,2 S,2
number bifurcation ratios, respectively.

It is now well known that the value of each of the bifurcation ratios S2,n/n and
L2,n/n stabilizes according to the following law of large numbers.

THEOREM 2.1. (Law of large numbers). For the random model, (i)S2,n/n Z
in probability as n ; (ii) n2,n/n in probability as n .

In fact, this may be obtained by the methods of the present paper according to
which one has the following properties.

PROPOSITION 2.2. For n 3, (i)

n(n- 1) n
E{S2,n} 2(2n- 3)

3)
 (2n- 5)(2n- 3)

(ii)

E{L2,n}
2n- 1

{22n-3 2n-2 Z 2m n
m 2m- 1

(2n-m-1- 1)}
m=l

n-4

(2:) n2

Z(3n- 3k- 13)(2k + 1) 2n-k-3} -.
k=0

The exact expressions in (ii) are new, but the exact forms in (i) have been obtained
previously by other methods. It is important to note from the exact calculations
that the asymptotic formulae for the first two factorial moments do not provide the
asymptotic variance; i.e., there is an c- c contribution. For example,

Var’2,n E2,n(2,n 1) + E2,n (E2,n)2

(2.2) n(n- 1)(n- 2)(n- 3) n

2(2n- 3)(2n- 3)(2n- 5) 16
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while

(2.3)
n2 n n)2 n

1- -I-- - ( .
This point is significant in a theory that rests largely on asymptotics, as is further
demonstrated in 4. This aside, note that Theorem 2.1 follows from the linearity of the
mean and variance in n (Proposition 2.2) by an application of Chebyshev’s inequality.

Proposition 2.2 is proved in 4 together with a generalization to the precise
asymptotic forms of the higher-order factorial moments. The moment analysis is
based on the following identity which may be of independent interest.

LEMMA 2.1. Let F(x) denote the gamma function. Then, for each n 1, 2,...,
we have

1
(.) n + r(i- )r(- + ) avr( + 5)

The identity (2.4) has several interesting variants. For example,

)( )((2.5) 1 n+l n-1 2n-2 =2(2n-1)1 2i-2

Remark. This lemma is used in the moment computations given in 4. Its veri-
fication is quite amenable to "proof" by symbolic algebra software; e.g., Macsyma or
Maple. This was, in fact, our first approach (after calculator tests) to checking the
assertion. However, the result can also be obtained as a case of Gauss’s theorem for
2F1 hypergeometric functions or by induction, as indicated below. For us, the iden-
tity (2.4) was uncovered by the process of "matching asymptotics," i.e., in trying to
identify the slowly varying part of the asymptotic Tauberian expansion (4.11) below.

Proof of Lemma 2.1.
Method 1 (Classical identities). We have

(2.6) 2F1 ;1
r()r(- a- )
r(c-a)r(c-b)"

From this we note in the cases where 0 and n + 1 that

)F(n- + ) -2v/Tr(n + ),
so that the identity of Lemma 2.1 is reduced to

(1 -n- 1
(2.8) F(- F(n+ ) 2F1 ;1 0.

Likewise, the equivalent variant (2.5) may be obained as a specialization of the (Ha-
gan/aothe) identity (3.146) given in Gould [13]; take y 2n + 1,p n + 1, x 1, q
-1, and z 2, there.



LARGE DEVIATION RATE AND CENTRAL LIMIT THEOREM 579

Method 2 (Induction). Let B(u, v) denote a Beta function. It is well known that

Thus, it suffices to show that

B(u )= r(u)r(v)
r(u + v)"

(2.9)
n

(n+l)jo 11
(n- 1) E (cs0)2(i-1)(sin0)2(n-)d0 F(n + )2V/ i--1

By induction, suppose for k

_
n (2.9) is true; then for k n + 1, we have

n!(n + 2) f12 (cosO)2ndO
2v/- ! o

To accompany the law of large numbers it is important to have some measure of
the fluctuations from the average. The idea behind the large deviation rate is that
the probability of a deviation from the mean by some prescribed amount goes to zero
at an exponentially fast rate, which we may try to calculate. The following results
describe probabilities of fluctuations from this point of view.

THEOREM 2.3. (Large deviation rate). For the random model,

(2.10) lim logp(S2" 1 1
> )= -(1, e (, 1n---cx)

and

(2.11) lim llogp( S2’n < ) -(1, e (0, -1,n--, n n

where

(2.12) I(y) (4y- 1)tanh-(4y- 1)- log(cosh(tanh-(4y- 1))).

The rate function I(y) is called an entropy function in the theory of large de-
viations; see Ellis [9]. The graph of the entropy function (2.12) is a U-shape on the
interval (0, 1/2) with a minimum at (1/4, 0).
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THEOREM 2.4. (Central Limit Theorem). For the random model, we have

(.) v(s, *
n 4) = N(0, ), nc,

where = denotes convergence in distribution, and N(#, a2) denotes a limit law that is
Gaussian having mean # and variance a2.

Remark. Let li(n, k), si(n, k) denote the number of trees in Ftn having k links of
order and k streams of order i, respectively, as defined in the Introduction, and define

(.14) i^(x, ) (,),
n,k

(2.15) 2(x, y) E s2(n, k)xyk.

Also, let

^I

(:.) [(x, ) (n, )x,

where Y2(n, k) denotes the number of trees of network order 2 in n having k links of
order 2. Then considerations of the recursive structure give the following relations"

(2 17) : + 2x + xy,

(2.18) 12 x2y + 2xyl2,

(2.19) 12 12 + 2x(/2 -/2) + 12.

Solving for these generating functions, we find singularities other than poles. This
does not seem to be covered by general theory; cf. Bender [2].

3. Some preliminaries. We continue to let li(n, k), si(n, k) denote the number
of trees in ’n having k links of order and k streams of order i, respectively. Then
for the random model

(3.1)

(3.2) P(Si,n k) si(n, k), n_>l,k>_O.

In view of the recursive structure of the trees as described precisely in Meir, Moon,
and Pounder [22], we obtain convolution identities among the s2(n, k)’s and 12(n, k)’s
of the following forms.
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LEMMA 3.1. For the random model,

(i) s2(1, k) 5o,k, s2(2, k) 51,k, s2(4, 1) 4, s2(4, 2) 1,

(3.3b) o)=0, s2(n, 1) 2n-2 n > 2

(3.3c)
n--1 k

s2(n,k) E Es2(m,j)s2(n- m, k j), n >_ 5, k 2;
m=l j=O

(3.4a) (ii) /2(1, k) 5o,k, /2(2, k) 51,k, /(3, k) 25,k, l(n, O) O,

(3.4b)
n-2

/2(n,n 1) 2n-2,/2(n,n 2) E /2(m, m 1)/2(n m,n m 1),
m=2

(3.4c)
n--1 k

12(n,k)= E E12(m,j)s2(n-m,k-J), n>_5, k_n-3.
m=l j=O

The proof of these recursions are fairly straightforward and will be left to the
reader. It is to be noted that, in either case, special provision must be made for the
order-three networks (i.e., n 4, k 2 for stream count, n 4, k n- 2 for link
count).

The convolution forms in the identities of Lemma 3.1 transform under

n

x)
k=l

n

(3.6) [2(n,x) E 12(n’k)xk’
k=O

according to the following lemma.
LEMMA 3.2.

(i) e(1, X) 1,2(2, x) x,e(3, x) 2X,(4, x) x + 4x,

(3.7b)

and

(3.8a) (ii)

n-1

2(n, x) E 2(m, x)2(n m, x), n _> 3,
m--1

/2(1, x) 1, /2(2, x) x,
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(3.9b)
n--1

[2(n,x) (2x)n-2(x 1)+ E [2(m,x)[2(n-m,x),n >_ 3.
m--1

Although somewhat lengthy, Lemma 3.2 is easily verified as a consequence of
Lemma 3.1 and its proof is omitted; the details for (ii) can be found in Mesa [23].
These recursions represent the starting point for our proofs. Define moment generating
functions

Cn() Ees’n ekPn(S2,n k)=
k

and

(3.11) () EeL:, eP,(L.,, k)=
k

Then Lemma 3.2 provides recursive equations of convolution type for IgtnlCn() and
ItnlAn(() which will be analyzed in 4 and 5.

For ease in reference, we close this section with the statements of the theorem
to be used in the proofs in 5. Theorem 3.3 seems to have a somewhat fragmented
history and has been useful in diverse contexts; see Cox and Griffeath [7] and references
therein. A systematic treatment of the elements of large deviation theory can be found
in Ellis [9] and Deuschel and Stroock [8].

THEOREM 3.3. (Sievers,Plachky and Steinbach, Ellis, Cox and Griffeath). Let
{Xn n O, 1...} be a sequence of random variables and let

(3.12) n() allogEexn,

where {an} is a sequence of positive numbers such that an as n c. Assume
that on the interval (_,+) O, we have

(3.13) lim n(() (() <

where () is strictly convex and C2 on (_,+). If n is convex on [0,+), and
limn--, g(0) a2 (0), then

(3.14) Xnlim allogP( > y) -I(y), y e (#, a+
n an

and

(3.15) lim a logP( Xn < y)= -I(y), y e (a_, #),
n oo an

where # (0),a_ (_+),a+ (+-), and I(y) is the Legendre trans-
form of (). In addition,

(3.16) Xn EXn =N(0, a2), n.

4. A moment analysis. This section may be read independently of the proofs
of the main results of the paper given in the next section.
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The factorial moments are defined by

(4.1) [nr]= En[S2,n]r ll2nl-lxr 2(n, x)lx=l,

(4.2)
r

where [x]r x(x 1)... (x r + 1), x e R, r 1, 2.... In view of Lemma 3.2, we have

accordingly, for p]-]gt,lu[r] and []-]nl#], that for each r 1,2,..., n _> 4,

(4.3) P[] )E r

m=l j=0
J l]n

(4.4)

)1 E 5r,m}r(n- 1)(n- 2) (n r)2n-2 + E r -[r-j]-b’]-fi[nr] {
n 1

m--1 m=l j=o
J #n #n-m"

To obtain these, simply note that

r

dxr
,= j=o

J dxr-J
dJ

(,, x)( n, x),

dr 1
n

dxr
[2(n, x) {2n-2(n 1)(n 2)... (n r)[(n 1)x n + r + 1Ixn-r-2} n’- 1 E 5r,m

m--1

r dr-j dE j .dxr_j/2(m, x)-xj[2(n m, x),
m=l j=O

Proof of Proposition. 2.2. To verify (ii), for example, use (4.4) with g]= 0 and
1]= 1. Then, [t(t)= -n=-fi]tn satisfies

l(t) t2 + E 2n-2tn + 2 E E
n=3 n=3 m=l

12---- + 2()fi(t),

where t(t) End__1 Inltn (1- V/i 4t)/2. Thus,

-1 2
l(t) t2{ 1’- 2t + i’""" 4t }(1 4t)/2

{2.4-2}t+2 E 1/2 (-4t)mm
n--0 m--0

n=2
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Thus,

(4.5)
n-2

m
m=0

Since

we have

1/2) 2-2-(-1)m-1m 2m-1 m
,m_> 1,

n--2

(4.6) ] 2.4n-2 2n-2 + E (--1)2m-1
m=l

-fi[n2]tn satisfiesAlso, [211 0 and 2] 0, Then, 2(t) nC__l

(4.7)

c n--1 2 c

n--3 m--1 j----0
J #m Pn--m nt- 2 n--3(n 2)2n--2tn

4t3

(1 2t) 2

4t3

(1 2t) 2
4t3 14t4

(x) n--1 cx) n--1

n=3 m=l n=3 m=l

+ 2ft2(t)(t)+ 2ft,(t)

(1 4t)(1 2t) 2

On the other hand,

Il / (t)
t’j+3 t3

j=O

4(1 -4t)-3/2(1 2t) -2 14t(1 -4t)-3/2(1 2t) -2

) )
k=O m=l k=O

=4E E " (-4)2n-c(n-k+l)tnk
n=0 m+k=n

( )14E E - (--4)k2n-k(n-- k + 1)tn+lk
n=Om+k=n

=[2] 4, andThus, 3

w[2] =4 @ (-4)J+ E (--4)k2J-k(3(k j) + 4),j+a j k
k-0

j_>l,
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n-4

k=0

Since

we obtain,

(4.8)

E{L2’n(L2’n -1)} 4(2n 5) ( 2n 6
3

n--4

k--0

The proof of part (i) of Proposition 2.2 is similar and left to the reader.

For the higher-order moments, the Tauberian theorem can be used with Lemma
2.1 to show for each r > 1,

n
(4.9) E[S2,n]r ()r, n -+ oo

n
(4.10) E[L2,n]r

Following is how we obtain (4.10) from Lemma 2.1 and the above. The case
of (4.9) is similar. When the Tauberian theorem is applied, we need only consider
the terms having highest power of (1- 4t) in the dominators of (4.4) and, by an

induction argument applied to (4.4), we may check that fir(t) -,--1 -fi[]tn is O((1-
4t)-(2r-1)/2) as t 1/4. With this observation, we are ready to show (4.10). Again by
induction, suppose that (4.10) is true for r

_
k; so by the Tauberian theorem, we have

(4.11) ] 1--nk-(3/2)Ak(n)22n,
1/2)

where the last term on the right come from a change of variable of the form u 4t.
Since [nr]- IFtnl#[nr], and by (2.1), we have

1
(4.12) Ak(n)

4,--P(Vrr

Now for r k + 1, we have

(4.13) [nk+i] 1
kn_i/2Ak+i (n)22n

By (4.4), we have

(4.14)
k+l

Ak+l(n) E (k+l) Ak+l-j(n)Aj(n)"
j=o

J
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By (4.12) and Lemma 2.1, (4.14) is readily simplified. Plug this into (4.13) and the
result follows.

5. Proof of main result. Consider first Cn(). Note that

(5.1a) 1() 1, 2() 3() e{.

We will show that

(5.1b) (-) (Cn()

(2n--l)
k ) l ( 2n- 2k -1) (e l)kk 2(n- k) 1 n- k

Let an()= I1.(); then al() 1, a2()- e, a3()- 2e. Also, by (3.7b),

n-1

an() E am()an-m().
m’-I

Then, 5(s,)= ,n=l an()sn satisfies

a(, )= +( )+
m=l n=m+l

am()sman-m()8n-m.

Thus,

1)k8m.

Then we have

1
am() E

{(n,k):n+k--m,n_kAl
( n ) ( ) (-1)n+l(4)’(e -1)k"

Thus,

n() 21Ft,,1 __E (1/2) () (-1)j+l(4)(e1)kj
(j,k):j+k-n,j>_kA1}

Note that
2-2j+l(-1)J-l(2j 2)!(2j 1)

j!(j- 1)!(2j- 1)



LARGE DEVIATION RATE AND CENTRAL LIMIT THEOREM 587

Thus,

r(5.4) () Igt, 2j- 1 j
(j,k):j+k’-n,j>_kA1}

By change of variable again, we get (5.1b).
Now using (2.1) and (5.1b), we have

I/l (n- )!l_]( 1)k(1 (-
k=O

with

n
(5.6) It’-kl 4-(1 _)-3/ k < ,n .

Il
In particular, (5.5) may be expressed as

[/1 )(ze- 1)kK-" (1-) }(1-)...(1- (2k:) n

()
k!

k=O

The appropriate choice of scaling and the computation of the asymptotic variance as

(5.8) a, n and a2 (0)

can be determined very simply from (5.7) using (2.2). In particular,

1
(5.9) a2 n-oclim (0)= i-"

Taking an n in the application of Theorem 3.3, we may check that

(5.10) lirn n(): + log(cosh()) v().

This computation in a neighborhood of zero can be made by a saddle point
method. In particular, for _> 0 we need only to calculate the maximum term of

’ and for < 0 we calculate the maximumthe sum for k ranging between 0 and y,
difference between pairwise successive terms 2k and 2k + 1 with k ranging from 1 to
n__4 (which nicely factors). The parameters a_ 0 and a+ 1/2 and the computation
of the Legendre transform as

(5.11) I(y) (4y- 1)tanh-(4y- 1)- log(cosh(tanh- (4y- 1)))

follow. We now apply Theorem 3.3 to get both the large deviation probabilities and
the central limit theorem.
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Version 3 of the conjecture is false, by Fisher’s inequality, since b0 can be small

compared to v. Indeed, choose an integer a > 1, and let v (a2- 1)(a- 1) and
k a(a- 1); then b0 v/(a- 1). It might be true that 51

_
Klbo for bo >_ K2v, else

bl <_ K3v.
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