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THE WEAK BRUHAT ORDER OF Sz, CONSISTENT SETS, AND
CATALAN NUMBERS*

JAMES ABELLOf}

Abstract. Chains in the weak Bruhat order 8 of Sy (the symmetric group on Z) belong to the class of
subsets of Sy over which unrestricted choice necessarily produces transitive relations under pairwise simple
majority vote (consistent sets). If for A = Sy we let T(A) = U, .4 T(p) where T(p) = {(p:, pj, px)|i <j <k}
and ¥(A) = {w e S;|T(w) = T(A)} the following theorem (among others) is obtained.

THEOREM. For all q €Ss, if A is a saturated chain under 8 then ¥(qA) is an upper semimodular sublattice

of cardinality | ¥(qA)| = (2||22 || ) = T_he | Z|th Catalan number.

|Z]+1

From the Arrow’s Impossibility Theorem point of view, the results obtained here indicate that majority
rule produces transitive results if the collection of voters as a whole can be partitioned into no more than
(1Z]? + | Z])/2 groups which can be ordered according to the level of disagreement they have with respect to
a fixed permutation p. On the other hand, by viewing Sy as a Coxeter group a “novel” combinatorial interpretation
of the collection of maximal chains that can be obtained from one another by using only one type of Coxeter
transformation is obtained.

Key words. weak Bruhat order, upper semimodular lattice, Catalan numbers, Arrow’s Impossibility Theorem,
Coxeter groups
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Introduction. The Marquis de Condorcet recognized nearly 200 years ago [12] that
majority rule can produce intransitive group preferences if the domain of possible (tran-
sitive) individual preference orderings is unrestricted. This phenomenon is commonly
known as the voting paradox (see Black [9] and Riker [20] for an excellent historical
account).

Domains for which the simple majority rule produces transitive results are called
here “Transitive Simple Majority” domains (TSM). The study of the structure and
cardinality of TSM domains has proven to be a combinatorial problem of an unusual
sort (Abello [1], [2], [4], Abello and Johnson [3], Arrow [5], Black [9], Fishburn
[15], Good [17], Ward [25]).

By restricting our attention to TSM domains that are subsets of the symmetric group
(called here “consistent sets””) we have given general constructions that produce “con-
sistent” sets of greater cardinality than all those offered in the past (Abello [2], Abello
and Johnson [3]). All the constructed sets are maximally transitive and they achieve the
best known (uniform) general lower bound.

A unified view of several seemingly different constructions of “consistent” sets has
been obtained by Abello [1] via the weak Bruhat order, 8, of S, (Bourbaki [10], Lehmann
[19], Savage [21], Yanagimoto and Okamoto [26]).

In this paper we will present the only known global structural properties of “‘con-
sistent” sets. Namely, we prove that each maximal “consistent” set that contains a max-
imal chain in 8 is an upper semimodular sublattice of (S,, 8). This offers a “novel”
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combinatorial interpretation of each collection of maximal chains in 8 whose elements
can be obtained from one another by using one type of Coxeter transformation (Benson
and Grove [6], Coxeter and Moser [13]). Moreover, we prove that each of these maximal
transitive sets has cardinality bounded by the nth Catalan number. This provides the
unique nontrivial upper bound known to date.

We must remark that even though we restrict our attention to subsets of the sym-
metric group, many of the ideas contained here are extendable to the more general
domains discussed in Chapter 1 of Abello [4], as they stand or with modification.

1. Preliminaries. Let (2, =) be a totally ordered set of symbols of cardinality
[Z| = neZ™* and Sy the group of permutations on = (we will be using one line notation
for permutations).

DEFINITION 1.1. A set {u, v, w} < Sy is called a cyclic three-set if there are three
symbols x, y, z € = such that u™'(x) < u™!(y) < u™(z), v i(y) < v(z) < vi(x),
wli(z) <wli(x) < wi(y).

DEFINITION 1.2. A subset C of Sy is called consistent if it contains no cyclic three-
set; otherwise C is called a cyclic set.

DEFINITION 1.3.

1. Forp € S5, let:

T(p)={(xv.2)lp"'(x)<p " (y)<p ' (2)};
I(p)={(x,y)Ip '(x)<p~'(N};
r(p)={(x,y)eT(p)Ip~'(x)+1=p~'(y)}.

We will refer to T(p), I'(p), and 7(p) as the sets of triples, pairs, and admissible adjacent
transpositions determined by p, respectively. If t € 7(p) then t(p) will denote the per-
mutation obtained from p by interchanging the symbols x and y where (x y)=t.

1. ForCc SE, let T(C)=U,cc T(p), T(C) =Uyec I'(p), 7(C) = Upec 7(p). Note
that [T(p)| = ( ) for |Z| = 3. We will say that T(C) is a cyclic or consistent set of
triples depending on whether C is a cyclic or consistent subset of Sy, respectively.

The following are some elementary properties of consistent sets.

FacT 1.1.

i. Any subset of a consistent set is consistent and any superset of a cyclic set is cyclic.

ii. The intersection of consistent sets is consistent but their union is not always con-
sistent

. | T(Sy)| = the number of different 3-permutations out of a set of | Z|-elements.

iv. If'C is a consistent subset of Sy then |T(C)| =4 ( )

2. A closure operator on Sg. The results in this section are independent of con-
sistency.

DEFINITION 2.1.

i. Let ¥:25 — 252 be given by ¥(A) = M = {w e S3|T(w) € T(A)}.

ii. If A = S5 is such that ¥(A) = A then A is called a closed subset and if K = A
satisfies that W(K) = ¥(A) where |K| = min |B| (taken over all subsets B of A such
that T(B) = T(A)), then K is called a kernel for A.

Let Cx = {A < S;|K is a kernel for A }. The following facts are immediate from
the preceding definitions.

FAcCT 2.1.

i. ¥ is a closure operator on Sy, namely, A < Y(A); if A < B then Y(A) < V(B)
and Y2(A) = ¥(A).

ii. There is a unique closed set in Cx, namely, Xx = ¥(K).
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iii. IfK and K’ are kernels for Cx and Cg-, respectively, and T(K) < T(K') then
¥(K) < ¥(K').

The preceding result means that a closed set is completely determined by its
kernels; moreover, any kernel K of a closed set Xx will do in the sense that if K =
{K;, Ky, -+, K;} then a chain of subsets, { ¥;}1-, can be constructed such that ¥; c

Vi fori=1,---,j— 1and ¥; = X, namely, ¥; = ¥({K,, ---, K;}). Note also
that by letting A; = ¥, and Aj;; = ¥;,., — ¥;fori= 1, - - - ,j — 1, we obtain a partition
(Ay, Ay, -+, Aj) of Xk. So, if we can characterize the dependencies between A, .| and

A; we will have (perhaps) some information about the cardinality of A;, | A;|, which will
give us at least bounds for [Xx| = 21-, |A;|. Therefore the study of the class of closed
sets in an independence system coming from a closure operator may be reduced to the
study of their corresponding kernels. Unfortunately determination of even a single kernel
K, for a closed set Xx seems to be a hard computational problem because if K and K’
are kernels for Xk and x € K it is not true, in general, that there exists y € K’ such that
K — {x} U {y} is a kernel, so there is not a suitable interchange property based on ¥
(see Williamson [24] for related topics). However, by relaxing the minimality assumption
of a kernel and by imposing a mild restriction on each A; we are able to characterize the
elements of A, ;. This is our intention in what follows.

DEFINITION 2.2.

i. A set of triples O = T(Sy) is called realizable if there exists A = Sy such that
T(A) = O. In this case we will denote M, = ¥(A) by M.

ii. A set M = W(A) is called extensible if there is a transposition t = (x, y) and
an element p € M such that t € 7(p), (x and y are adjacent in p), and for all w € M,
w!(x) < w!(y). In this case we will say that M is extensible by the pair (t, p). Note
that a set may be extensible by many different pairs (t, p).

THEOREM 2:1. Let M < Sy be extensible by the pair (t, p) wheret = (x,y),p =
uxyv and let O = T(M). If w € Mout(py)/ Mo then w = u'yxv’ where u' € S,,, v’ € S,,
(S, and S, denote the symmetric groups on the synmbols of u and v, respectively).

Proof. 1. First note that because O U T (t(p)) is a realizable set of triples the notation
MouT(py) makes sense. W € Mourtqpy/Mo = T(w) N[T(t(p))/ O] # & by the definition
of ¥ and because O = T(M).

ii. g#T(w)N[T(t(p))/O1<T(t(p))/O = {(-,y,x),(y,X, =)} = w cannot
be of the form w = u'xyv’.

iii. So, w is of the form w = u'yAxv’ for some A c Z. The triples in w of the form
(y, A, x) (if any) must be in T(t(p))/O because x precedes y in every permutation in
M, by hypothesis. On the other hand T(t(p)) does not contain triples of the form
(y, A, x) because t € 7(p); therefore, A = & and w = u'yxv".

iv. Suppose now that ' ¢ S, where p = uxyv. This means that there exists a sym-
bol ¢ € symbols of u'/symbols of v and w = ---c---yxv’, p = uxy---c---, (p) =
UYX- - Coe e

v. The triple (¢, y, X) ¢ O because x precedes y in every permutation in My, also
(c,y,x) € T(t(p)) by (iv), so (¢, y, x) ¢ O U T(t(p)) which means that w € Mour((p))»
(contradiction ); therefore, symbols of ' = symbols of u.

vi. Finally, assume that there exists a symbol ¢ which appears in # but not in u'.
We can assume that w = ¢'yxv’ and t(p) = u'---c---yxv” (by v). In this case we
have that ¢ appears in v’ but not in v”, then w = u'yx---c--- and again the triple
(v, x, ¢) ¢ O U T(t(p)), which means that w € Mour(p)), (contradiction); therefore,
symbols of # < symbols of u'.

(v) and (vi) together give us that if p = uxyv then w = u'yxv’ where u’ € S, and
v'eSs,. O
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The preceding theorem allows us to express in a very explicit way the relationship
between Mour(p) and My as stated in the following corollary.

COROLLARY 2.1. Let M < Sy be extensible by (t, p) wheret = (X, y), p = Uxyv
and let O = T(M). If w € Mour(py/ Mo then t ™ (w) € Mp.

Proof. Let p = uxyvand t = (X, y). W € Moutap)/Mo = w = u'yxv’, u' €S,,
v’ € S, by the preceding theorem. This in turn implies that T(w)/O = T(t(p))/0,
and T(t™Y(w))/T(w) < T(p) because t~!(w)=u'xyv’, u'eS,, v'€S,; therefore,
T(t™'(w)) c T(p) U O = O, which means that t~'(w) € My. O

Corollary 2.1 tells us that the “extension” of a set M by a pair (t, p) is completely
determined by a subset of it, namely, {q e M|q = u'xyv' with #' €S, v'€S,, p = uxyv
and t = (x, y) }. Note that the reciprocal of Corollary 2.1 is not true in the sense that it
can happen that t!(w) € My and however w ¢ My, UT(p))- This motivates the following
definition.

DEFINITION 2.3. If M < S; is extensible by a pair (t, p), then the projection set of
M with respect to (t, p) will be denoted by [14 and is defined as follows.

I1Y = {a € M|q = w'xyv’ where u' €S, v' €S,, p = uxyv, t = (x, y) }. With this
definition we have the following corollary.

COROLLARY 2.2. IfM is extensible by (t, p) and O = T(M) then Mourp)) =
M U t(IT%).

Proof. The proof follows from Theorem 2.1. and the definition of [T},

We close this section by mentioning that if Xy is a closed set under ¥ and if there
exists a sequence of pairs {(t;, P;)}{-, such that T(K) = U{_, T(P;) and each of the
sets ¥; = W({Py, - -+, P;}) is extensible by (t;, P;) fori = 1, - -+, j — 1, then by letting
A=V, A =¥, — ¥ fori=1,---,j— | we obtain a partition (A,, - - - , A;) of
Xk, even though {P;}{_, is not, in general, a kernel for Xk . All of this is true independent
of the consistency of Xy. In the case that Xy is consistent then we can characterize
algorithmically [1¢i, fori =1, -+, j — 1 by looking at the weak Bruhat order of Ss.
This is the purpose of the next section.

3. The weak Bruhat order of Sy versus consistent sets.

DEFINITION 3.1.

i. Foru=u;---u,, let E(u) = {(w, u;)|i <j, i <y}. E(u) is commonly known
as the set of noninversions of u.

ii. For {u, v} c Sz we write,

a) u — v if there exists t € E(u) N 7(u) such that t(u) = v.
We say in this case that u weakly covers v;

b) u = v if there exists t € E(u) such that t(u) = v. In this case we say that u
strongly covers v.

iii. The weak Bruhat order of Sy, 8, is defined as follows.

u (v if there exists a sequence (P, - -+ , P), P; € Sy such that u = Py, P, = vand
P,_, = Pfori=1,---, m(Lehmann [19], Savage [21]).

iv. The strong Bruhat order of Sy, 8, is given by u § v if u = Py, P,y = v and
P,_, = Pifori=1,---, m(Savage [21], [22]. Clearlyu 8 v —>u S v.

FAcT 3.1 (see Fig. 3.1).

i. uBvifand only ifE(u) 2 E(v).

ii. The maps f(u) = u-I® and f'(u) = I®-u are order reversing involutions of
(S, B), i.e, f2(u) =uandu B v — f(v) B f(u); similarly for £'(u), (1 is the identity
in Sy, IR is its reverse and - denotes the usual permutation multiplication).

iii. (Ss,B)and{Ss, [3} are posets with maximum element 1 and minimum element
. Moreover {Ss, B) is a lattice by defining the join u V v of two elements u and v as
the minimum element p (in the weak Bruhat order 8) such that p 8 u and p 8 v while

IR
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Ig= 1234

Lf- 4321

FIG. 3.1. Bruhat orders on Sy for Z = {1, 2, 3, 4}. Solid lines denote the covering relations in the weak
order and dotted lines correspond to the additional covering relations in the strong ordering. The relevant trans-
positions are indicated on each edge.

defining the meet u A v dually, namely, as the maximum element p’ such that u 8 p’,
v B p'. In other words u V v = least upper bound of v and v in 8 and u N\ v = greatest
lower bound of u and v in 8.

Proof of i. That u 8 v implies E(u) = E(v) follows from the definition of 8. In the
other direction, let j be the minimum i such that u; # v;, (if such j does not exist then

= v and we are done). For this choice of j we have that u; < v; (< is the order of 2)
and if v; = uy then uy_; < uy because we are assuming that E(u) 2 E(v); therefore,
E(u) > E(t(u)) 2 E(v) where t = (ux-, uy). By repeating the argument we con-
struct a chain u = Py = - -+ = P, with E(P,,) = E(v), so P, = v, which completes the
proof. O

Proof of ii. Without loss of generality, take £ = {1, 2, ---, n}. Then we have
f(u) = u-I® = u® f'(u) = I*-u = v’ with ¥} = (n + 1) — y; and the result immediately
follows. O

Proof of iii. For the proof see Yanagimoto and Okamoto [26].

The following two lemmas give the first relation between the poset ( Sz, 8) and the
class of consistent subsets of Sy. These results appear in Abello and Johnson [3] and
Abello [1], [4] but we reproduce their proofs here for completeness.

LEMMA 3.1. IfL is a chain in (Ss, B) then L is a consistent subset of Ss.

Proof (by contradiction). Assume that L is cyclic. Then there are three permutations
u, v, w in L and three symbols x, y, z in 2 such that

u:...X...y...Z...’
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We can assume without loss of generality that x < y < z (the only other essentially
different case is x > y > z, which can be treated similarly).

i. E(u) contains the ordered pairs (X, y), (X, z), (y, z) and at least two of these
pairs do not belong to E(v); thus E(v) Z E(u) which means that v ¢ u. Similarly
E(w) Z E(u) and then w ¢ u. On the other hand E(v) contains (y, z), which does not
belong to E(w), then E(w) Z E(v), which means w 43 v.

¢ ii. E(w) contains (X, y), which does not belong to E(v), then E(v) Z E(w) and
v B w.

(i) and (ii) together give us that v and w are not comparable and therefore u, v, and
w cannot be in the same chain (a contradiction). O

Example 3.1. The set {1234, 1243, 1423, 4123, 4132, 4312, 4321}, which is a
subset of Sy; 234}, is consistent because it is a chain in (S 234}, 8) (see Fig. 3.1).

It is interesting to notice that Lemma 3.1 is not true for the strong Bruhat ordering
8. For example, {2143,3 142, 4321} is a chain in (Sg, ﬁ>, however, it is not consistent.
This is due to the fact that 3 allows the interchange of nonadjacent elements.

The following is a simple but important property of maximal chains in 3.

LEMMA 3.2. IfL is a maximal chain in (Ss, B) then L is a consistent subset of Sz
such that |'T(L)] =4(%)and |L| =(3) + 1.

Proof. That L is consistent follows from the preceding lemma. Now, |T(L)| =
(3) + (3) (n — 2) = 4(%) because maximal chains in 3 have length equal to (3). O

The interest of the preceding lemmas is that for any consistent set C it must be true
that |[T(C)| = 4(3) (see Fact 1.1 (iv)) so a maximal chain has the maximum number
possible of consistent triples; therefore, any maximal (with respect to the noncyclicity
property) consistent set M which contains a maximal chain L must satisfy that
T(M) = T(L). Now, if L = (I = Py, P}, -+, Pgy = I®) with t;, ;(P;) = Py fori =
0, -+, (%) — 1 and if L; denotes the unrefinable subchain of L running from I to P;,
ie.,Li={qeL,I18qpBP;}, then we have that for each i (as above) ¥(L;) is a consistent
set which is extensible by the pair (P;, t; 1) in the sense of § 2; therefore, Theorem 3.2.1
gives important information about the class of maximal consistent sets which contain a
maximal chain in the weak Bruhat order. In fact it provides the basis of an algorithm to
construct these sets (Abello [1], [2]).

The preceding ideas carry over to a more general class of consistent sets which
contain subsets that are structurally equivalent to chains in the weak Bruhat crder. To
this end the following definitions are in order.

DEFINITION 3.2.

i. L « Sy is called a pseudochain under 8 if there exists p € L and a map m:u —
p ! u such that m(L) is a chain under 8. If we want to indicate the dependency between
L and p we write L(p) for L. For our purposes any adjectives that apply to chains can
be used with pseudochains. Stanley [23] has counted the number of maximal chains,
|C|, in B; then it follows that the number of maximal pseudochains is (n!/2)|C].

ii. If L(p)is a maximal pseudochain and m(L) = (I = Py, - -+, Py = I®) we write
Li={qeL, 18 m(q)BP}.

iii. For A < S;, let Cov (A) = {(p, q) € A X A, p covers q under 8} and let A:
Cov (Sy) > {(x,y)€ 2 X Z,x <y} be given by A(p, q) = (x,y)ift(p) =qand t =
(X, y). A is called a labelling of the edges in the Hasse diagram of (S3, 8). With these
conventions let TRAN (A) = A(Cov (A)).

iv. G, will denote the undirected (edge labelled) version of the Hasse diagram of
(Ssz, B), namely G, = (V, E) = (Sz, Cov (S;)) where the edge (p, t(p)) is labelled by
the two subset {x, y} ift = (x, y).

The following lemma states the equivalence between chains and pseudochains from
the consistency point of view and it identifies pseudochains in (Sz, 8) with shortest
paths in Gy,.
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LEMMA 3.3. Let L(p) be a pseudochain in (Sz, B8).

i. W(L(p)) is a consistent subset of Ss (see definition of ¥ in § 2).

ii. Ift,le TRAN (L(p)) thent# landt™' # I (ift = (x,y), t™! = (y, x)).

iii. L(p) is a saturated (unrefinable) pseudochain from p to q if and only if L(p) is
a shortest path from p to q in G,.

iv. If SPATH (p, q) denotes a shortest path from p to q in G, then SPATH (p, q)
is consistent.

Proof. For (i) note that L(p) is consistent because it is the image of a chain in 3
under a uniform relabelling, m, of the symbols of 2, and chains in 8 are consistent by
Lemma 3.1; therefore, ¥(L(p)) is consistent.

For (ii) and (iii) note that if p = p;p>*- 'Pan € Sz and t = (p;, p;+1) then t(p) =
p-I(1) where [ = (i, i + 1). Now, left multiplication by a fixed permutation is an auto-
morphism of Sy that preserves adjacency in the weak Bruhat order (for example, p —>
p'p=Iandt(p)—p ' t(p)=I(1)); therefore, it does preserve distances. In particular
a shortest path SPATH (p, q) is mapped by left multiplication to SPATH (I, p~*-q).
But shortest paths, in G,,, from the identity I to any permutation w are saturated chains
in 8. This can be seen by induction on the path length which is nothing else than the
number of inversions of w.

(iv) is just the result of putting (i) and (iii) together. O

The preceding lemma will allow us to state consistency results in terms of shortest
paths in G, even if we give proofs of them only in terms of chains in (S;, ).

The following result gives information about certain subconfigurations of any con-
sistent subset M of Sy. Note that no assumptions are made about the connectivity (in
the graph sense) or maximality of M.

LEMMA 3.4. Let M be a consistent subset of Sz, q € M, p € Sz and let
SPATH (p, q) and SPATH' (p, q) be two different shortest paths from p to q such that
t(p) € SPATH (p, q), t'(p) € SPATH' (p, q) where t and t' are two different adjacent
transpositions (see Fig. 3.2 below). Under these conditions,{t(p), t'(p)} =« M —
tNt' =J.

Proof (by contradiction). (i) Assume thatt Nt’ # & and without loss of generality
lett = (x,y),t = (y, z)and suppose that SPATH (p, q) and SPATH’ (p, q) are chains
in (Sz, B). With these assumptions q becomes a lower bound for t(p) and t'(p) which
means that the set of inversions of q, INV (q), contains INV (t(p)) U INV (t'(p));
therefore, INV (q) > {(y, X), (z, y) } , which implies that (z, y, x) € T(q) because SPATH
and SPATH' are shortest paths.

Y XZooo = t(P)s

e ZYX...

FIG. 3.2. Hllustration of Lemma 3.4. Note that P is not required to be in M.
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(ii) On the other hand, the fact that t N t' # & forces (y, x, z) € T(t(p)) and
(x,2z,y)eT(t'(p)). (i) and (i1) together contradict the consistency of M. O

The fact that (S;, 8) is a lattice (Fact 1.iii) gives us the following corollary as a
special case.

COROLLARY 3.1. Let {q, w, v} ¢ M < Sz and let t, t' be two different adjacent
transpositions.

L Ift(iw VvV v)y=wt(wVv)=v,wpBq,vpBqandif M is consistent then
tNt' = &.

Dually we have,

ii. Ift(w)=w A v, t'(v) =wAv,qBw,qBvVvandif M is consistent then
tNt' = .

Proof. (i) and (ii) follow from the preceding lemma by takingp = w V vand p =
w A v, respectively. O

Maximal consistent subsets in the weak Bruhat order exhibit a “local semimodu-
larity” property which does not hold for the strong Bruhat order. This is stated precisely
in the following corollary whose content will be referred to as the Quadrilateral rule or
the Q rule.

COROLLARY 3.2 (the Quadrilateral rule). Let M be a consistent subset of Ss and
{w, v} c M. If there exist {p, q} = Sz and two different adjacent transpositions t and |
such that (w) = q = t(v) and t ~'(w) = p = [7'(v) then {w, v, p, q} = ¥ (M) (see
Fig. 3.3).

Proof. The conditions imposed to / and t in the hypothesis hold if and only if
/Nt = and this in turn implies that T({p, q}) = T({w, v}) < T(M); therefore,
{p, q, W, v} < ¥(M) (this is not true if t and / are not adjacent transpositions and then
it is not true in the strong Bruhat order). O

In terms of the weak Bruhat order, the Q rule says that for any two elements w, v
of a maximal consistent set ¥(M), if their join, w V v, covers both w and v and if their
meet, w A v, is covered also by both w and v then {w, v, w V v, w A v} < ¥(M). This
resembles the definition of an Upper Semimodular lattice (Birkhoff [8]). However, the
problem here is that both conditions w V v— {w, v} and {w, v} = w A v are necessary,
neither one implies the other, and moreover it is not true in general that ¥(M) is even
a sublattice of (Ss, 8). On the other hand, if M is a chain in 8 then ¥(M) is not only
a sublattice but an upper semimodular one as will be established in Theorem 3.3.

The following result is basically an iterated application of the Quadrilateral rule.

THEOREM 3.1. Let M be a consistent subset of Sy and let p, q€ ¥(M)
such that p = uxyv, q = u'xyv’ where u' € S,,, v' € S,. If there exists a shortest path
SPATH (q, p) « W(M) such that for all w € SPATH (q, p), w ' (x) < w™(y) then for
all w € SPATH (q, p), w = u"xyv” where u” €S, v" € S,.

Proof (by induction on |SPATH (q, p)|).

FIG. 3.3. The Quadrilateral rule.
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Notation. If p € Sy and a € Z, denote by p/, the permutation in Sy_ (,; obtained
by erasing a from p.

Basis. If |SPATH (q, p)| = 1 then there is nothing to prove.

(i) Induction Hypothesis. Assume it is true for |SPATH (q, p)| =j = k < ('3')
and let |[SPATH (q, p)| = k + 1. Let w' € SPATH (q, p) and /'(q) = w’' where /' €
TRAN (SPATH (q, p)) and assume that /' N {x, y} # &. Without loss of generality
let ' = (a, x). By assumption u’'€ S, and therefore a must precede x in p; therefore,
there exists / € TRAN ([w’, p]) such that / = (x, a), ([w, p] denotes the subpath of
SPATH (q, p) running from w down to p). Take the first such /in TRAN ([w’, p]) and
let w be the permutation in SPATH (q, p) to which / is applied, so w = ©"xav” and w' =
(u’/.)xa(yv'). Assume now that there exists ¢ € u” such that c ¢ u'/,, so ¢ # a because
a ¢u”and ¢ # y because w™!(x) < w™!(y) by hypothesis; therefore, (¢, x, a) € T(w),
(x, a, ¢) € T(w'), which imply that (¢, a, x) € T(/(w)) and (a, x, ¢) € T(p) N T(q).
This forces [w’, w] to contain a permutation w” which contains the triple (x, ¢, a) be-
cause to go from w’ to w, a and ¢ must be interchanged without interchanging (x, a)
by the choice of /, and for ¢ to precede x in w, at some point in [w’, w], ¢ must be be-
tween x and a (the preceding argument depends exclusively on the connectivity of
SPATH (q, p) and on the choice of / = (x, a)). Therefore, {w", [(w), p} contains a
cyclic triple, namely, {(x, ¢, a), (c, a, x), (a, x, ¢)} contradicting the consistency of
M. Up to this point we have proved that symbols of u” < symbols of #'/, and by a
symmetric argument we obtain that symbols of #'/, < symbols of u”, which means
thatu” e S,,,, w = u"xav”, w’ = (u'/,)xa(yv’); therefore, the subpath [w’, w] has length

[[w’, w]| = k and satisfies the hypothesis of the theorem, so by Induction Hypothesis
every permutation on it is of the form u”xav” with u” € S,/,,, v € S;y+, and if t €
TRAN ([w/, w]) thent N/ = .

(i) Now, the maximality of ¥(M), the fact that [w’, w] = ¥(M), and (i) allow us
to apply iteratively the Quadrilateral rule to get that I([w', w]) < ¥(M), giving us
that the path (q, /(w'), [([w’, w]), [/(w), p]) is a path from q to p that is shorter than
SPATH (q, p), which is a contradiction; therefore, the original assumption that
IN{x,y} # & was false.

By (ii), /N {x, y} = & and then /(q) and p satisfy the hypothesis of the theorem,
and by induction we will be done. O

Theorem 3.1, coupled with the results of § 2, gives the following characterization
of extensible consistent subsets of Ss.

THEOREM 3.2 (see § 2 for related definitions). Let M be a consistent subset of Sz
which is also extensible by a pair (t, p) and let w € t(I1 ). If there exists a shortest path
SPATH (t'(w), p) € ¥(M) and if | € TRAN (SPATH (t~'(w), p)) then INt = .
(We will refer to this theorem as the projection theorem).

(i) Proof. If wet(I1M)thent™'(w) € ¥(M) by Corollary 2.1 and by the definition
of [TM.

Now, p € [IM and SPATH (t ! (w), p) © ¥(M) satisfy the hypothesis of Theorem
3.1 because M is an extensible consistent subset of Sy ; therefore, SPATH (t™'(w), p)
[T which means that / Nt = & for every / € TRAN (SPATH (t™'(w), p)). O

The preceding theorem tells us that within each connected component of an exten-
sible set, which is also consistent, the elements of [ 4 are precisely those that are connected
by paths all of whose transpositions are disjoint from t.

A lattice semimodular property of consistent sets. Recall that a lattice L is upper
semimodular if it satisfies the following condition:

The U.S. Condition: For all elements w and v of L if w covers w A v then w V v
covers v. The following seemingly weaker condition is sufficient to prove upper semi-
modularity (Birkhoff [8]):
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The W.U.S. Condition: For all elements w and v of L, if w A v is covered by both
w and v then w V v must cover both w and v.

As another application of the Q-rule we have the following result.

LEMMA 3.5. Let M be a consistent subset of { Sz, 8). If W(M) is a meet subsemilattice
(join subsemilattice) of (Sz, B) with a maximum element (minimum element) then
W(M) is an upper semimodular sublattice of (Ss, 8).

Proof. That ¥(M) is a meet sublattice with a maximum element automatically
implies that (M) is a lattice.

To prove that ¥(M) is upper semimodular is enough to prove that ¥(M) satisfies
the W.U.S. condition. To this end let w and v € Y(M), w A v € ¥(M). Now let q be
some upper bound for both v and w and assume that there are adjacent transpositions t
and t’ such that t(w) = w A v, t'(v) = w A v (i.e., w A v is covered by both v and w).
The consistency of ¥(M) allows us then to apply Corollary 3.1 (ii) to conclude that
t N't' = &, which in turn implies by the quadrilateral rule that the element w V v =
t~!(v) € ¥(M) satisfies that t'(w V v) = w. This proves that w V v covers both w and
v which is the conclusion of the W.U.S. condition. O

Notation. For the remainder of this section we will follow the following notational
conventions.

i. Ch will always denote a saturated chain (or pseudochain) Ch = (Py, Py, -+ -, Py)
where t;, (P;)) = P;,,fori=0, --- ,k— 1.

ii. [Py, P;{] = {pe€ Ch|PyB8pBPi}; Chi=¥(Po, Pi]).

The following basic properties of the weak Bruhat order will be instrumental in the
proof of the main result of this section.

LEMMA 3.6. For p € Sy consider the set E(p) of noninversions of p as a binary
relation on T and denote by (E(p))* its transitive closure. With these conventions,
we have:

i. p V q is the unique permutation satisfying that E(p V q) = (E(p) U E(q))*;

ii. Ifp=uxyvandq = u'xyv' where x <y,uandu'inSs, vandVv' inSs,, then
pVa=(uVu)xy(vVv)

iii. Ift = (x,y) € E(p) N E(q) and if t is an admissible transposition of p then
pVag=t(p)Va

Proof.

i. For the proof, see Berge [7].

ii. Note that E(p) and E(q) differ only in E(u), E(u’), E(v), and E(v’), respectively.
This forces (E(p) U E(q))* to be equal to E((u V u’)xy(v V v')), which together with
(i) implies that p V q = ((u V u)xy(v V v')).

iii. The fact that (x, y) € E(p) — E(t(p)), E(t(p)) < E(p), and (x, y) € E(q)
implies that E(t(p)) U E(q) = E(p) U E(q) and again by (i), t(p) Vgq=p V q. O

Theorem 3.2 (the projection theorem) and the Q-rule, together with the fact that
[Py, P;]is a saturated chain (or pseudochain ) imply that Ch; = ¥([Po, P;]) is a connected
subset of Ss.

Now, if i = 1, ¥([Py, P;]) = (Py, P,), which is clearly a join sublattice with top
element Py. For the general case note that Chy | — Chy = ti4 (Htckhfl,pk) by Corollary
2.2. But this is saying that Ch, ., — Chy is obtained from [] { p, by right multiplication
by a fixed permutation, namely the one corresponding to the transposition t, , ;. Moreover,
if two elements are adjacent in [] ™ p,, their images under t, ., must be adjacent. So
we have here a one-to-one mapping that preserves adjacencies and therefore distances
under f. Therefore, if v, w € Chy ..} — Chy then ti} (W) and ti};(v) € [T p,, and by
Lemma 3.6 (ii) we can assume that z = ti 1 (w) V tik(v) € [1{™ p , which allows us
to conclude that t, 4 ((z) =wV ve Chcy | — Ch. If ve Chyand w € Chy . | — Chy, then
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the fact that Chy is extensible by (7 |, Px) allows us to apply Lemma 3.6 (iii) by letting
qg=vandp =tr} (w)toobtain that vV we Chyy;.

The preceding arguments show that C#; is a sublattice of ( Sz, 8) with top element,
and therefore by Lemma 3.5 we have the following promised result.

THEOREM 3.3. If M is a saturated chain in the weak Bruhat order then Y(M) is
an upper semimodular sublattice of (S, B8).

Remarks. The preceding results play a central role in the algorithmic construction
of maximal consistent sets which contain a saturated chain (or pseudochain) Chk in
(Ss, B). It says that if Ch; = ¥([Po, P;]) has been constructed then to find [T{% p, one
backtracks (in Ch;) from P; by following any path whose transpositions are disjoint from
ti+1. At every step all that is required is to find one incoming transposition / disjoint
from t; . ;. Theorem 3.3 guarantees that the process will stop if and only if at some point
we reach one permutation all of whose incoming transpositions intercept t;; ; (the formal
algorithm can be found in Abello [1], [4], where it is called the MCCS algorithm).

4. Weak Bruhat order, consistent sets and Catalan numbers. We will prove here
that the nth Catalan number is an upper bound for those consistent sets containing a
Maximal pseudochain in the weak Bruhat order.

DEFINITION 4.1.

i. If M is a connected subset of Sy, its diameter, diam (M), is defined as diam (M) =

max |SPATH (P, Q)|.
{PQ}cM

ii. For a saturated chain (pseudochain) Ch = [P, Q] in {Sz, 8) denote by
OTRAN (Ch) the ordered set of transpositions used in Ch, namely OTRAN (Ch) =
{ti}i-|cn -1 where t4(P;) =Py, Pie Ch; and let Ch* be the subsequence of
OTRAN (Ch) consisting of transpositions involving x € Z. Elements of Ch* will be

distinguished by having a superscript x, namely, Ch* = (t}, t3, - -+, t¥).

iii. [/, /x] = {l/; € OTRAN (Ch)such thatj =i = k}.

iv. For a subsequence (1, b, - - -, I;) of Ch* and a permutation Q, we will write
(4, - -+, 1)(Q) to denote the sequence of permutations (Q = Qq, Qy, - - -, Q;) where

Q1 =4L(Q)fori=1,--,j— L

The following is a technical lemma that will allow us to single out a very special
canonical subchain in Mcy.

FACT 4.1. Assume that [p, v] is a saturated chain in (S, B) such that p, = v; =
x€ 2 andp, = Vir1 =Yy € Z and let us recall that if p € Ss, 7(p) denotes its admissible
set of transpositions. If t,, t. € OTRAN ([p, v]) are such that t; = t} = (x,a), t, =t} =
(x, b),a #y, b#ywithty € 7(Q), t, € 7(R) and [Q, R] = [p, V] then Mpr; =
M p.Q1Ultgte- 1. -+ tas(Q)- We Will say in this case that the sequence (141, * -, t,—1) has
been lifted by the transposition t, (see Fig. 4.1).

Proof. Mipr) = MipQluct_y, -+ tes 1te(Q) DY the definition of t; and t;.

(i) t, = t3 = each transposition in (t,+, * * * , t.— ) does not involve Xx.

(ii) ty =t} and the assumption that [Q, R] is a chain — each transposition in
(tg+1, - =, tr—1) does not involve the symbol a.

Therefore, the Quadrilateral rule (Corollary 3.2), can be applied (iteratively) to
(tg+1, "+, tr—1) by (i) and (ii) and the result follows by the maximality of M, r;. O

Remark. The idea of lifting one sequence, by one transposition (Fact 4.1),
can be used iteratively, in certain cases, to lift one sequence by another as follows. Con-
sider two permutations p and q such that p 8 q, p; = q; = x and assume that there is
a saturated chain Ch from p to q such that if t = (a, b) € OTRAN (Ch) then a # x #
b. Now, let LEFT (Ch) = (t;,, - - - , ;) denote the subsequence of OTRAN (Ch) ob-
tained by deleting from it those transpositions using symbols in {p;, -, pj-; }. Simi-



12 JAMES ABELLO

P=x...y P=x...y
Q=xa..y.. Q=xa..y..
tq
(tq(Q)=aX”y” (tq&h.“!tl—1)
({PURTEELI PR xab--y--
{ l'q
R=axb..y.. R=axb.y
¥
Lt,(R) = abx: -y - t,(R) = abx:-y -
v=...xy.¢- v:;-.xy..-
FIG. 4.1. The lifiing of a sequence (tg+1, - - - , t,—1) by a transposition t,.

larly, let RIGHT (Ch) =(t;,, - - - , t;,,) denote the subsequence of OTRAN ( Ch) obtained
by deleting from it those transpositions using symbols in {pj+, - -, px}. (For our
purpose assume that both LEFT (Ch) and RIGHT (Ch) are nonempty and that the
last transposition of OTRAN (Ch) is an element of RIGHT (Ch)). Note that if
t€ LEFT (Ch) and t'€e RIGHT (Ch) then tNt'= . This together with the as-
sumption that Ch is a saturated chain in 8 all of whose elements have the symbol x
exactly in the same position implies that the sets of permutations (t;, - - - , t;,)(p) and
(ti.» *** » t;,)(p) are saturated chains in (Sy, 8). This can be seen by an iterated
lifting of certain subsegments of the sequence LEFT (Ch) by each of the elements of
RIGHT (Ch) (in reverse order) in an iterated fashion. The figure below illustrates
this process for the case where RIGHT (Ch) consists of two transpositions only. Note
that because here we use only the Quadrilateral rule, then the set of ordered triples of
(ti, * > t,)(p), T((t, -+, t)(p)), together with the set of ordered triples of
(ties 5 5)(p), T, -+, t,)(Dp)), is precisely equal to the set of ordered triples
of Ch, T(Ch).

Note that because the process depicted in Fig. 4.2 consists of repeated applications
of the Quadrilateral rule, we can be sure that all the saturated chains C/’ from p to q
that are obtained in this manner satisfy that T(Ch') = T(Ch) which means that Ch' <
W(Ch). In particular this is true for the chain determined by using first (in order) the
transpositions of LEFT (Ch) and then the transpositions of RIGHT (Ch), which in our
unwanted (very clumsy) notation is denoted by ((t;,., - - -, tj,)(ti,, - -, t;,))(D).

We collect the preceding remarks and the process depicted in Fig. 4.2 in the following
result.

FACT 4.2. Let p, q be permutations in Sy that satisfy p 8 q, p; = q; = x and let Ch
denote a saturated chain from p to q such that if t = (a, b) € OTRAN (Ch) then a #
x # b. Under these conditions it is possible to find a saturated chain CA' from p to q
such that:

i. OTRAN (Ch') consists first of all tranpositions in OTRAN (Ch) which use
only symbols in {pj+1, -, pn} (call this set LEFT (Ch)) followed by all transpo-
sitions in OTRAN (Ch) using only symbols in {p;, -+, pj—;} (call this set RIGHT
(Ch)) (or vice versa). In symbols: OTRAN (Ch’) = (LEFT (Ch), RIGHT (Ch)) or
OTRAN (Ch') = (RIGHT (Ch), LEFT (Ch)).

ii. T(Ch') = T(Ch) or equivalently Ch’' <« ¥ (Ch).

iii. (a) If RIGHT (Ch) = (t;,, ---, t;,,) then all the permutations in the set
(ti.» -+ » ,)(p) have as a common suffix the subpermutation p;j. - p,. By delet-
ing this common suffix from all of them we obtain a saturated pseudochain in
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FIG. 4.2. Lifting of a sequence LEFT (Ch) by another sequence RIGHT(Ch) = (ti,, t;,). This assumes that
all the elements in the chain Ch from p to q contain a fixed symbol x in exactly the same position.

(S¢py,--- 3> By from p;---pj_y to q;---qj-;. Call this pseudochain RE-
STRICTED_RIGHT (Ch) and its closure FIRST_HALF ¥(Ch).

(b) If LEFT(Ch)=(ty, --,t,) then all the permutations in the set
(tiy, -+, ti,)(p) have as a common prefix p;- - -p;—. By deleting this common prefix
from all of them we obtain a saturated pseudochain in (S, ,, ... p,}, 8) from pj, -+ Py
10 Qj+1° * *qn. Call this pseudochain RESTRICTED_LEFT (Ch) and its closure SEC-
OND_HALF ¥(Ch).

As a justification (if any) for the definitions given in (a) and (b) above we have
the following:

(c) For a chain Ch satisfying the restrictions given above we have that W(Ch) =
FIRST_HALF (¥(Ch)) X [x] X SECOND_HALF (¥(Ch)), (here X denotes cross
product).

Note. Everything we have discussed after Fact 4.1 is put very concisely in the fol-
lowing definition and theorem. However, if the reader feels comfortable he/she may
jump directly to the remarks preceding Theorem 4.2 without losing continuity.

DEFINITION 4.2,

i. For (t,t,, --,t) a subsequence of OTRAN([P,P®]) such that
(ti> iy, =+, 1) = (t§, 13, - -+, t]) denote by { Q;}}- the subchain of [P, P*] such that
t; € 7(Q)).

ii. Let LEFT (t}, t},,) denote the subsequence of [t;, t,,,] obtained
by deleting from it those transpositions using symbols that precede x in Q;. Similarly,
let RIGHT (t}, t7; ) denote the subsequence of [t;, t;,,,] obtained by deleting from it
those transpositions using symbols that follow x in Q.

iii. Let TRANSFORM (t}, tf,,) = (RIGHT (t}, t},,), LEFT (t}, t{, ), t}) and
TRANSFORM (tf, tf) = (TRANSFORM (t}, t},;), TRANSFORM (t};, tf:2),
.-+, TRANSFORM (t}_, t})).

The following result is just an iterated application of Fact 4.1 in which a sequence
was lifted by one transposition. In the following theorem a sequence is lifted by another
sequence.

THEOREM 4.1. If (t;, t,, -+, ) = (11, t3, - -+, t]) with t} € 7(Q), t] = t; €
7(S)and [Q, S] < [p, V] then Myps1 = Mp,0)u (1, TRANSFORM (13,41))(Q)

Proof. (By induction on j).

Basis. If j = 2, the result follows from Fact 4.1.

Induction Hypothesis. Assuming the result is true for j, we will prove it for j + 1.

Suppose  (ti,, - -, b, ti;, ) = (1,13, -+ -, tf,t}y;) and let t,er(R), t,, €
7(u) with [p,R]JU[R,u]c[p,v]. By Induction Hypothesis Mr;=

1+1
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M[p,Q] U (t}(,TRANSFORM (t’l‘,t}‘))(Q) . By definition of t;:. 1 every transposition in
OTRAN [t;(R), u] does not use the symbol x. This implies that the quadrilateral rule
may be applied to OTRAN [t;(R), u] to lift the transpositions in LEFT (t, tf;,) by
those transpositions in RIGHT (tf, t},;)/t{s;. But this means that instead of
OTRAN [t;(R), u] we may use (RIGHT (t}, t}; ), LEFT (t, t})). Therefore, M,
= Mip,Q1U(tls ,RIGHT (14}, ),LEFT (1] 1), (t, TRANSFORM (t}))))(Q) Dy Induction Hypothesis and
by the maximality of M, ,;. Now, by noticing that the right-hand side of the last equation
is equal t0 M, qju(tk, . TRANSFORM (1]}, 1)) the result follows. O

Remarks. We have seen that a shortest path SPATH (p, q) is mapped bijectively
to a saturated chain Ch in (Sy, 8) by left multiplication by p~'. This induces a
map from the ordered triples of SPATH (p, q), T(SPATH (p, q)), to the ordered
triples of Ch, T(Ch); namely, if R € SPATH (p, q), (X, y, z) € T(R) if and only if
(p™'(x), p~(y), p~'(2)) € T(p~'-R). But this means that w € ¥(SPATH (p, q)) if
and only if p~!-w € W(Ch); therefore, | W(SPATH (p, q))| = | ¥(Ch)|. Therefore, for
every maximal connected consistent set (m.c.c.s.) M < Sy of diameter (3) where n = | 2|
there exists a m.c.c.s. M’ Sy that contains a maximal chain such that |[M| = |[M’|.
This is not saying that all such sets (with the same diameters) have the same cardinality
(in fact their cardinalities are in general quite different as proved in Abello [2-4]). With
this in mind we will denote by M; any maximal connected consistent subset of Sy where
|Z| = j. Now if M; has diameter (%) we may assume that it contains a maximal chain
under .

Finally, we will prove the next result which relates Catalan numbers and maximal
connected consistent sets.

THEOREM 4.2. For | Z| = n. If M,, denotes a maximum connected consistent subset
of {Sz, B) of diameter, diam (M,) = (3) then (M, B) is an upper semimodular lattice
with cardinality |M,| < (1/n + 1)(**) = the nth Catalan number C, for n > 2.

Proof. The upper semimodularity of (M, 8 was established in the preceding section
(Theorem 3.3), so we will prove here that |M, | = C,.

For simplicity in notation we will write [ 2 to denote the projection set [1 2 of B
with respect to (¢, P), if there is no danger of confusion.

(i) By the remarks preceding this theorem we may assume that M,, contains a max-
imal chain Ch = [I,I®]in 8. LetI, = x € T and I, = y € Z. By noting that x never moves
to the left in Ch we have that OTRAN (Ch) = (t;, - - -, t(3) imposes a total order < on
2 — x given by b; < b;if and only if t; = (x, b;), t; = (x, bj) and i < j.

(ii) Now, by letting M' = {w € M,: w; = x} we have an ordered partition of M,
namely, (M, - -+, M™) and 3 u € M! such that t;(u) e Mi*! where t; = (x, b;) and b; is
as defined in (1).

(iii) By the projection theorem (Theorem 3.2), the definition of M' and (ii), we
have that [IM <= M and t;(II}) = M* . .

(iv) On the other hand, if ve M'*'/t;(II") then the set of symbols{v;,, / <
i+ 1} ={b, !/ <i+ 1} by(i) and by the order imposed on Ch.

(v) (iii), (iv), and the fact that v;, ; = x allow us to conclude that
Mi*! < W(Ch')

(vi) where Ch' is the saturated chain of Ch between t;_(p) and t;'(q), with the
understanding that ty(p) should be taken as I. By Fact 4.2 (iii) (c¢) we know that
W(Ch') = FIRST_HALF (¥(Ch'))x {x} x SECOND_HALF (¥(Ch')) where FIRST_
HALF (\I’(Chl)) [t S{b|,l<i+ 1} and SECOND_HALF (‘P(Chl)) C Sz_ {bl<i+1} are
consistent and connected sets, each of which contains a pseudochain. Therefore,
|FIRST_HALF (¥(Ch'))| = |M;| and |SECOND_HALF (¥(Ch'))| < [My_i_4],
which in turn imply by (v) that |[M'*!| = |M;|*|M,_;_].

(vii) This, together with (ii) above, give us |M,| = 2= Mt = 2] M|
[Mp—i—i| with [Mo| =1, [M;| =1, [Ma| =2, [M3] = 4.



THE WEAK BRUHAT ORDER OF Sy 15

Inequality (vii) and the fact that the Catalan numbers {C,} satisfy that C, =
P2o Ci*C,_;_ with the same boundary conditions allow us to apply induction on n
to get that [M, | < C, for every n > 2. O

COROLLARY 4.1. If M, is a maximal consistent subset of Sy of diameter
diam (M,) = (3) then |M,| < 4"~ '.

Proof. The proof follows from the preceding theorem and from the fact that C, =
4n-1, a

Remarks. The preceding results suggest the possibility of studying the structure of
maximal consistent sets by looking at them as representing a certain restricted collection
of binary trees or as a certain subcollection of stack permutations (de Bruijn [11]). The
multiple interpretations offered in the literature to the Catalan numbers, C,, (de Bruijn
[11], Feller [14], Gardner [16], Klamer [18]), could be a good source of ideas to shed
new light on the problem in question. This approach has not yet been pursued.

The unexpected relationship between C, and |M,| established in Theorem 4.3
offers the (unique) best known upper bound at present. In a forthcoming paper we will
prove that |M,,| is not bounded by 2" for all n, as was conjectured in [2]. We conjecture
that in general any consistent set M — Sy satisfies that |M| < 4'*'"! for |2| > 2 and
that if M contains a maximal pseudochain in the weak Bruhat order then | M| < 32171,

We suspect that a general bound for connected consistent sets between 3'*'~! and
41 -1 is a very hard result to obtain because the structure of general connected sets is
as random as that of unconnected ones. Moreover, relating connected consistent sets to
unconnected ones appears to be a very hard problem. In Abello [1] we present a very
surprising bijection of this type that gives a unified view of several constructions (con-
nected and unconnected) offered in the past.

Conclusions. We have seen that maximal pseudochains in (S, 8) are a very im-
portant substructure of those maximal consistent sets which contain them. From the
Arrow’s Impossibility Theorem point of view (Abello [4], Arrow [5]), the results obtained
here indicate that the majority rule produces transitive results if the collection of voters
as a whole (at least in the extensible cases covered by Theorem 3.2), can be partitioned
into no more than (n? + n)/2 groups that can be ordered according to the level of
disagreement they have with respect to a fixed permutation p. On the other hand, by
viewing Sy as a Coxeter group (Benson and Grove [6], Bourbaki [10], Coxeter and
Moser [13], Stanley [23]), these results provide a “novel” interpretation of the following
partition of the collection Q of maximal chains in the weak Bruhat order. Namely, if for
Ch and Ch' € Q we let M¢;, and Mcy,- be the maximal consistent sets containing them,
respectively, then the relation ~ given by Ch ~ Ch' if and only if M, = Mgy parti-
tion © and our results say that (Uc, ~ ¢ Ch', B) is an upper semimodular sublattice of
{8z, B) such that [U¢y+ ~ ¢y Ch'1 = the | Z|th Catalan number. Now, if y = (t;, -, t;)
is a reduced decomposition of wo = minimum element in {S;, 8), any other reduced
decomposition of wy may be obtained from v by using two types of transformations
known as Coxeter relations of type I and of type II (see Benson and Grove [6]). Our
Projection Theorem (Theorem 3.2) shows that Ch ~ Ch' if and only if Ch’' may be
obtained from C# by using transformations of type I only; therefore, we have obtained
a “new” combinatorial interpretation of the collection of chains which can be obtained
from one another by using Coxeter transformations of type I or type II exclusively.
Namely, for Ch' € Q, if Qc,- = { Ch € Q: Ch can be obtained from C/' by using Coxeter
transformations of type I only } then the set Ucycq.,, Ch does not contain a cyclic triple
(or Latin square) in the sense of Definition 1.1.

If one is puzzled by the fact that we never said what these transformations were, it
should suffice to say that what we call transformations of type I correspond to inter-
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changing ¢; and #; , ;, in the reduced decomposition vy of wy, if and only if they are
“disjoint.”

We close with the following question: What is the corresponding combinatorial
interpretation of the projection theorem for general coxeter groups?
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AN EXTREMAL PROBLEM ON SPARSE (-1 MATRICES*

DAN BIENSTOCKt AND ERVIN GYORI}

Abstract. The problem of estimating the number of 1’s in a square 0-1 matrix with certain forbidden
configurations is considered, and nearly tight bounds are provided. This is motivated by a problem in com-
putational geometry.

Key words. extremal problems

1. Introduction. In this paper we study a problem of a nature typical to extremal
combinatorics: that of finding the maximum number of 1’s that can occur in a 0-1 n X
n matrix with a certain forbidden configuration of 1’s.

We remark that various problems in extremal graph theory may be described in a
similar way. For example, Zarankiewicz’s problem, which asks for the largest number
of edges in an n-vertex graph with no 4-circuit, can be stated as follows. What is the
maximum number of 1’s in a 0-1 #n X » matrix with 0’s on the main diagonal, that
contains no “rectangle” with a 1 at cach corner? It is well known that the tight answer
is n3/2 (see [B]).

We call the forbidden configurations in our problem trapezoids. For integers 1 =
h=h<iz=nandl =j, <j, = j; = n, a trapezoid is a pattern of four 1’s, occurring
at entries (given by (row, column) in standard numbering) (i, j;), (iz, j2), (i3, j1),
and (i3, j3) (see Fig. 1). We denote by ¢, the maximum number of 1’s in a trapezoid-
free n X n matrix. The problem of computing ¢, has appeal of its own, as the proofs are
not immediate. Moreover, this problem arises in computational geometry, as out-
lined next.

Recently, Mitchell produced an algorithm for computing a shortest rectilinear path
to join two points in the plane while avoiding certain rectilinear obstacles. The complexity
of this algorithm is difficult to estimate, but may be shown to be bounded above (up to
other, unrelated factors) by ¢, [M1]. Thus, it is important to investigate ¢,,. Our results,
described below, imply that Mitchell’s algorithm is one of two best algorithms for the
geometry problem. We prove the following theorem.

THEOREM 1.

(1) There exists a constant ¢, > 0, so that foralln = 1, t, = ¢, n log n.

(i1) There exists a constant ¢, > 0, so that for infinitely manyn Z 1,t, Z c; n log n/
log log n.

We conjecture that the lower bound in (ii) is the correct answer.

We will use the following definitions and conventions.

In what follows, the rows of matrices will be numbered from bottom to top, and
the columns from left to right. Thus, the (1, 1) entry of a matrix is its bottom left corner
entry. We say that two columns of a matrix overlap at a given row if both columns
contain a 1 in that row. Given a matrix A4, the submatrix corresponding to the column
indices ¢y, ¢, *** , ¢ 18 denoted by A[cy, ¢, -+, Cm].

Let 4 be a 0-1 matrix. The total number of 1’s in 4 is denoted by #(A4). Let ¢ be a
column of 4. Then:

* Received by the editors January 21, 1988; accepted for publication (in revised form) May 8, 1990.

+ Columbia University, New York, New York 10027. The work of this author was carried out at Bellcore,
Morristown, New Jersey 07960.
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(1) If X is a subset of the entries in ¢, the interval spanned by X is the set of all
entries of ¢ (including those not in X'), in the rows between the lowest and the highest
containing an element of X (inclusive). The row-set of the interval consists precisely of
those rows of 4 that contain the elements of the interval.

(2) We say that a set Z of 1’s of ¢ are consecutive if the interval they span contains
no other 1’s but those in Z. We define the spread of ¢ to be the minimum number of
rows spanned by any three consecutive 1’s in ¢. The spread of 4, sp (A4), is the minimum
spread of any column of 4.

2. The upper bound. Given integers | = jj = L <i3=nand 1 =j, <j, =n,a
right trapezoid is a pattern of four 1’s, at positions (iy, j,), (i2, j2), (i3, j;), and (i3, jo).
Let 7'}, denote the class of n X n 0-1 right trapezoid-free matrices, and ¢}, the maximum
number of 1’s in a matrix of T'},. Clearly, ¢, = t},. We will show that ¢, = O(n log n).
Below we prove the following theorem.

THEOREM 2. There are constants e Z 0, A\ > 1, so that if A € T, there exists B €
T, satisfying sp (B) Z X\ sp (A4) and such that A has at most ¢ n more 1’s than B.

Pending the proof of Theorem 2, the upper bound on ¢}, is clear. For if 4 € T, after
applying Theorem 2 O(log n) times we will obtain a matrix in 7'}, with O(n) 1’s, but
also at most O(n logn) fewer 1’s than 4. This would conclude the proof of the
upper bound.
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The proof of Theorem 2 will be broken up into several steps. First we will give an
informal description. We stress that this description will be slightly incorrect but will
contain the main ideas.

2.1. Informal description of the construction. The heart of the proofis an algorithm
that processes the columns of 4 from left to right, generating the corresponding columns
of B in the process. Thus, after i — 1 such steps, we will have generated the first i — 1
columns of B. We will also have generated a right trapezoid-free matrix C;_,, which
corresponds to the semiprocessed matrix 4. In other words, the last (rightmost) n — i +
1 columns of C;_, are identical to the last #» — i + 1 columns of 4. The remaining
(leftmost) columns of C; _ |, on the other hand, have a very special structure, and intuitively
can be regarded as containing some carefully rearranged 1’s obtained from the leftmost
i — 1 columns of A. The objective of the rearrangement is to facilitate the processing of
59additional columns of 4, in particular to attain the desired increase of the spread in
B. More precisely, let C;_, have m;_ | + n — i columns (possibly m; _, ¥ i — 1, but for
intuition, first regard m, _; =i —1).

The 1’s in the first m;_; columns of C;_, satisfy the following crucial property, to
be maintained inductively. For each such column, consider the interval spanned by the
highest and lowest 1°s occurring in the column. Then the row-sets of all such intervals
are pairwise disjoint, and each interval is “long.” Here, long means having at least a
prescribed number of rows (this will be made precise later). We stress here that a given
interval may contain 0’s; what is important is that it is spanned by the extreme 1°s in
the column. The fact that the intervals are long is used in the following way.

Suppose the construction has been carried out in i — 1 steps and now we want to
process the ith column of 4 (i.e., the ith column of C;_,). Call this column v;. The 1’s
of v; are classified into two types.

First, consider the 1’s where v; overlaps any of the first 7, _; columns of C;_ ;. Note
that because C;_, is right trapezoid-free (and thus rectangle-free), and because of the
interval structure that we have constructed, the gaps between successive overlaps, on the
average, have to be “long” (no three overlaps can correspond to the same interval). The
column containing a 1 precisely on those rows where an overlap occurs will be the ith
column of B. This new column satisfies the desired sparsity condition of the gaps between
consecutive 1’s, on the average, being long. This is the heart of the procedure. What we
must show now is how to deal with the remaining 1’s in v; without having to remove an
excessive number of these (ideally, a bounded number per column).

We partition these remaining 1’s into consecutive blocks that correspond to the
intervals of C;_; and the gaps between these intervals. We will use most of the 1’s in
these blocks to define a new column C;. Now, the 1’s in any block except the top one
may be jointly shifted to the left (this is possible since there is no overlap anymore). For
example, if a block B; corresponds to an interval [, of C;_,, we can shift all 1’s in B;
from column m;_; + 1 of C;_ to the column containing I, (here, each shifted 1 remains
in its original row). It is seen that this will not create a right trapezoid because of the
existence of the top block. Similarly, the blocks corresponding to gaps can also be shifted
to an appropriate column. Thus, we are left with a single block B,. If B, contains few
1’s (say, a bounded number), then just remove them. If B, corresponds to a gap, then
make a new interval out of B;.

The difficult case occurs when B, corresponds to some interval I, and B, has many
1’s. But let us assume for now that the difficult case does not arise. Then we define C; to
be the matrix obtained from C;_, by the above shifting and removal operations. Note
that the number of 1’s that were removed, if any, is bounded.

Proceeding inductively then, we will eventually process all the columns of 4. At
this point, the matrix B will have the desired sparsity condition, and the total number
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of 1’s that were permanently removed in the process is at most linear. Furthermore, the
matrix C, does not have more than one 1 in any row (because of the disjoint interval
structure ). Hence if we also permanently remove all those 1’s, altogether a linear number
of 1’s is removed in the worst case. In other words, the difference between the number
of 1’s in 4 and that in B is at most O(n), as desired.

However, we have to consider the possibility of the difficult case arising when pro-
cessing the top block B; of some column, say in the ith step, to keep notation as above.
Thus, B, corresponds to some interval I, and B; has many 1’s. In this case, no matter
what we do, it appears that we may have to remove many 1’s. This potentially dangerous
situation is remedied by making a stronger inductive assumption about the interval
structure. Given one of the first m1;_; columns of C;_,, consider, within the interval
corresponding to that column, the largest subinterval, starting from the top, such that
the gap between any two consecutive 1’s is “small” (made precise later). The rows in
this subinterval (there is always at least one such row) are the “special rows” of the
column. The inductive assumption is that the total number of special rows (added over
the first m;_; columns) does not decrease, i.e., for any a > b the total number of special
rows of C, is at least that of C,,.

How can we use this assumption to handle B; and I as above? The general idea is
to use 1’s from B, to increase the number of special rows in I. This involves moving 1°s
within I, and from B, to I, to enlarge the interval of special rows in / (and thus, a move
may involve a change of the row occupied by the 1). Naturally, such a set of moves may
create right trapezoids, with one of the moved 1°’s acting as the left-bottom element, and
one of the 1’s in the rightmost n — i columns of C;_ acting as the top right element.
But a counting argument shows that the total number of such right trapezoids is at most
proportional to the increase in the number of special rows. We eliminate such trapezoids
by removing their right top elements, and we will be done processing the new column
of A. This removal operation, on the average, will not be expensive: since the total
number of special rows is nondecreasing, altogether we will not remove more than O(#n)
1’s in this manner, in the course of processing all columns of 4.

This concludes the informal description. To summarize the above, there are two
main facts concerning the construction. (1) First, the interval structure in the leftmost
columns of the matrices C; is used to achieve the sparsity condition of the matrix B. (2)
To achieve the interval structure, some of the 1’s are shifted left (with a few also changing
rows). That the shifting usually works is a consequence of the matrix being right trapezoid-
free (this is the main instance in the proof that this fact is actually used). But we also
have to remove some 1’s. To avoid too many removals, we introduce the special row
structure of the intervals (this is the only reason why the special rows are used), which
in turn must be inductively maintained.

2.2. Formal statement of the inductive assumption and its proof. Let k > 4 be a
fixed (independent of n) integer. The proof of Theorem 2 will be based on the follow-
ing lemma.

LEMMA 1. There exists Be€ T',, and for 1 =i = n, there exist integers m; and 0-1
matrices C;, so that C;is n X (m; + n — i), and

(1.1) C;is right trapezoid-free.

(1.2) The last n — i columns of C; are a copy of the last n — i columns of A, possibly
with some 1’s removed (changed into 0’s).

(1.3) The first column of B is made up of 0’s, and for i > 1 B[i] contains 1’s pre-
cisely on those rows where C;_ [ m; - | + 1] overlaps any of the first (lefimost) m; _ | columns
Of C,‘ —1.
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(1.4) Let 1 £ j = my. The row-set of the interval I;; spanned by the highest and
lowest 1 in Ci[ j] has cardinality at least | (k — 2)/2 |sp (A). The row-sets of the intervals
I;, 1 = j = m;, are pairwise disjoint.

(1.5) Let 1 =j = my. For some h;; Z 1 (possibly (h;; = 1), the first (topmost) h;;
1’s of I; have the property that the number of rows spanned by each 1 and the next is at
most [sp (A)/21, and h;; is defined largest with this property. The rows spanned by these
hi; 1’s are called the special rows of I;;.

(1.6) Ifd; denotes the total number of special rows of C;, then d;, Z d;, for i < n.

(1.7) #(A) = #(C) + #(B[1, 2, - -+, i]) + O(k(i + kd;)).

Figure 2 shows a typical matrix C;. The function of these matrices is auxiliary. We
postpone the proof of Lemma 1 until later. Let us next see how to use it to prove Theorem
2. We have the following results.

LEMMA 2. sp(B) 2 |(k—2)/2|sp (A4).

Proof. Consider three consecutive 1’s of some column of B, say column B[i]. By
(1.3) these 1’s indicate overlaps of column C;_[m;_| + 1] with previous columns of
C;—.Since by (1.1) C;_ is right trapezoid-free (and thus rectangle-free ), these overlaps
must correspond to different intervals in C;_;. Consequently, the number of rows from
the first to the third 1 is at least [ (k — 2)/2|sp (4), by (1.4), as desired. O

LEMMA 3. #(A) = #(C,) + #(B) + O(n).

Proof. The result follows from (1.7), since d, = n. O

Now by Lemmas 2 and 3, the proof of Theorem 2 is complete with A =
L(k —2)/2)and ¢ = O(k), since no row of C, contains more than one 1, by the row-
disjoint property of the intervals, as in (1.4).

In the remainder of this section, we will prove Lemma 1.

2.3. Proof of Lemma 1. We will prove (1.1)-(1.7) by induction on i. For i = 1,
we set B[1] to consist of 0’s. If 4[1] has at least k 1’s, we let m; = 1, C; = 4, and we set
I, to be the set of rows spanned by the 1°s in A[1], and, if necessary, set /;; = 1.
If A[1] contains fewer than k 1’s, we remove them, and set m; =0 and C, =
A[2, - -+, n]. Clearly, this satisfies (1.1)-(1.7).

To prove the general inductive step, we will use an algorithmic construction given
next. The algorithm will be described in full, with proofs afterwards. We will assume
i > 1, and assume that the constructions and proofs in (1.1)-(1.7) have been carried
outfor1,2, ---,i—1.

rows

m; columns n-i columns to be processed

A typical Ci

FIG. 2
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Algorithm

Step (I). Let B[i] be the column that contains 1’s precisely where C;_,[m;_; + 1]
overlaps any of C;_ ([ j], | =j = m;_,. This choice of B[] clearly satisfies the inductive
hypothesis (3).

Step (II). We proceed as follows to define C;. Replace C;_[m;—; + 1] by
C;_i[m;_; + 1] — BJ[i] to obtain a matrix C; (that is C;[m,;_; + 1] contains a 1
on those rows where C;_ [m;_, + 1] contains a 1 and does not overlap any of C;_,[ /],
1= _] = m;_ )

Step (III). Consider the partition of C;[m;_, + 1] into intervals induced by the
row-sets of the intervals I;;_;, 1 = j = m;_,, as well as the “gaps” between them. To
simplify notation, we call such intervals blocks (note that a block does not necessarily
begin or end with a 1). Suppose that X,, - - - , X;, s = 0, are the blocks that contain 1’s,
numbered as they appear from bottom to top. Then, for 0 = r < s, do the following: if
X, corresponds to some [;;_, then shift all 1’s in X, from column m;_ + 1 to column
Jj (keeping them on the same row). If X, corresponds to the gap between some I,;_; and
I,;_y; with I;_; “higher” than I,;_;, then we shift all the 1’s in X, from column
m;_, + 1 to column x (changing I,;—{).

Denote by v; the column obtained from Ci[m;_, + 1] after the shifts (i.e., after
removing the 1°s in the blocks Xp, - -+, X;_), and let C; denote the resulting matrix.

Step (IV). If v; contains fewer than 2k + 2 1’s, then remove column v; from C7.
The resulting matrix is C;, where m; = m; _ . Algorithm terminates.

Otherwise, proceed with:

Step (V). If X, corresponds to a gap, we set m; = m;_; + 1 and create an interval
in column m; spanned by the 1’s in X;.

Algorithm terminates.

If X, does not correspond to a gap, proceed with:

Step (VI). Let X; correspond to some I;;_; = I'*. Refer to Fig. 3.

We partition I* into two consecutive intervals, I7, I5, where the row-set of I
contains exactly k + 2 1’s of X;, and the row-set of I| contains at least k 1’s of X, (the
numbering of the intervals is from bottom to top). Let Y|, Y, be the corresponding
blocks of X;. Now we split the column containing I* into 2 columns, each containing
one interval I in the obvious way. (The idea here will be to shift the 1’s in Y; to I},
while removing few 1’s. This will require special care in the case of Y, and I3 .) There
are two cases.

(1) The set of special rows of I* is contained within 15 .

(2) The set of special rows of I* extends beyond 15 .

In either case, we first shift all the 1’s from Y; to I}.

Case 1. Let h* be the number of 1’s that span the special rows of I* (see Fig. 3(a)).
Now, if I* has at least | (kK — 2)/2|sp (A) special rows, we are done: we simply remove
all 1°s from Y,, and the resulting matrix will be called C;(with m; = m; _ | + 1). Otherwise,
we consider the (A* + 1)st 1 in I5, and shift it up so that the gap to the previous 1 is
exactly 'sp (4)/21 (thus, we add I'sp (A4)/21 special rows). If no such 1 exists, then use
the first 1 from Y,.

This action, of course, may create some right trapezoids. The 1’s in the top right
positions of the right trapezoids are removed (note that this may involve removing 1’s
from the rightmost # — i columns of C7).

Next, we consider the (A* + 2)nd 1 in I5 and we shift it up to reduce the gap to
the (h*.+ 1)st to [sp (4)/2]1, if necessary. We continue inductively, until I3 contains
at least | (k — 2)/2 sp (A) special rows, or else we run out of 1°s of I5 . In the latter case,
we start using the 1’s from Y5, and clearly, these will suffice, since there are k of them.
Once we are done, we remove any remaining 1’s from Y5.
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The resulting matrix is C;, and the transformed interval I3 will be a new interval
in C;. This concludes the description of Case 1.

Case 2. Let j be the first (lowest) row where I5 contains a 1. We remove all 1’s
from Y>, and place a new 1 in the same column as I}, on row j — 1 (unless a 1 is already
present there). The effect of such changes will be that a new interval of special rows starts
at the top of I}.

The resulting matrix is C;. This concludes Case 2.

We set m; = m;_, + 1. In either Case 1 or 2, the interval Z, (Z,), spanned by the
top and bottom 1°s in the column corresponding to I (I3 ), will be an interval in matrix
C;, and we retain all other ones except, of course, 7*.

End of Algorithm

Now we will prove (1.1)-(1.7) of Lemma 1. By construction, (1.2), (1.3), and
(1.5) hold.

CLAIM 1. Statement (1.4) holds.

Proof. Inductively, (1.4) held before executing the algorithm, and it is clear that if
additional 1’s are placed in a given interval, then (1.4) still holds for that interval. We
have to verify that (1.4) holds after Step (VI). This is clear for Z,, since we moved into
its column at least k 1’s. Furthermore, the bottom 1 of Z, must be no more than sp (4)/
2 rows higher than the bottom of 75 , by definition of Case 2. But in the column containing
X, those rows cannot contain more than two 1’s of X;. In other words, the row-set of Z,
must contain at least k 1°s of X, and the result follows. O

CLAIM 2. Statement (1.6) holds.

Proof. Again, we only need to check that the condition is maintained after Step
(VI). This is clear in Case 1. In Case 2, the 1 added at the top of I} ensures that Z,,
together with Z,, contains at least as many special rows as I*. O

CLAIM 3. Statement (1.1) holds.
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Proof. We only have to check that the shifts in Step (III), or the execution of Case
2 in Step (VI), do not create any right trapezoids. Consider first Step (IIT).

If one of the shifted 1’s is the bottom left corner of a right trapezoid, then C}, before
the shifts, had a right trapezoid, using a 1 in X as the top left corner—a contradiction.
Similarly, if a shifted 1 is a top left corner, then we must have shifted this 1 into some
interval [;;_ |, and thus C7 has a right trapezoid with both left corners either in /;;_, or
in column C[m;_ + 1]—again a contradiction. The analysis is similar for Case 2 of
Step (VI). O

CLAM 4. Statement (1.7) holds.

Proof. Suppose Case 1 of Step (VI) is not executed. Then (1.7) holds since it does
for i — 1 and we only removed at most O(k) 1’s in processing the new column. So
assume Case 1 of Step (VI) was executed.

Here, we may create right trapezoids every time a 1 is moved to increase the number
of special rows in 75 , which was currently less than | (k — 2)/2 | sp (4) (and by construc-
tion, the move increased the number of special rows by exactly |sp (4)/2]). It is not
difficult to see that the moved 1 must be the bottom left element of all such right trapezoids
(and hence the bottom right elements of the right trapezoids are all on the same row).
But since C7 is rectangle-free, the total number of these right trapezoids is at most
L(k—2)/2]sp (A4). Consequently, the number of 1’s removed to eliminate all the right
trapezoids, per added special row, is O(k). This concludes the proof. |

The proof of Lemma 1 is now complete.

Remarks. (1) With a little care, the proof above will in fact show that 4 has at
most O(k-n log, n) 1’s. Thus, it is best to choose k bounded as a function of 7.

(2) The upper bound O(n log n) on ¢, is in fact tight [M2]. In fact, the lower
bound example for ¢, that we give in the next section can be modified to yield a cn log n
lower bound on ¢}, as well.
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3. The lower bound. In this section we prove the n log n/log log n lower bound.
For an arbitrary integer k = 2, and n = k¥, we will construct a 0-1 matrix 4 with z rows
and cn columns (¢ a constant), such that 4 is trapezoid-free and A contains k 1’s in
every column.

We will use the following notation. If B is a matrix, then B{m} will denote the
matrix obtained by removing the top m rows of B and adding m new rows, consisting
of 0’s only, at the bottom. If B, B,, - -+, B,, are matrices with equal number of rows,
then [B,, B,, - - -, B,,] is the matrix obtained by putting side by side, from left to right,
Bl,Bz, M ,Bm.

Choose k = 3. We will construct, inductively, matrices Ny, - - -, Ny_, with # rows
each, and we will set A = [N,, N3, -+, Ni-]. Figure 4 shows the matrix for k = 3.
The matrices N; are defined inductively, as follows.

For 0 <j < k — 1, let M, be the n X (n/k’*') matrix such that the column M;[r],
1 =r = n/k’*', contains 1°s at rows 1 + (r — 1)k’*! + sk/, 0 < s < k — 1. Then

Ny = [My— ({KF72}, My ({26572}, - Mi— {(k — 1)K*72}].
Assuming we have defined Ny, -+, N;—y, let P; = [My_j, Mi_is1, ==+, My,
N;—1]. We then set N; = [P, {k*~~"}, P{2k*"7 1}, -+, P{(k— DK 711,

Some remarks will be useful before proving the desired facts about 4. These remarks
are not difficult to prove.

Remark 1. Let 0 = j = k — 1. In M;, each column contains exactly k 1’s, spaced
k’ rows between each other. For r > 1, the lowest 1 in M;[r] is exactly k’ rows higher
than the highest 1 in M;[r — 1]. Thus, M, contains 1’s in precisely all rows of the form

1+ by jk’/, where 0=b;_;<k*7—1.

The top k/ — 1 rows of M, contain only 0’s.

N2=A

FIG. 4. Example with k = 3.
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Remark 2. Inductively, we may easily show that N;, i 2 1, contains 1’s in precisely
all rows of the form, for 1 = r=jand 1 =s=r,

i
1+ X gk* 7'+ bk*~s, wherel <¢<k—1, 0=h<k’—1.

J=r

From (1) we deduce that each column of N; contains exactly k 1’s.

Note that for i 2 1, every column N;[a] is essentially a copy of a column of some
M;, “shifted up” a certain positive number of rows. We call this amount the shift of
Nila]. The highest power of k in the shift of any copy of a column of M is at most k/ ',
By induction, the following is not hard to prove.

Remark 3. Every shift of a column of Ny _;_, is of the form

t
> ck’, wherel=¢=k—1, i<j<t
j=i

and, in such a case, it corresponds to a column of some M), with ¢ < A.
Now, M; has k*~/~! columns. By induction, we may prove that N;, i > 1, has

. o (k=1)'—1
k{k’—(k—l)’}—%

columns. A calculation shows then that the number of columns in A4 is
kK= (k—1)*+o(kk)~(1—e ")n.
Therefore, the number of 1’s in A4 is

~(1—e1) nlogn ,
log log n
as desired.

THEOREM 3. A is trapezoid-free.

Proof. Assume that there is a trapezoid. Let us first investigate under which con-
ditions the “ L’ of the trapezoid can occur. Let A[r] denote the column containing the
right corner of the trapezoid, and 4[/] the column containing the two left corners of the
trapezoid. Let k¥ =" denote the spacing between consecutive 1’sin A[r], and k — k —
i(]) the spacing between consecutive 1’s in A[/]. Thus, for x = r, [, A[x] is a shifted-up
copy of a column of M _ ;).

Let x be one of /, r, and y the other. Note that if any term in the shift of A[x] is a
multiple of a power of k smaller than k*~©), then this term must also be a term in the
shift of A[y]. Since A[r] is to the right of A[/], this fact is easily seen to imply that k —
i(]) < k— i(r). Furthermore, there is a smallest number ¢ so that 4[/] and 4[r] are both
in a shifted-up copy Z of P,, and in that case A[r] is in the copy of N,_, but A[/] is not.

Clearly k — ¢t = k — i(]). Note that the shift of A[r] has a term in k¥~ ¢~ D1 =
k*~* (which the shift of 4[/] does not have), and therefore we must have that 7 = i(/),
and consequently A[/] is in the copy of M _ ;) contained in Z. It is easily seen that the
fourth 1 in the trapezoid clearly cannot occur in any of the columns of the copies of
My iy, * -+, Mi— . It also cannot occur in the copy of Ny, - ; because of the convention
in defining N, -, (the first shift of P, is by k", the second by 2k, and so on).

Hence there is no trapezoid, a contradiction as desired. O
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We conjecture that the lower bound (# log n/log log n) for ¢, is in fact tight. A
special case that might prove more tractable for improving the upper bound is that in
which the matrix is regular; that is, it contains the same number of 1’s in every row or

column.
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Abstract. The Satellite-Switched Time-Division Multiple Access (SS/TDMA) is a technique effectively
used in wideband communication satellites. A very important problem for SS/TDMA systems is the proper
communications scheduling over the satellite equipment. This problem is equivalent to decomposing a given
traffic matrix 7 into a positive linear combination of (0, 1 )-matrices satisfying additional technology-dependant
constraints. The sum of the multiplying constants represents the time taken by the satellite to handle the
communications and must be minimum in order to achieve an efficient use of the equipment. A polynomial
time optimal algorithm for the SS/TDMA scheduling problem for systems with variable bandwidth beams and
restricted multiplexing and demultiplexing is presented. As a corollary of the presented results, another gener-
alization of the classical Birkhoff-von Neumann Theorem is established.

Key words. network flow, combinatorial optimization, polynomial time algorithm, Birkhoff-von Neumann
Theorem
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1. Introduction. The rapidly growing demand of satellite communications services
is exhausting the Radio Frequencies spectrum. An efficient use of such a spectrum can
be achieved by the Satellite-Switched Time-Division Multiple Access (SS/TDMA ) tech-
nique, which is conveniently used in wideband satellite communication systems [11]. In
an SS/TDMA system, the satellite is equipped with a number of spot-beam antennas
covering several geographical zones by disjoint communication channels, and a solid-
state RF switch allowing a simultaneous interconnectivity between many uplink and
downlink beams, and so between earth stations. Each earth station issues its connection
needs at specific times. All the connection needs are gathered in a matrix T, the traffic
matrix. Entry ¢; of T represents the time (in multiples of a minimal transmission time)
that uplink i needs to be connected with downlink j. The transmission of the traffic
described by T is called a frame, and is divided into subframes, called time slots. Each
time slot represents the traffic transmitted during a specific switch configuration (also
called a switching mode). A switching mode can be depicted as a (0, 1)-matrix, where
the 1’s denote the connected uplink-downlink pairs. These switching mode matrices
must have some specific properties imposed by the technological features of the system
under consideration.

A given traffic matrix can be decomposed in a variety of sequences (i.e., positive
linear combinations) of switching modes, each of which represents a distinct frame.
Different frames take different times to be completed. A very important problem in this
setting is to find a frame of minimum transmission time for a given traffic matrix 7.
Such a frame increases the system efficiency, and therefore the operational profits. The
above problem is often referred to as time slot assignment (TSA) and has been studied
for several system configurations (e.g., see [2]-[4], [7],[8]).In [3], [7], systems with
variable bandwidth beams and restricted multiplexing and demultiplexing have been
considered. In these systems, each uplink and downlink beam can simultaneously transmit

* Received by the editors October 31, 1988; accepted for publication (in revised form) May 8, 1990.
1 Dipartimento di Informatica, Universita di Pisa, Pisa, Italy.
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a mix of several signals. Hardware limitations impose an upper bound on the number
of signals that can be mixed in each beam. In terms of TSA, this means that there is an
upper bound on the number of 1’s in each row and column of every switching mode.
Lewandowski and Liu [ 7] proposed polynomial time algorithms based on a generalization
of the celebrated Birkhoff-von Neumann theorem for this TSA problem. Such algorithms
are optimal when the switching modes are restricted to have exactly as many 1’s as the
rows and columns upper bounds and have been proposed as suboptimal heuristics for
the more general case of switching modes with at most as many 1’s as the upper bounds.
In this paper we present an optimal TSA algorithm for the last, general problem, with a
further limit on the maximum number of 1’s in each switching mode. Our algorithm is
based on network flow in bipartite graphs and has the same time complexity of those
given in [7]. The algorithm can be easily used to establish yet another generalization of
the Birkhoff-von Neumann theorem.

In § 2 we formally define the problem under investigation, and give the definitions
needed in the paper. In § 3 the polynomial time optimal algorithm is presented, as well
as its relations to a generalization of the Birkhoff-von Neumann theorem.

2. Definitions and problem formulation. Let us assume that the system under in-
vestigation has m uplink and n downlink beams. Then, the traffic matrix 7'is an m X n
matrix with nonnegative integer entries. Entry ¢; of T represents the amount to traffic to
be transmitted from uplink i to downlink j, and is expressed in multiples of time slot
length. Each uplink and downlink beam is a multiplex of several different signals. The
hardware limitations of the system impose an upper bound on the number of different
signals that can be multiplexed in each beam. Specifically, there are given two integer
vectors, p = (p1, *** , pm)and X = (A, - -+, \,), such that 2L, p; = 27— ;. Uplink
beam i can be demultiplexed in at most p; different signals, and downlink j is the multiplex
of up to A, signals. Besides, there is an integer upper bound v on the total number of
messages that can be simultaneously handled by the satellite. v is called the satellite
capacity. Obviously, 0 = v = 27| p;. Note that the satellites considered in [7] had an
unlimited capacity, i.e., v Z 272 p;.

The sum of all entries in the ith row of T is called ith row sum and is denoted by
R;. The jth column sum C; is similarly defined as the sum of all entries in column j. The
symbol S is used to represent the sum of all entries in 7.

Let V(p, A, v) denote the class of m X n (0, 1)-matrices having at most p; 1’s in
the ith row, 1 =i = m, at most A; 1’s in the jth column, 1 = j = n, and at most v 1’s
in the whole matrix. The TSA problem considered in this paper can be formulated as
follows.

Given an m X n integer nonnegative matrix 7', find integer positive constants v, - - - ,
v, and matrices Z,, -+, Z, in V(p, A, v) (the switching modes) such that

(1) T= 2 vZ

and 2%, v; (the cost or length of the TSA ) is minimum. Constant »; denotes the number
of (not necessarily consecutive) time slots during which switching mode Z; is used.

Note that the problem formulation given in [ 7] does not require integer values for
the entries ¢; and the constants »;. Our integrality constraint is more realistic. Besides, it
makes the problem computationally more difficult. In fact, our algorithm also solves the
problem with no integrality constraint since it is based on network flow.
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3. The optimal algorithm. The length of a TSA for a given traffic matrix 7" cannot
be smaller than L, where

(2) L=max {t;,Ri/p:,Ci/N;, S/}

This lower bound follows directly from the problem formulation. In fact, the traffic
represented by an entry 7; must be transmitted in a strictly sequential way. Furthermore,
at most p; (\;) entries in row i (column ;) can be allocated in a given time slot. Finally,
L = S/~ since the system has a limited capacity.

The following inequalities hold true as a consequence of the lower bound given
in (2).

m n
(3) 2 2=yl
i=1j=1
m
(4) > t;=NL for each j,1=j=n,
i=1
n
(5) > ti=p;L for eachi,1=i=m,
ji=1
(6) =L foreach iandj,1=i=m,1 =j=n.

A row (column) such that R; = p;,L (C; = N;L) is called critical. Similarly, the
matrix 7 is critical if S = yL, and the entry ¢; is also critical when ¢; = L. Let us define
the following parameters:

6;=max {O;R;,—p(L—1)}, foreachi,1=i=m;

pi=max {0;C;—N\(L—1)}, foreach j,1=j=n;

¢=max {0;S—y(L—1)}

Bj=1ift;=L, and p;=0ift;<L,foreachiand j,1=i=m,1Zj=n.

Let Z be a switching mode for 7. If there are less than §; 1°s in row i of Z, then any
TSA for T containing Z will be longer than L, since the matrix 7' = T — Z will have a
lower bound of L, and so the length of this TSA will be L + 1 at least. Thus, a necessary
condition for a length L TSA for T is to have at least §; 1’s in row i of any switching
mode. A similar meaning pertains to the other parameters, namely u; for column j, ¢
for the whole matrix, and §; for the entry in row 7 and column j.

Given a traffic matrix 7', we want to find a switching mode Z with at least §; 1’s in
row i, u; 1’s in column j, and a total number of 1’s not smaller than ¢. Besides, entry
z; in Z must be equal to 1 if #; = L. Such a switching mode is called provident (as
opposed to greedy) since it does not contain the maximum number of 1’s, but the min-
imum number of 1’s necessary for a length L TSA; it can be obtained by means of
network flow in a bipartite network with lower bounds and capacities.

Let (a, b) denote the arc oriented from node a to node . We derive a network
with m + n + 2 nodes labeled s, ry, -+ , ¥m, C1, *** , Cn, ¢, from the matrix 7. The node
s is called a source node, and is linked by one arc with each node r, - - - , r,,,. Each such
arc is oriented from s to r;, (1 = i = m), and has lower bound §; and capacity p;.
Furthermore, there are arcs from nodes labeled r; to nodes labeled c;. In particular, there
is the arc (r;, ¢;) if and only if entry ¢; is greater than zero. Such arc has capacity 1 and
lower bound g;;. Each node ¢; is connected by an arc (¢;, t) with the sink node ¢. The
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@

FIG. 1. Network associated to a traffic matrix. Some (lower bound, capacity) pairs are not shown.

capacity of this arc is A; and the lower bound is ;. Finally, there is the arc (¢, s5) with
capacity v and lower bound ¢. It follows from (3)-(6) and from the definition of the
above parameters that all the capacities and lower bounds are nonnegative. Note that in
deriving the network from a traffic matrix, we put the constraints of our TSA problem
as arc capacities, and the previously defined parameters as lower bounds. Figure 1 shows
a network derived from a traffic matrix.

A circulation in a network is an assignment of numbers to the arcs such that (i) the
number assigned to an arc (the arc flow) is not smaller than the lower bound and not
greater than the capacity; (ii) for each node, the sum of the flows of the incoming arcs
is equal to the flow sum of the outgoing arcs (the conservation law).

A circulation in a network derived from the traffic matrix 7 can be used to get a
provident switching mode. Let Z be the m X n matrix with entry z; equal to the flow in
the arc (r;, ¢;). We claim that Z is a provident switching mode. In fact, Zis a (0, 1)-
matrix since the network flow problem (and so the circulation problem) is totally uni-
modular, and the networks derived from traffic matrices have integer capacities and
lower bounds. Furthermore, Z has at most p; 1’s in row i, and A; 1’s in column j since
the capacity of the arc (s, 7;) is p;, and that of the arc (¢, ) is A;. The lower bounds on
these arcs guarantee that at least 6, (u;) 1’s are present in row i (column j). Besides, Z
has at least ¢ and at most «y 1’s, owing to the lower bound and the capacity of the
arc (¢, s). Finally, if t; = L, then z; = 1 since §8;is 1.

The existence of circulations in networks depends on the arcs capacities and lower
bounds. A cutset (o, 7) in a network is a partition of the nodes in two subsets ¢ and 7
such that s € o and ¢ € 7. The following classical theorem states a necessary and sufficient
condition for the existence of a circulation in networks. Let £; and X; denote the lower
bound and the capacity of the arc (i, j), respectively.

HOFFMAN’S THEOREM. In a network with lower bounds and capacities, a circulation
exists if and only if

222 2%y

ietjeo i€eojer

for all cutsets (o, 7).
The proof of this theorem can be found, e.g., in [6, p. 139].
THEOREM 1. If a network is derived from a traffic matrix, then it has a circulation.
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Proof. Let (o, 7) be a cutset for a network derived from a traffic matrix 7. Then,

2 2&=2 2 Bite,

ierjeo LETCEDT
and

2 2X= 2 it 2Nt 22 ay,

ieogjer reT (414 rj€EocEeT

where «;; is 1 if ¢; > 0, and is 0 otherwise.
By Hoffman’s theorem we must have

(7) 22X 2o 2 E= et N D D= > 2 Bi—e=0.

ieojer ietjeo rier 71X ri€ocGeET €T CEDT

Since t;; = L, foreachiandj, 1 = i=m, 1 =j = n, then

>3 agz[l/L( s s z,ﬂ

ri€oger ri€oger

Hence,

o a,-jzl/L(w(L—l)w- S S4-3 T4t 3 S t)

ri€eogcer rierj=1 i=lg¢eo rETC€T

%1/L(7(L—1)+<p~L Se-LIN+I D z,)

rer Cjeo re€Tci€o

We have that

l/L( 22 tij)g 2 2 By

li€TCi€a ri€TC€oT
by definition. Then,
(8) 2 2zl /L(W(L-)+e)— 2 pi— 2 N+ 2 2 By
ri€ocer rier ceo rietcieo

Substituting (8) in (7), we get 1 /L(y(L— 1)+ ¢)—¢=0,andso y(L — 1) + ¢ —
Lo = 0.

Therefore, y(L — 1) — ¢(L — 1) = 0, which is true since 0 = ¢ = v, by definition.
The theorem then follows from the generality of the cutset (o, 7). O

The networks derived from traffic matrices have circulations, and therefore it is
always possible to obtain provident switching modes from them. A circulation in a network
derived from a traffic matrix, and so a provident switching mode, can efficiently be found
by means of max flow algorithms (e.g., see [ 5, p. 65]). For instance, the MPM algorithm
[10] can be used.

The optimal algorithm produces a TSA by repeatedly generating provident switching
modes via circulations in the networks derived from traffic matrices. Let us assume that
the TSA has been found and that it is formed by 4 switching modes. In order to complete
the TSA, we must also find a proper set of integer positive constants vy, v,, * - * , v, the
switching modes multipliers. Let us consider the switching mode Z obtained from a
circulation in the network derived from 7. We want to find the largest multiplier constant
v such that the lower bound of the traffic matrix 7; = T — vZ is L — v. This constant
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must satisfy the following inequalities:

9) v

A

L(Lp,-—Ri)/(p,»— D z,-,»)}, for each i such that > z;<p;;
j=1

Jj=1

(10) v

lIA

(L)\,»—C,-)/()\,-— > ZU)J, for each j such that > z;<)\;;

i=1 i=1

(11) »= (L7~S)/('y—§ En)z,'j)}, providedthatg %zij«y;

i=1j=1 i=1j=1
(12) v=L-t;ifzy;=0,andv=¢;ifz;=1,foreachiand j,1=is=m,1Sj=n.
We are now in a position to state the algorithm.

ALGORITHM OPTIMAL.
Step 1:
Set up the network derived from T'.
Step 2:
Find a circulation in the network, e.g., by using MPM algorithm.
Step 3:
Get a provident switching mode Z, from the circulation found in Step 2 by using
the flow of the arcs (r;, ¢;).
Step 4:
Compute the largest solution of the inequalities system (9)-(12), and let it be the
multiplier »,.
Step 5:
Subtract v.Z, from T'. If T has some nonzero entry, then go to Step 1, else Halt.

THEOREM 2. Algorithm Optimal generates a minimum length TSA in O(0°) time,
where 0 is the larger of m and n.

Proof. Let T be the original traffic matrix and L its lower bound. Moreover, let Z,,
Z,, - -+, Z; be the switching modes generated in Steps 2 and 3, and let »;, v5, - - , ¥,
be the multiplier constants computed in Step 4. Finally, let 7, = T — v1Z, — v,Z, —

s —wnZi = T — nZy, 1 =k = h be the matrix containing the traffic not yet as-

signed after the kth iteration of the algorithm, and let L, be its lower bound. We now
show that L = 2% _, v by induction. Let tf,k ) (zf-;‘)) be the entry in row i and column j
of Tk (Zk)

Since T is a traffic matrix, then (by the above discussion on circulations) Z; is a
provident switching mode. Consider now the inequalities (9):

v, él(Lpi—Ri)/(p,-— > zf-j”)J, for each i such that > zf,-”<p,».

Jj=1 Jj=1

Thus, if 7, 23/’ < p; we have:
n
”1§((Lpi—Ri)/(Pi_ 2 Zﬁj”)),
ji=1

n
(1)
vipi— v 2 zij =Lp;—R;.
j=1

or, equivalently,
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So,

R E 2y = Lp;—vip;.
j=1

. 1 1
Since R; — vy 27—, zf,) 20y tﬁj ). we have:

(1) (1)
Elu = pi(L—n1), leZ <p;.
Jj=1 Jj=1

Assume now that 27_, z(,,” p;. Then,

n
1 )
2 ti— v Z Z( )= Z ti =Lpi—vip;=p(L—v).
j=1 j=1 j=1

A similar argument (applied to (10) and (11)) can be used to show that 27, tﬁ,” =

N(L — vy), for each j, 1 <] < n,and that 272, 27, t,, ) < 4(L — »,). Furthermore,
if z;° = 0, then tf,l) =t; =L — v, and tf, =t; — v1 = L — v, whenever zﬁjl) =1,
by (12).

Thus, T is a traffic matrix with lower bound L — »,. Let us assume now that 7T} _
is a traffic matrix with lower bound Ly_, =L — v, — v, — *-+ — vt_;. Then Z, is a
provident switching mode, and T} is a traffic matrix with lower bound L, = L — »; —
Vo) — **° T Vk—1 — Vg. In fact,

(e 287 f o 2 )

provided that 2 7_, z,, ) < p;. Hence,

n k
S P03 ”~ukzzf-,’”ép.-(Lk_l—vk)-——p,-(L—zu,,).
1

j=1 j=1 j=1

Similarly,

n k m n k
D tf,k)S)\(L— D y,,); S S iP=y (L— D u,,)
p=1

j=1 p=1 i=1j=1

and
(k)
ty =L— Z Vp.

Therefore, Algorithm Optimal generates a minimum length TSA.

For the time complexity of the algorithm, note that if », is equal to an entry
=1, Ty has more zero entries than Tj_,. Otherwise, either T} becomes critical, or it
has more critical items (rows, columns, entries). Since there are at most m#n nonzero
entries in the original traffic matrix, and we can have at most mn + m + n critical items,
at most 2mn + m + n + 1 switching modes are sufficient for the optimal TSA. Steps 1-
5 are performed each time a switching mode is generated, namely 2mn + m + n + |
times at most. Step 2 is the most time-consuming one, and needs O(#°) time when
MPM algorithm is used. Therefore, the total time complexity of Algorithm Optimal is
0(0°). O
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The network must be set up only the first time that Step 1 is performed, since
subtracting a switching mode from 7 can eventually lead to the deletion of some
(r;, ¢;) arc and the change of the lower bound of some arc.

The problem considered in [7] is a special case of that investigated in this paper.
In particular, if we drop the integrality constraint and the one that the switching modes
must have v 1’s at most, we get Lewandowski and Liu’s problem. It is easy to see that
our algorithm optimally also solves in O(0°) time this last problem. It is also easy to see
that we have algorithmically established the following generalization of the Birkhoff-von
Neumann Theorem [1], [9], as a corollary.

THEOREM 3. Let T be an m X n matrix with nonnegative entries t;. Then T =
>t viZ (where Z; is a (0, 1) matrix in V(p, \, ¥)), and L = 2} _ | v, if and only if

m
> =NL foreachj, 1Sj<n
i=1
n

2 ti=pL  foreach i,1=i=m
j=1

;=L foreachiand j,1=i=m,1=j=n.

4. Conclusions. In this paper we investigated the time slot assignment problem for
SS/TDMA systems with variable bandwidth beams and restricted multiplexing/demul-
tiplexing. We presented a polynomial time algorithm for the above problem, and showed
that it generates minimum cost TSA’s. As a corollary, we proved another generalization
of the celebrated Birkhoff-von Neumann Theorem.
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A ZERO-ONE LAW FOR BOOLEAN PRIVACY*

BENNY CHORYtf AND EYAL KUSHILEVITZ}

Abstract. A Boolean function f : 4; X 4; X -+ X 4, = {0, 1} is t-private if there exists a protocol for
computing f so that no coalition of size < ¢ can infer any additional information from the execution, other
than the value of the function. It is shown that f is [#/21-private if and only if it can be represented as

S(x,x2, %) =[1(0)©£206) @ - - - @ fu(Xn),

where the f; are arbitrary Boolean functions. It follows that if f is [n/21-private, then it is also n-private.
Combining this with a result of Ben-Or, Goldwasser, and Wigderson, and of Chaum, Crepeau, and Damgard,
[Proc. 20th Symposium on Theory of Computing, 1988, pp. 1-10 and pp. 11-19] an interesting “zero-one”
law for private distributed computation of Boolean functions is derived: every Boolean function defined over
a finite domain is either n-private, or it is | (» — 1)/2 J-private but not [ #/21-private.

A weaker notion of privacy is also investigated, where (a) coalitions are allowed to infer a limited amount
of additional information, and (b) there is a probability of error in the final output of the protocol. It is shown
that the same characterization of [#/21-private Boolean functions holds, even under these weaker requirements.
In particular, this implies that for Boolean functions, the strong and the weak notions of privacy are equivalent.

Key words. private distributed computations, Boolean functions
AMS(MOS) subject classifications. 94A15, 94A60, 68R05

1. Introduction. A set of n parties, each holding an input value X;, wishes to dis-
tributively compute the value of a Boolean function f(x;, Xz, -+, X,) € {0, 1}. The
participants communicate via a complete network of secure channels (no eavesdropping).
The participants are honest—they send messages according to the prescribed protocol
for /. However, honesty is no deterrent against curiosity. A subset of the participants (a
coalition ) might get together after the execution of the protocol and compare notes in
an attempt to infer additional information on the inputs of noncoalition parties. Additional
information is any information that does not follow from the value of the function and
the inputs of the coalition parties. As an example of additional information consider a
case where (0,0, ---,0,0,0) =£(0,0, ---, 0,0, 1) and, based on the execution of
the protocol, the first n/2 participants can infer that the nth input is more likely to be 1
than 0. In general, any information-theoretic advantage can be used by the coalition
even if this requires, for example, exponential computational resources.'

A function f is called t-private if there is a protocol for computing f so that no
coalition of size = ¢ can get any additional information. The fundamental result in this
area is due to Ben-Or, Goldwasser, and Wigderson [BGW] who have shown that every
n-variable function defined over a finite domain is| (n — 1)/2 J-private. (A similar result
was independently obtained by Chaum, Crepeau, and Damgard [ CCD].) Ben-Or, Gold-
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An early version of this paper appeared in Proceedings of 2 1st Symposium on Theory of Computing, Association
for Computing Machinery, 1989, pp. 62-72.

+ Department of Computer Science, Technion, Haifa 32000, Israel. This research was supported by United
States-Israel Binational Science Foundation grant 88-00282.

{ Part of this research was done while the author visited the International Computer Science Institute,
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! The information-theoretic approach alleviates the need for restricting the computational power of the
participants as well as the use of unproven intractability assumptions. The case of computationally bounded
participants is entirely different and is handled in [Ya], [GMW .
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wasser, and Widgerson also showed that certain functions (e.g., the OR function) are
not [n/21-private, while certain others (e.g., the XOR function) are n-private. Other
than these two examples, very little was known about ¢-private functions for ¢t = [n/21.

In this paper we address the general problem of f-privacy in the range [n/21=t =
n. We raise two major questions:

1. What is the structure of the “privacy hierarchy’? Is it the case that for every ¢ in
the range [n/21 = t < n there are functions that are ¢-private but not ¢ + 1-private, or
does the hierarchy consist of two isolated levels | (n — 1)/2 |-privacy and n-privacy )?

2. It is possible to relate the form of a function f to its attainable privacy?

We resolve both questions for Boolean functions f: 4, X Ay X -+ X 4, = {0, 1}
defined over arbitrary (possibly infinite) domains. We give a complete characterization
of Boolean functions that are [ #/21-private. It is shown that every such function can be
expressed as the “exclusive-or” of n Boolean functions, each depending on a single variable.
There is a simple n-private randomized protocol [Bh] for computing functions of the
form f(x,, x2, * -+, x,) = f1(x1) ® f2(x2) ® - -+ ® f,(x,). Thus our characterization
implies that if a Boolean function f is[#/21-private, then it is also n-private. Interestingly,
the same characterization remains valid under a weaker definition of privacy. Specifically,
this weaker definition allows coalitions to infer a limited (quite substantial) amount of
additional information, and there can be a positive probability of error in computing the
final output of the protocol. Finally, combining our result with [BGW ] we conclude that
there is a surprising gap in the Boolean privacy hierarchy: Every Boolean function, defined
over a finite domain, is either exactly | (n — 1)/2 |-private or exactly n-private, and there
is nothing in between.

The rest of this paper is organized as follows: In § 2 we present the model and the
definitions of privacy. In § 3 we consider the two-party case. Section 4 contains our main
results: the characterization for the multiparty case as well as some implications and
conclusions.

2. Model and definitions. In this section we define the model of distributed com-
putation that is used in the following. We then give formal definitions of strong and weak
privacy in this model.

The system consists of a complete synchronous network of #n honest parties P,
P,, - - -, P, with secure reliable point-to-point communication (no eavesdropping). ( By
saying that the parties are honest it is meant that they send messages according to the
protocol.) At the beginning of an execution, each party P; has an input x; taken from a
nonempty set of possible inputs 4; (no probability space is associated with 4;). In addition,
each party has a random input r; taken from a source of randomness R;. The parties
wish to compute a Boolean function f': 4; X Ay X + -+ X 4, = {0, 1}. To this end they
exchange messages as prescribed by a protocol F. Messages are sent in rounds, where in
each round every processor sends a message to every other processor. Each message a
party sends in the kth round is determined using its input, its random input, the messages
it received so far, and the identity of the receiver. As commonly assumed, the messages
sent at each round are prefix-free. We say that a protocol F computes the function f if
the last message in the protocol, F(x,, - -, X,), is an identical message sent by party P,
to all parties, which contains the value f(x;, - - - , X,).

The communication passed in the network when the parties have inputs X and
random inputs 7 is denoted S( X, 7). Formally the communication .S is an #-by-# matrix
whose (i, j) entry is the concatenation of all messages sent from P; to P;. For any T <
{1,2, .-+, n}, Srdenotes the matrix .S where entries (i, j) with either i, j€ Tor i, j ¢
T are omitted. That is, St is the communication between processors in 7 and in 7.
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We say that a coalition (i.e., a set of parties) T does not learn any additional infor-
mation (other than what follows from its input and the function value) from the execution
of a randomized protocol F, which computes f, if the following holds: For every two
inputs X, y € A; X A, X - -+ X A, that agree in their T entries (i.e., forall ie T: x; =
y;) and satisfy f(X) = f(7), and for every choice of random inputs { r; },. r, the messages
passed between T and T are identically distributed. That is:

<ST({Xi }ie Ta{ri}ie T> {Xi }ie T)> = <ST({yi}ie T,{ri}ie T {yi}ie T)>

where the probability space is over all random inputs in T, namely {r;};.7 (each r; is
distributed according to R; and they are all independent).

We say that a protocol F for computing f is (strongly) t-private if any coalition T
of size = t does not learn any additional information from the execution of the protocol.
We say that a function [ is (strongly) t-private if there exists a (strongly) t-private protocol
that computes it.

The weak notion of privacy is different from the strong one, described above, in
two ways: (a) coalitions may get some (limited ) additional information (other than what
follows from the inputs of the coalition members and the function value), and (b) the
protocol may not always compute the correct value of the function. This is formalized
as follows:

(a) Given 0 = 6 = 1, we say that a protocol F for computing f is (8, t)-private if
the following holds: Let T be any coalition of size = fand let X, y € A; X A, X --+ X
A, be any two inputs that agree in their T entries and satisfy f(X) = f(7). Then the
variation distance on the space %1 (messages passed between T and T'), given X and
given 7, is bounded above by 6. That is,

|
5 Z IPr(s|%)=Pr(s| P =o.

seSr
(b) Given 0 = ¢ < 1, we say that a protocol F has e-error in computing f if
VX:Pr(F(X)=f(X))=1—e,

(in both (a) and (b) the probabilities are taken over the random inputs of all the partic-
ipants).

We remark that even for 6 = 0, error free (6, ¢)-privacy is a weaker requirement
than (strong) #-privacy. In the special case of » = 2 we say that a function is (strongly)
private if it is (strongly) 1-private, and it is é-private if it is (4, 1)-private.

3. The two-party case. In this section we consider the case where f is a Boolean
function of two variables. We show that if f is weakly private then it can be expressed
as f( x1, x2) = f1(x1) ® f2(x,), where f| and f, are also Boolean functions. On the other
hand, we show that functions of the form f(x;, x;) = f1(x1) ® f>(x;) can be computed
in a strongly private way.

We now present a lemma that will play a central rule in the proof of the character-
ization theorem.

LEMMA 1. Let e, 6 Z 0 satisfy e + 6 < 4. Let Ay, A;, B be nonempty sets and let
f: Ay X Ay = B be a function that can be computed 5-privately with e-error. Under these
assumptions, for every b€ B, x,, y, € A;, and x,, y» € A, the following condition holds:
If f(x1, x2) = f(x1, y2) = f(y1, X2) = b, then f(yy, y2) = b.
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Before proving Lemma 1 we introduce three technical lemmas. The first one holds
for any two-party communication protocol. It relates the probabilities of any commu-
nication string s to be sent on the four corners of any “input rectangle” (x;, x;),
(x1, 2), (¥1, X2), (J1, ¥2). (An equivalent lemma is implicitly used by Paturi and Si-
mon [PS]).

LEMMA 2. Let Ay, A; be nonempty sets and F a two-party communication protocol.
For every communication string s and all inputs x,, y, € Ay, X2, )1 € A>

Pr (s](x1,x2)) - Pr (s[(y1,¥2)) =Pr (s](x1,32)) -Pr (s|(y1,x2)).

Proof. Let s = m; ©m, © - -+ © my, where m; is the message sent in the ith round
and © denotes concatenation. Assume, without loss of generality, that the first message
of the protocol is sent by P; and that k (the number of rounds) is even. Let Pr, (s]x;)
denote the probability that P, will send the messages m1,, m3, ms- - - given that its input
is x;, and that the messages received from P, are m,, my, mg- - - . That is,

Pr; (s x1)=Pr (my|x,)-Pr (m3|x;,my,mp) - -+« Pr(my_|x;,mi,my, -+ ,my_s),
and similarly Pr, (s| x,) is defined as

Pr; (s|x;) =

Pr (ma| x2, my) -Pr (my| X2, my,mp,ms) - -+ - Pr(my| xp,my,my, -+ - ,mp_y).

(Recall that every message is a function of the local input, the messages received from
the other party, and the random input.) By these definitions, for every input (x;, x,) and
every communication string s we have:

Pr (s](x;,x2))=Pry (5| x;)-Pra(s]| x2)
and therefore

Pr (s[(x1,x2)) - Pr (s[(y1,2))=Pry (s| x1) -Pry (s| x2) -Pry (s y1) -Pra(s|y2)
=Pr (s](x1,)2)) - Pr (s[(y1,x2)).

This completes the proof of the lemma. O

The second technical lemma gives a lower bound on the probability of any com-
munication string s to be sent on the input (y;, )»), given the probability that s will be
sent on each of the inputs (x;, x»), (X1, }2), and (y;, X2).

LEMMA 3. Let 0 = py, p2, P3, s = | such that p,-ps = p>*ps:

(1) Ifpi = pa, p3 then ps Z p,.

(2) If py Z pa, ps then py Z py — (p1 — p2) — (D1 — D3).

(3) Ifp2 = p1 = psthen ps Z py — (p1 — p2).

(4) If ps = pi = py then ps Z py — (p1 — p3).

Proof. We prove each of the four cases using simple arithmetic manipulations.

(1) In the case that p, = p,, p3if p; = 0 then clearly p, = p,. Otherwise, the follow-
ing holds:

=P2'P32P1'P1 _

D
¢ D1 D1

1
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(2) In the case that p; = p,, ps, if p; = 0 then p, = p; = 0, and thus the inequality
holds. Otherwise we have
_ D2 D3
=2
D1
(Pr=(P1—=p2)) - (P1 = (P1—D3))
D1

_Pi=(i=p2) - pi— (01 —p3) 21+ (1= D2) (D1 —P3))
D1

Zp—(p1—p2)—(p1—Dp3).

(3) In the case that p, = p; = p; we have to show that p, = p,. If p; = 0 then so is
p> and the inequality trivially holds. Otherwise, assume by way of contradiction that
D4 < p». Since p; = p; then p; - ps < p3* p», contradicting p;- ps = p2* ps.

(4) This case is similar to the proof of (3).

This completes the proof of the lemma. O

The next lemma is a trivial property of the variation distance.

LEMMA 4. Let S be the set of all communication strings and let p, and p, be two
probability distributions defined over S. Denote by Sy = S the set { s|p;(s) Z p2(s) }, then

S ()= pa()) =2 S | p1(5)—pa(s)].

se Sy 2seS

Proof. The proof is obtained by simple arithmetic manipulations:

2- 2 (pi(8)—pa(s))=2- 2 pi(s)—2- 2 pa(s)

ses) se S| seS;

=2 pl(S)+(1~ ) pn(S))— ) pz(S)—(l— 2 pz(S))

ses; se8; seS; se Sy
= 2 (0i(s)=p2(s)) = 2 (pi(s)—pa2(s))

se Sy seSy
=2 | pi(s)=pa(s)].

ses

(The last equality follows from the definition of S| .) O
Using these three lemmas we can now prove Lemma 1.

Proof of Lemma 1. Let F be a protocol that computes f é-privately with e-error.
Let S, be the set of all communication strings whose last message is b. Recall that on
the first three points, these strings correspond to executions computing the correct value
of the function (which equals »). Define

Sb= {s]s€Sp and Pr (s](x1,:)) S Pr (s](x1,2)), Pr (s (31, 32)) }
S3E {s]s€ Sy and Pr (s](x1,%2)) = Pr (s](x1,12)), Pr (s|(3,%2)) },
Sid;f {sls€Spand Pr (s|(xi,12)) <Pr(s|(x1,x)) <Pr (s|(y1,x2)) },
S3Z {s1s€Sy and Pr (s](31,%)) <Pr (s](x1,%)) <Pr (s](x1,72))}.
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The protocol F has at most e-error for every input. Thus to prove that f( y;, y,) = b, it
suffices to show that on input (y;, ») the probability of having a communication string
whose last message is b, (that is s € S}), is greater than e:

2 Pr(sl(yi,»))= ZlPr(SI(yn,yz))+ 2 Pr(sl(y1, )

seSy seSp seSzl,
+ 2 Pr(sl(y,2))+ 2 Pr(sl(yi,02)).
seSh sesSh

Now for each set .S%, we use the appropriate part of Lemma 3 together with Lemma 2.
These imply that this sum is bounded below by

2 Pr(s|(x1,x2))

ses)
+s§ZPr(SI(x|,Xz))—szz(Pr(SI(X1,xz))—Pr(SI(xn,yz)))
—'yzb(Pr(sl(xls)Q))_Pr (s1(y1,x2)))
+Essl’r(SI(x1,Xz))—erSs(Pr(SI(xn,xz))—Pr(SI(xl,yz)))
+S:‘JS Pr(SI(xl,Xz))—S§4(Pr(SI(xn,xz))—Pr(SI(yl,xz)))-

This last expression equals

> Prisl(x,x)— 2 S(Pr(SI(x.,Xz))—Pr(SI(xhyz)))

seSp xeSszSb

- 2 (Pr(sl(x1,x2))—Pr(s|(y1,x2))).

seS%US?,

The first summand is at least 1 — ¢ since ¢ is the maximum error permitted on the input
(x1, X2). According to Lemma 4 and the fact that the protocol F is -private, each of the
other two summands is at most 6. Thus we have

2 Pr(sl(yi, ;)2 1—e—06—0.

seSy

Since ¢ + & < 4, we have 1 — & — 6 — & > &. This completes the proof of Lemma 1. O

Lemma 1 suffices for showing that certain Boolean functions of two variables are
not weakly private. The first example, which was given in [BGW ] (with respect to strong
privacy), is the OR function (4; = 4, = {0, 1} and f(x1, X2) = x; V Xx3). Clearly this
function does not satisfy Lemma 1. For an additional example we take 4; and A4, to
be the set of all integers and f the IDENTITY function (f( X, x2) = 1 < x; = X2).
This function is not private since for any ¢ we have f(¢ — 1,¢) = f(c—1,c+ 1) =
fle,c+1)=0butf(c,c)=1.

THEOREM 1. Let e, 6 = 0 satisfy e + 6 < L. Let Ay, A, be nonempty sets and f :
Ay X A, = {0, 1} an arbitrary Boolean function. Then f can be computed §-privately
with e-error if and only if there exist Boolean functions fi : Ay = {0, 1}, f2 1 A, =
{0, 1} such that f(xy, x2) = f1(x1) © f2(x2).

Proof. First we present a private protocol for computing any function f of the form

f(x1, x2) = f1(x1) ® f2(x2):
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(1) P, computes f;(x,) and sends its value (one bit) to P;.

(2) P, computes f>(x,) and sends f( x;, x2) = f1(x1) ® f2(x2) (one bit) to P,.
It is clear that P, does not learn any additional information since the only message it
received during the protocol contains the function value, and P, does not learn any
additional information since it can compute by itself (from the function value and its
input) f1(x;) = f(x1, x2) @ f2(x2). The above protocol computes f with no errors and
with strong privacy. In addition, this protocol is deterministic and the number of bits
exchanged is exactly 2.

Now we assume that f can be computed é-privately with e-error and we show how
to find f| and f, as stated. Let o be an arbitrary element of 4, and define the follow-
1ng sets:

def
B={x€4, |f(x1,a)=0},
CE(xyed,|¥x1€B: f(x1,%2) =0}

We assume, without loss of generality, that there exists some x; such that f(x;, ) = 0
(that is, B is not empty). We will show now that the function is constant over each of
the domains BX C, BX C, B, X C, BX C:

CLAM 1. Forall x, € B forall x, € C : f(x, xz) = 0.

Proof. This proof follows directly from the definition of C.

CLAIM 2. Forall x,e Bforall x; € C: f(x,, x2) = 1.

Proof. Assume to the contrary that there exist x;€ B and x; € C such that
f(x1, x2) =0. Now, by the definition of C, x, € C = there exists y; € B such that
f(y1, x2) = 1. By the definition of B, x;, y; € B = f(x, a) = f(y1, a) = 0. Since we
have f(x,, a) =f(y;, a) = f(x1, X2) = 0, then according to Lemma | we must also
have f( y;, x2) = 0 — contradiction.

CLAIM 3. Forall x, € Bforall x, € C: f(x1, x3) = 1.

Proof. Assume to the contrary that there exist x, € B and x, € C such that
f(x1, x2) = 0. It follows from the definition of B that x, # a. Let y, be an arbitrary ele-
ment of B (recall that B is not empty). Now, y; € B = f(y;, «) = 0 and x, € C =
f(y1, x2) = 0. Since we have f(y;, @) = f(y1, x2) = f(x1, X2) = 0 then according to
Lemma | we must also have f(x,, «) = 0 — contradicting the fact that x, € B.

CLAIM 4. Forall x, € Bforall x, € C: f(x,, x;) = 0.

Proof. Assume to the contrary that there exists x; € B and x, € C such that
f(x1, x2) = 1. Recall that x, € B implies f( x,, «) = 1 and let y, be an arbitrary element
of B, i.e., f(y1, a) = 0. According to Claim 2 f(y;, x;) = 1. Since we have f(x;, x;) =
f(y1, x2) = f(x;, @) = 1 then according to Lemma 1 we must also have f(y,, a) =
1 — contradicting the fact that y, € B.

We now define:

0 ifx,€B
Silxy) = .

1 1fx1€€B

0 if x,eC
S2(x)= )

1 if x,¢C

then by Claims 1-4 we have f(x;, x,) = f1(x;) ® f2(x;) for each of the four possible
combinations (x;, x;) € BX C, BX C, B X C, B X C. This completes the proof of
Theorem 1. O

One conclusion of Theorem 1 is that, in the two-party case, if f can be privately
computed then it can be privately computed by a deterministic protocol. We emphasize
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that this does not hold for the multiparty case. A second conclusion is that in the two-
party case whatever can be privately computed under the weak notion can also be privately
computed under the strong notion. Thus (for any ¢, = 0 such that ¢ + § < ) these
two notions are equivalent. As we will see in the next section, this conclusion holds in
the multiparty case as well.

4. The multiparty case. In this section we prove the main result of our paper: A
complete characterization of n-variable Boolean functions that are [#n/21-private. We
start with a lemma that helps reduce the multiparty case to the two-party scenario. Using
this lemma, we proceed to a detailed proof of the characterization theorem. Finally, we
give some implications and corollaries. Throughout this section, we will say that a function
f is weakly t-private if there are ¢, 6 = 0 satisfying ¢ + & < 1, such that f can be computed
(6, t)-privately with e-error.

LEMMA 5. Let A;, A,, - - - , A, be nonempty sets, e, 8 Z 0 satisfying e + 6 < %, and
f A XAy X +++ X A, > {0, 1} be (8, [n/21)-privately computable with e-error. Let
Sc{l,2, -+, n} beany subset of size[n/21. Denote by D (respectively, E) the Cartesian

product of the A; with i € S (respectively, i € S). Then, viewing f as a two argument
Sunction f : D X E— {0, 1}, f is 6-private with e-error.

Proof. Given an n-party protocol for computing f: 4 X Ay X - -+ X 4, > {0, 1}
(8, [n/21)-privately with e-error, we convert it into a two party protocol for computing
f:DXE— {0, 1}. Denote the two parties by Q; and Q,. Q; simulates the role of the
[n/21processors P; with i € S using its source of random bits as[ #/27independent sources
of random bits. (Q, acts similarly with respect to .S whose size is | n/2).) The messages
exchanged between Q) and Q, in this two-party protocol correspond to messages ex-
changed between S and S processors in the original multiparty protocol. Using the def-
initions, it is easy to see that this two-party protocol computes f : D X E — {0, 1} 6-
privately with e-error. O

We remark that to make use of the [ #/21-privacy, both S and S must be of size not
exceeding [7/21. Our main theorem states that if /' : 4] X 4, X -++ X 4, = {0, 1} is
weakly [ n/21-private, then f can be expressed as the exclusive-or of # Boolean functions
fi, /2, , f». The proof makes use of Theorem 1 and Lemma 5.

THEOREM 2. Let Ay, Ay, -+, A, be nonempty sets, and f : A; X Ay X - X
A, = {0, 1}. Suppose fis weakly [n/21-private. Then there are n Boolean functions f;
A= {0, 1}, f: Ay —=> {0, 1}, -+, fu: A, > {0, 1} such that

S(xi,x2, 0 x) =f1(x1) @ f200)® - - - Ofy(X,).

Proof. The proof consists of two parts. In the first part we show that for every i the
set A; can be partitioned into two disjoint sets

A4;=BUC; (BNCi=3,B:i#J)
such that for all b; € B;, b; € B;, c;e C;, x; € A; (j# 1)

(1) f(xla e ,xi—l,bi9xi+1, e ,xn)?éf(xl, L Xi— 16X+, T >Xn)
and
(2) f(-xl, e 9-xi~1>bi,xi+l, o 3xn)=f(-xl, e ,xi—l,bi,xi+l, e 9xn)'

In the second part of the proof we show how to derive the desired characterization of f
from this property.
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To simplify the exposition, the first part is proven for ; = 1 and the subscript is
omitted from the two sets in the partition. We use the following notations:

Rd;f[z,g,, Bz”
Td;f”glﬂ, ,,,_1]

Si={1}JUR
SE(nlUR.

Each of the sets .S; and S, are of size [#/21, and thus Lemma 5 applies to both. We
establish the existence of the desired partition by examining the effect of ““switching” the
variable x; — from S; to S,. By Lemma 5 together with Theorem 1, there are functions

g:Xie5,4;—>{0,1}, h:X;e5,.4;—>{0,1}
such that for every x; € A4;
(3) SOxi, X)) =8(X15 =+ X)) O A Ximymra 15+ 5 Xn)-
Similarly, there are functions
& Xie5,4;—>{0,1}, 71:><,-632A,~—>{0, 1}
such that
(4) SOty o X)) = §n, X, o+ X)) @ R (Xeny2r 1, -+ + 5 Xn 1, X1).

We distinguish between two cases. If f does not depend on X, its first argument, then
we simply take B = 4; and C = . The interesti_r»ng case is where f does depend on x;.
That is, there are b, c€ A, (b # ¢), & € X;crA;, B € X;c1A;, d € A, such that

f(b,6,B,d)#[(c,B,d).
Define the sets
BE {(aed; |f(a1,aB,d)=/(b,&B.d)},
CE{aed, |f(a, & B,d)=f(c,B.d)}.
Since f is a Boolean function, 4, = B U C. By the definition, forallbe B,ce C
(5) f(b,8,B,d)#[(c,B,d).

Assume, by way of contradiction, the existence of b € B, c € C, X € X;crA;, Xr €
Xierdi, X, € Ay such that

S(b, Xp, X1, X,) = f(C, Xg, X1, Xn).
By (3), we have
g(b, Xr)® h(Xr,x,) =g(c, Xr) O h(ZXr, x,)
and thus
g(b, Xg)=g(c, Xr)-
Using (3) again, this implies
J(b, %, B,d)=f(c, %x, B, d).
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Now, using (4), this implies

h(B,b)=h(B,c)

and thus
J(5,&B,d)=§(d,3)®h(B,b)
= §(d, &)@ h(B,c)
= f(¢,%B,d)
contradicting (5).

Thus for every b€ B, be B, c € C, %r € X;crAi, X7 € XicrAi, Xn € Ay
S(b, Xp, X1, X2) #f( ¢, Xr, X1, X0)
f(b, Xps X1, X0) Ff( €, XRy X1, X0
Again, since f is Boolean, these two inequalities imply
f(b, Zp, Xr, Xn) =f (b, Xr, X1, %),

which completes the first part of the proof.

In the second part of the proof, we show that if for every i the set 4; can be partitioned
such that (1) and (2) hold, then the function f has the desired form. We begin the
second part of the proof by fixing an element b, € B; foreach i = 1, 2, - - - n. Without
loss of generality, assume

f(blsBZs e aBn)=0-
Define the functions f; : 4; = {0, 1} by
f( ) 0 if X;€B;
o 1 if x;€C;.

Given any x, € Ay, **+ , X, € Ay, let J< {1, -+ -, n} be the set of indices of the x;’s in
Ci,and M < {1, -+, n} its complement. Denote by / the size of J, and let k = n — /.
We will index the elements in J and M separately, that is

(X1 X)) = (X Xs > Xmgs " > Xms 2 X))
By (1) and (2)
f(xy, + - ,Xn)=f(Xj,,Xj2, S Xy s X ,le)
= f(X;,, X}, ** ’Eml, jmk, C LX)
=f(5j1,xj2, ot by, ,i)mk, ,x,-,)@l
=f(5jni)jza ,Bm“ ,i)mk, LX) @101

S

~ ~

:f(;;jl,;;h, o by, ,bmk, ,B,»,)@(lmodZ)
=/(mod 2).
By the definition of the f’s
S1(x1)®/2(x2)® - - - @ f(x,,) = [(mod 2)
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and thus

S(x1,x2, X)) =f1(x)@L2(x2) D - - - @ fo(x)-

for each X € X7_A4;. O
We now turn to some implications of Theorem 2. First we note that if f : 4; X A, X
=+ X A4, = {0, 1} has the form

f(x1,%2, %) =f1(x1) @ f2(2) @ - - - @ fu( X)),

then there is a very simple prg)tocol [Bh] for computing f n-privately. The ith participant
locally computes the bit y; = f;(x;). Then, it picks # — 1 random independent bits y;;,

Vizs *** s Vin—1,and y;,suchthaty; = y,;, ® ,, ® --- ® y;, holds. It sends y; ; to the
jth participant over their joint channel. After getting the n sPlits Viis Va,is * s Yni» the
ith participant adds them modulo 2 and sends the result z; & V1, @y ® - ® y,;to
every other participant. The sum modulo 2 of these » z;’s equals f( x;, X3, - - - , X,). This

protocol is (strongly) z-private for any 1 = ¢t = n. Thus we have

THEOREM 3. Let f : Ay X Ay X -++ X A, = {0, 1}. If f is weakly [ n/21-private,
then it is (strongly) n-private.

In particular, there is no Boolean function that is ¢-private but not ¢ + 1-private for
any ¢ in the range [n/21=t < n.

We now consider the case where f is a Boolean function of Boolean variables. There
are only four Boolean functions of a Boolean variable (the two constants, the variable,
and its complement). The form of private Boolean functions of Boolean variables is thus
particularly simple.

THEOREM 4. A function f : {0, 1}" = {0, 1} is n-private if and only if there is a
subset J < {1, - -+, n} such that

either  f(x;,x, " - ,x,,)=®xj
jelJ

or ﬂXI,xZ, e a-xn)=®~xj'
jeJ

Finally, we remark that our characterization of Boolean functions that are [n/2]-
private is valid even for functions defined over infinite domains. The | (n — 1)/2 J-private
protocol of [BGW], on the other hand, relied heavily on the finiteness of the domains.
We conjecture that for infinite domains there exist functions that are not | (n — 1)/2 |-
private. Indeed, the secret-sharing techniques used in that | (# — 1)/2 ]-private protocol
cannot be utilized in countable domains, as shown in [BS], [CK].

Acknowledgments. We would like to thank Shai Ben-David and Oded Goldreich
for helpful discussions and comments on the topics of this paper.

Note added in proof. Chor, Gereb-Gravs, and Kushilevitz [Proc. 31st IEEE Confer-
ence on Foundations of Computer Science, 1990] have recently proved this conjecture
for various Boolean and non-Boolean functions defined over countable domains.
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A SIMPLE PROOF OF THE O(Vnlog®*n)
UPRIGHT MATCHING BOUND*

E. G. COFFMAN, JR.f AND P. W. SHOR?}

Abstract. The stochastic upright matching problem has had many important applications, most notably
in statistics and the average-case analysis of algorithms. A problem instance is a set of # points chosen uniformly
at random in the unit square. The points are labeled with signs; the signs are chosen independently and each
is equally likely to be a plus or minus. An up-right matching of .S is a matching of minus points to plus points
such that if (x, y) is a minus point matched to the plus point (x', '), then x < x' and y < y'. The problem is
to estimate the expected number of points left unmatched in a maximum upright matching of S. It is well
known that if U, denotes the number of unmatched points, then E[U,] = &(Vn log®/* n). Existing proofs of
the upper bound O( Vn log/* n) are quite long and difficult to follow. This paper presents a much simpler and
more compact proof. A distinctive feature of the new proof is the use of Fourier expansions.

Key words. stochastic planar matching, Fourier series, analysis of algorithms, empirical discrepancy
AMS(MOS) subject classifications. 60D05, 68Q25

1. Introduction. Consider a set S of n points chosen uniformly at random in the
unit square. Each point carries a sign; the signs of the points are chosen independently
and each is equally likely to be a plus or minus. An upright matching of S is a matching
of minus points to plus points such that if (x, ) is a minus point matched to the plus
point (x', '), then x =< x" and y = y'. Figure 1 shows an example.

An efficient algorithm for finding maximum upright matchings can be found in
[3]. Our interest focuses on estimates of the number U, of points left unmatched in such
matchings. Shor [6] gave a relatively simple proof of the lower bound

E[U,]=Vn log®* n).
Leighton and Shor [4] then proved the corresponding upper bound
(1) E[U,]=0(Vn log** n).

Subsequently and independently, Rhee and Talagrand [ 5] also proved (1) using different
methods. The proofs of (1) in [4], [ 5] are ingenious but quite complicated; a significant
effort is required to follow the many details of the arguments. Our purpose here is to
give a much simpler, more compact proof of this important result.

We refer the reader to [4] for a digest of the background and applications of these
and closely related results; the statistical application is amplified in [5].

The proof of (1) in [4] falls out as a special case of a corresponding result for the
more general and more difficult problem of minimax grid matching. The combinatorial
properties needed in [4] require an especially long analysis compared to the one given
here in § 3. In [ 5] upright matching is related to an essentially equivalent problem dealing
with empirical measures in statistics. The probabilistic arguments in the proof of (1) are
drawn from the techniques of majorizing measures developed by Fernique and others
(see [5] for references). But again, the combinatorial results needed in support of the
approach are difficult.

The proof of (1) given in the next two sections adheres to well known and elementary
methods. A key to the greater simplicity of this proof is the use of Fourier expansions.

* Received by the editors April 7, 1989; accepted for publication (in revised form) November 21, 1989.
+ AT&T Bell Laboratories, Murray Hill, New Jersey 07974.
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+
+ +
/ / n =14
- - Un=4
Unit Square

FIG. 1. A maximum upright matching.

In rough outline, there are points in common among the methods used here and in [4],
[5]. A brief discussion of these is best deferred to § 4, after the new proof is given.

2. Preliminaries. As in [4], [5] it is convenient to reformulate our problem in
terms of discrepancies. Consider any subset L of the unit square and define the plus
discrepancy of L, A*(L), as the number of plus points in L less the number of minus
points in L. The term discrepancy by itself refers to A(L) = |A*(L)|. L is called a lower
layer if it is closed and if (x, y) € L implies (x', ') € L whenever X' = xand y' = y. It
follows from Hall’s matching theorem that U, is equal in distribution to
suprce AT(L), where & is the set of all lower layers. We will prove

(2) Elsup A(L)1=O(Vn log** n);

the desired result follows trivially.

For each lower layer L there exist lower layers L’ such that A(L) = A(L') with
probability 1 and such that the boundaries of L' are the unit intervals on the x and y
axis and a third, nonincreasing boundary extending from (0, 1) to (1, 0). This third
boundary is called a lower layer function. The following lemma furnishes a basis for the
probability estimates needed to prove (1). The result can be found, without proof, in
[4]. A simple proof is given below. The notation Af refers to the discrepancy of the
lower layer defined by f.

LEMMA 1. Let f and f> be two lower layer functions with f(; If1(x) — fo(x)] dx =
o. Then there exists a ¢ > 0 such that

Pr {|Af; — Afz| > x} = O(e™ /), x=Zan
=0(e™%), x> an.

Proof. Enumerate the points in S and let R denote the region bounded entirely by
/1 and f> and having area «. Figure 2 illustrates the definition. Define p, = 0 if the kth
point of S is not in R; otherwise, py = +1 or —1 according to whether the kth point is a
plus or minus. Then A(R) = 2 %., pxis a sum of independently and identically distributed
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f, +
Ry
fa
+ )2 Rz +
3 + a
a=area(R)

FIG. 2. lllustration for Lemma 1.

(i.i.d.) random variables on [—1, +1] with mean 0 and variance n«. It is easily seen that,
by symmetry, A(R) is equal in distribution to |A*f; — A" f]. Since |Af, — Af| =
|A* fi — A" f,], the result follows easily from Bernstein’s bound [1] applied to A(R):

x%/2 }

na+x/3 =

Pr {|Afi—Af2l >x} =Pr {A(R)>Xx} Sexp {—

It is readily verified that the set of partitions of S created by lower layer functions
is also created by the subset consisting only of decreasing step functions. Now rotate the
unit square 45° counterclockwise, center it at the point (4, 0), and scale it down by a
factor of V2. The problem instance changes as illustrated in Fig. 3, where a lower layer
step function becomes a piecewise linear function f(x), 0 = x = 1, with the slopes of
the pieces alternating between +1 and —1.

Hereafter, our terminology refers to this transformed version of the problem. Lower
layer functions are defined on [0, 1], they are completely contained in the rotated square,
and they vanish at x = 0 and 1. Note that Lemma 1 continues to apply in this new set-
up. Let # denote the subset of piecewise linear lower layer functions with slopes alter-
nating between —1 and +1.

Another useful lemma is given next. It uses a convention that applies throughout
the remainder of the paper: When we write “g,(n) = O(g2(n)) with high probability”
for given functions g,(n), g2(n), n =1, 2, - - - , we mean that there exist constants 8 >
0 and ¢ 2 1 such that for all z sufficiently large, Pr { g,(n) > Bg.(n) } = 1/n°. Occasionally,
we write whp as an abbreviation for “with high probability.” Also, the symbol ¢ will be
used generically to denote constants; unless noted otherwise, constraints on ¢ are deter-
mined by the immediate context only.

LEMMA 2. Let fi€F and let f, be any other function over [0, 1] such that
for some ¢>0, |fi(x)—/fa(x)| =cVlogn/n* uniformly in x, 0=x=1. Then
| Af1 — Af2| = O(Vn log n) with high probability .

Proof. Place a grid of squares of sizes Vlog n/n X Vlog n/n over the unit square,
as shown in Fig. 4. The number of points within a grid square entirely inside the rotated

f Unless noted otherwise, logarithms are base 2.
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lower layer function

]

FIG. 3. The transformed problem.

square is binomially distributed with mean 2 log n. We find from standard estimates for
this distribution that all squares in the grid have O(log ) points with high probability.

Now in any column of the grid, f; intersects at most two squares (since |f(x)| =
1 on the pieces of /1), so |f1(x) — f2(x)| = ¢ Vlog n/n shows that the difference in the
discrepancies of f; and f, within any column is concentrated in at most a constant number
of squares. Then over [0, 1] the difference in the discrepancies is concentrated in at most
O(Vn/log n) squares. The lemma follows at once from the fact that all squares have
O(log n) points with high probability. O

} - e i e
_f1€?' /

\\
N\ AN -
%\ a7 /;7’
\\\Kl \:\ /{,’
\‘\KI

FIG. 4. Approximating f, € F by f, € F *.
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Consider the grid introduced in the proof of Lemma 2. It is clear that for any
function f; € & we can construct another function f, € & such that the vertices of f,
coincide with vertices in the grid and such that |f;(x) — f>(x)| = Vlog n/n uniformly
in x, 0 = x = 1. Let & * be the subset of such functions. Figure 4 illustrates the con-
struction. Clearly, by Lemma 2, (1) will be proved if we can show that

(3) E[ sup Af1=0(Vn log** n).
eF*

Elementary Fourier analysis shows that a lower layer function f € &% may be rep-
resented by the sine series
(4) f(x)= 2 a;sin 7ix, 0=x=1.
izl
These expansions play a key role in simplifying the proof of (1). Note that, since

[f'(x)] = 1 on the pieces of f, we have
1 2
1= [ reor ac=Z
0 2

> ifai
iz1

and

(5) > i*a?=2/x%
iz1
Our final preliminary result describes the convergence in (4) for f € & *, and is an
immediate consequence of a result in [2, p. 21]. Let f,(x), n 2 1, denote the nth partial
sum in (4).
LEMMA 3. There exists a universal constant ¢ > 0 such that for all f€ F * and for
allx,0=x=1,

c
(X)) =fu(X)| = .
S0~ Vn log n
Remark. Lemma 3 in fact holds for any f € & having at most Vr/log n vertices.

3. The main result.
THEOREM. For the expected number of unmatched points in a maximum upright
matching, we have

E[U,]=0(Vn log** n).
Proof. Trivially, U, = n, so for any ¢ > 0
E[U=cVnlog** n+n Pr{U,>cVnlog®*n}.

Then, since U, is stochastically smaller than sup; .« A(L), it is enough to prove that
sup; ez A(L) = O(Vn log¥* n) with high probability. This in turn will be proved if we
can show that sup,.z» Af = O(Vn log®’* n) with high probability (see (3)). This last
result is proved below.

Let f, f® ... fUoem be guccessively better approximations of f € F * de-
fined by

2k+1

(6) fP®x)=3 a;(k)sin wix, 1=k=|logn]|,

i=1
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where a;(k) is a; truncated to the | log (Vlog n 23%/?) | most significant bits of its binary
representation. (Hereafter, we shall omit the floor notation and treat the affected quantities
as integers; extension of the analysis to noninteger values is trivial and influences only
hidden constants.) By (6), differences in accuracy are bounded by

1
\/log n23k—1)2°

Clearly, for fixed k, the possible functions f *) make up a finite set. We will be counting
certain subsets of these functions in terms of properties defined by

(7 lai(k)—ak—1)| =

k 2/+1
(8) t(fP)=2Zr(f®2/7% with r(f®)=4/ 3 al(k),721
j=0 i=27+1

7o(f ®)=ai(k)+a3(k)
From (5), we have

log n logn 2/+1

9) S =at+ Y 3 [VaPs T fad=2/x
j=0 Jj=0i=2/+1 i=1
and hence
log n logn k logn logn
(10) Z (=3 Zr(f®)2i-k= 2 ri(f 1&") E 2/ k=4/x
=1 k=1j=0 =Jj

The following lemma comprises the combinatorial part of the proof.

LEMMA 4. There exists a universal constant ¢ and a mapping from F* into
R'2" with values denoted by (5,(f), 52(f), **+ , Sign([f)), such that for each fe F *,
we have e si(f) = e,

1
an [ e dsVEg,

1
foIf"‘)(x)—f"‘">(x)|dxéVsk(f)/zk, 2=<k=logn,

and if ni(o) denotes the number of functions g'®, g € F *, such that s(g) < o, then
(12) m(o)=(ologn)* A2Ven | <k=logn.

Proof. We will show that the mapping si(f) = v¢(f*®) + ~/log n, for an appro-
priately chosen constant v has properties (11) and (12). To prove the first property,
consider a function f € & * and write from (6)

k+1 2k
(13) fOX) =% D(x)= > ai(k)sinwix+ 3 [ai(k)—a;(k—1)] sin wix,
i=2k4] i=1

2=k=logn.

Let gi(x) and A (x) denote the first and second sums in (13), respectively. We have
from (8),
2k+1

1
J;g%(x)dx% > az(k)——4"‘rk(f""),

=2k
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so by Schwarz’s inequality, with r, = ri(f©),

(14) fol | g(x)| dx=27*Vr.

Next, by (7),

2k
fhz(X)dx< E[az(k) ai(k—1)]*=2"*"2/(log n2*),

s0,
1
(15) J; |he(x)| dx=27"*V4/logn.

Now add (14) and (15) and note that Vr, + V4/log n < V2(r«+4/log n) by Cauchy’s
inequality. Then by (8)-(10) and (13)-(15), any vy = 8 gives si(f) = v(t(f®©) + 1/
log n) = 2(r + 4/log n) and 2 1%" s.(f) = ¢, with ¢ independent of f and n.

For the second part of the lemma, we note first that, for all k, n(o) = 2Vajlogn
follows from the definition of & * (there are at most ZW‘,’—E—” functions f € & *, since
the vertices of these functions are restricted to the vertices of a Vn/ log n X Vny log n grid
on the unit square). To prove n (o) = (o log n)zk, we first establish a bound on u(7),
defined as the number of functions g¥, g € & *, such that t(g®) = 7. This bound will
hold for 7 = 1/log n.

Consider a function f € # * and rewrite f® in (6) as

ko 27+1
(16) f®O(x)=a,(k)sin mx+ ay(k) sin 2rx+ >, > a;(k) sin wix.
j=li=2i+1

Now consider the number of possibilities in the jth inner sum, i.e., the number of vectors
of coefficients a;(k), 2’ + 1 =i < 2/*! 1= j = k. It is more convenient to work with
the numbers b;(k) = a;(k)23*/?Vlog n, since these are integers by definition of the a;(k)’s.
By (8), the b;(k)’s satisfy

2i+1 2i+1
> bHk)=2%*logn Y a}(k)=2¥* Yr(f®)logn,
i=2741 i=2J+1
(17) T=1, 1=k=logn,

b3(k)+b3(k)=2%*log n(ai(k)+a3(k))=2%*zro(f ) log n.

Now divide both sides by 243/ and sum over j = 0. Assuming that ¢(f ) < 7, this
leads to

k 2/+1
(18)  27*[bi(k)+b3(K)]*+ 2 23j‘4" > bi(k)=logn Z ri(f )27 7%
j=1 =2Ji+1 j=0
=7 logn.

Then the number of functions ¥ with ¢(f*) =< 7 is clearly bounded by the number
of vectors (b;(k), - - -, byre+1(k)) satisfying (18). This is the number of lattice points in
a 2" +1 dlmenswnal elhpsmd with 2/ axes of lengths 2V log n24 =3/ for each j = 1,
2, -+, k, plus two additional axes of length 2V2%7 log 7. This in turn is approx1mately

the volume of the ellipsoid. Now a d dimensional ellipsoid with axis-lengths /;, - - , I;
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and d even has volume
d d g

(19) V=(H %)w‘”z/(a’/Z)!é(H lzl)(zwe/d)dﬂ,
=1

i i=1

where the inequality is obtained from Stirling’s formula. Substituting for the /;’s and d =
2%+ we find that

2k 2k k
2 .
(20) ()~ (7 logzl(ik)+ lEﬂ:re) ] 217203027

j=0

It is easy to verify that an increase in the constant 2we will make the volume approximation
in (20) an upper bound. Routine algebra then shows that there is a constant v such that
wi(7) = (7 log n)2*. Finally, we can choose si(f) = v¢(f®) + y/log n < o for all [ €
Z * and obtain n;(¢) = u(o/v) = (o log n)*. By (10), 2187 s(f) < 4y /7% + v, and
we are done. O

As a trivial extension of Lemma 4, it is convenient to assume for each f that s;(f)
is a positive multiple of 1/log n, 1 = k < log n.

We turn now to the probabilistic part of the proof. Consider any function f (%"
with f € & *. Comparing f °¢™ and the partial sums f; we have by the definition of the
a;(k)’s that |a; — a;(log n)| = O(1/(Vlog nn3/?)) and hence

1) U@/ 3 la-atosm] =0(7——). 0sxs1

i=

By Lemma 3 we have |f(x) — fu(x)| = O(1/Vnlogn), 0 = x = 1. This together with
(21)yields |f(x)— f"&"(x)| =0(1/Vn log n),0 = x < 1. We conclude from Lemma
2 applied to f1°¢™ and f that if

(22) sup AfUEm = O(Vn log**n) whp,
feF*

then supye - Af = O( Vn log3/* n) whp as well. We prove (22) below.
Consider any f € & * and write

log n

(23) Af(logn)= z (Af(k)—Af(k_l)),

k=1

with Af® = 0. Below, we introduce numbers g, = gi(sx(f)), 1 = k = log n, such that
>ien s (f) = ¢ implies 287 g = O(Vn log** n) for all f € F*. If f is such that
AfUoem > Flen g4 then there exist k and o, | < k < logn, 1/logn =< ¢ = ¢ (with ¢
as given in Lemma 4), and a pair of functions (£, f*~1) such that si(f) = o
and Af® — Af*~Y> g.(s). Over all fe€F* the number of pairs of functions
(f®, £&=1) for given k, o, and si(f) = o is at most n,(o), so by Boole’s inequality

log n
(24) Pr{max NGLN qk(sk(f))}
feFr k=1

<clog’n max max (o) Pr { Af O — Af*=Ds g (o)},
Isk=slogn {feF*|s(f)=o0}
1/logn=o=c
where the ¢ log? n factor comes from the log 7 values of k and the at most ¢ log # values
of ¢ (recall that the s,(f) are chosen as multiples of 1/log #). With 5,(o) bounded by
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(12), and with g,( ) as defined below, we will show that for some ¢ > 1
(25) (2% A (g log n)2) Pr { Af O — Af*~ D> gi(e)} S 1/n¢

for any choice of k, ¢ and f € & * with s,(f) = o. Since ¢ > 1 implies that log? n/n¢ =
O(1/n°") for some ¢’ Z 1, the proof of (22) will be complete once we have verified that,
in the left-hand side of (24), 212" gu(sk(f)) = O(Vn log®/* n) for all f € F *.

Now consider the pair of functions (£ ¥, £ *~ V) for an f such that s.(f) = ¢. To
apply Lemma 1 to (25), let f® and f*~ D be f; and f3, let « = Vo/2* from (11), and
assume that k is such that u;, = u;(6) = an, where for some ¢ > 1

(26) ut=pnVe[[log (o log n)]+c2 *logn],

with 8 = In 2 = 1/log e. Substitute (26) into the first of the bounds in Lemma 1 and
then substitute the result into (25). A little algebra shows that

1
(27) (27987 A (g log n)>*) Pr { Af (k) — Af ™ D> 1} < (o log n)2*2 ~42*/onVo) =
as desired. To take care of the case u; > an we put g, = qx(o) = u + v, where for some
c>1,

(28) v=0[Vn/log n+c log n].

For, if g, > an, then Lemma 1 and substitution into (25) give
1
(2Vn/10gn A (o log n)zk) Pr {Af(k) _ Af(k— NS qk} ) Vn/logn2~v/ﬁ =;;’

again as desired.

It remains to show that Z%8" (w(se(f)) + v) = O(Vn log3/* n) for all f € F*.
For the contribution of the u; = u(si(f)), use Cauchy’s inequality, let s, = si(f),
and write

(29) ue=0(Vnsh/*Viog (s log n) + Vnsh/*2 %2 Viog n).

Since s, is bounded by a constant, the contribution to > u; of the second term in (29)
is easily seen to be O(Vn log n). By Lemma 4 the sum of the s, 1 = k = log n, is at
most a constant ¢, so the contribution of the first term is O(w,), where

log n log n
(30) w,,=max{\/r_z >z *log(zk log n)|zez——, > zkéc].
{2} k=1 logn”, "2,

A calculation shows that the function w(z) = z'/* log (z log n) is increasing and concave
(w"(z) = 0) for all z= 1/log n. Then by Jensen’s inequality the maximum in (29) is
achieved by putting all z;’s equal to ¢/log n. Then

log n

c*log ¢
wo=Vn > <8¢

— 1 3/4 ,
k=llog”“n O(V;og n)

and hence X 1%&% u; = O(V; log®* n). It can be seen by inspection that vlogn =
O(Vn log n), so (22) and hence the theorem is proved. O

4. Final remarks. The probabilistic parts of the proofs in § 3 and in [4], and the
use of Fernique’s theorem in [ 5] all seem to have elements in common. In particular, it
appears that the desired result could be obtained by applying Fernique’s theorem to
inequalities similar to those in Lemma 4. The difficult part in all cases lies in proving
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the combinatorial properties needed for these techniques. All three proofs involve the
construction of successive approximations to a lower layer function. The use of Fourier
approximations enables us to take advantage of standard properties of Fourier series to
simplify the proof. For example, our proof of (5) is much simpler than the proof of its
analogue in [4].

It is clear from §§ 2 and 3 that for any fixed constant ¢ > 1 we can write U, =
O(Vn log/* n) with probability 1 — 1/n¢. In fact, as shown in [4], [ 5], an even stronger
statement is possible, name‘lly_that there exists a ¢ > 0 such that U, = O(Vn log3/* n)
with probability 1 — O(n~°"'¢"). Our methods do not preclude such a result. For this
tighter bound we can easily modify the conclusion of Lemma 2 to |Af; — Af»| =
0(1/; log3/* n) with probability 1 — O(n“”m) for some ¢ > 0. With somewhat more
effort, a tighter analysis of suitably larger functions g, will then yield the desired result.
The details are left to the interested reader.
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THE CYCLE CONSTRUCTION *
P. FLAJOLETt AND M. SORIAft}

Abstract. A direct generating function construction is given for cycles of combinatorial structures.
Key words. combinatorial enumerations, generating functions, combinatorial theory of words
AMS(MOS) subject classification. C0S

Let of be a class of combinatorial structures, with 4(z) its corresponding ordinary
generating function: A(z) = Z.c.s z'*'. We use corresponding letters for classes and
generating functions. Consider the class € whose elements are cycles of elements of 7.
The following result is classical [6], [1]:

¢(k) 1
0 C(z)= 1 )
(0) (2) ]El K BT

where ¢(k) is the Euler totient function. This result is proved by Read [6] using Polya’s
theory [5] and a classical computation of the Zyklenzeichner of the cyclic group. De
Bruijn and Klarner [1] have another derivation, which amounts to the Lyndon factori-
zation of free monoids [4, p. 64]. Our purpose in this note is to show that equality (0)
follows directly from basic principles of combinatorial analysis [3], using elementary
concepts of combinatorics on words from Lothaire [4].

PRINCIPLE 1. Every nonempty word over s has a unique root that is a primi-
tive word.

For instance with «, Be€ ., word afBaBBafaBBafaBB decomposes into
aBafBB|aBaBB|aBaBB and its root is the primitive (also called aperiodic) word aBa30.
Let & = of* be the set of nonempty words formed with elements of .o/, and 2. the
set of primitive words. From Principle 1, we have'

uA(z) K
la S(z,u)=——"-—"—-= PS(z"*,u").
(1a) (=1~ Z PS(E)
From Moebius inversion applied to (1a), we get an explicit form for PS(z, u):
ukA(z%)
1b PS(z,u)= w(k)S(zK u*)= wk)——————.
(b} ( kgl ) kgl 1 —ukA(z")

PRINCIPLE 2. Every primitive k-cycle has k distinct primitive word representations.
A cycle is said to be primitive if and only if any associated word is primitive. We
use the notation [---] to denote a cycle. Then, for instance, the 5-cycle [ababb] =
[babba] = - -- = [babab] is primitive, while the 6-cycle [abbabb] is not. We let 2 €
denote the class of primitive cycles. Principle 2 permits us to express the bivariate gen-

* Received by the editors July 11, 1988; accepted for publication (in revised form) October 17, 1989.

1 Institut National de Recherche en Informatique et en Automatique, Domaine de Voluceau, Rocquencourt,
78153-Le Chesnay, France.

f LRI Université Paris-Sud 91405-Orsay, France.

! We introduce bivariate generating functions, and make a consistent use of variable u to mark the number
of letters (called length) in a sequence (word) or a cycle: The coefficient of [#/z"] in a generating function
F(z, u) of # represents the number of structures in & of total size » having length /.
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erating function PC(z, u) via the transformation u* — u*/k applied to PS(z, u):

“ dt
(2a) PC(z,u)=f PS(z,t)T.
0
Integrating with respect to ¢, we derive
u(k) 1
2b PC(z,u)= lo .
(2) (z,u) ,El kOB 1= uka(zh

PRINCIPLE 3. Every cycle has a root that is a primitive cycle.
A cycle like [ aBaBBaBaBBaBaBB] has a unique root defined up to cyclic order that

is here [aBaBB] = [BaBBa] = - - - . For generating functions, this entails the relation
(3a) C(z,u)= > PC(zXu*) and C(z)= 3 PC(zZ"1).
kz1 k=1

Using the relation 2, w(p)/p = ¢(k)/k in summation (3a), we obtain

_ < 9k) 1
(3b) C(z,u)—kzg:1 X lOgl—-ukA(zk)'

Specializing (3b) with u = 1 establishes Equation (0).
Thus the generating function for /-cycles, which is obtained by extracting the coef-
ficient of [#'] in (3b), is found to be

33 B

k|l

Other results from [1] can also be derived from (3a). The multiset construction &F =
M(%) (F is the class of all finite multisets of elements of 4) is known [5] to trans-
late into

F(z)=exp E%G(z").
k

Using identities 2 4, w(d) = 6,1 and 24, ¢(d) = n, the generating functions for multisets
of primitive cycles and multisets of cycles (with u# again marking length) are found
to be

1 1
[—ua(z) ™ kI;[l I—u*A(z5)

By considering singularities of corresponding generating functions [5], it is easy to
derive asymptotic results. Assume for instance that the radius of convergence p of A(z)
satisfies p < 1 and that 4(p) = +o00. Then, we have the following:

o The number of «Z-cycles of size n and length / is asymptotically 1// times the

number of «/-sequences having size » and length /.

o The number of .o/-cycles of size # is asymptotically 1/# times the number of .o7-

sequences of size 7.
o The length of a random .oZ-cycle of size # is asymptotically Gaussian with mean
and variance that are O(n). (See [2] for similar results).
These results can be extended to the case when p = 1 and 4(z) has only a pole at z = 1
on its circle of convergence.

Note added in proof. Related results appear in [7].
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ANALYSIS OF A COMPOUND BIN PACKING ALGORITHM*

DONALD K. FRIESEN} AND MICHAEL A. LANGSTONi

Abstract. Consider the classic bin packing problem, in which we seek to pack a list of items into the
minimum number of unit-capacity bins. The worst-case performance of a compound bin packing algorithm
that selects the better packing produced by two previously analyzed heuristics, namely, FFD (first fit decreasing)
and B2F (best two fit) is investigated. FFD and B2F can asymptotically require as many as 4 and 3 times the
optimal number of bins, respectively. A new technique, weighting function averaging, is introduced to prove
that our compound algorithm is superior to the individual heuristics on which it is based, never using more
than § times the optimal number of bins.

Key words. bin packing, compound algorithms, heuristics, weighting functions, worst-case analysis

AMS(MOS) subject classifications. 68Q20, 68Q25

1. Introduction. In the usual definition of the bin packing problem, we seek to pack
the items of a list L = {/,, L, - - -, Iy}, each item with size in the range (0,1], into the
minimum number of unit-capacity bins. It is easily verified that this problem is NP-hard.
Therefore, we focus our efforts on practical, efficient approximation algorithms in hopes
of guaranteeing near-optimal results. (Note that there are algorithms guaranteed to pro-
duce results as close to the optimum as desired [1], [7]. Unfortunately, these algorithms
are not practical to implement because the time required to ensure results at most
(1 + ¢) times the optimum grows extremely rapidly as ¢ approaches zero.)

We use worst-case analysis as a measure of the worth of a bin packing heuristic.
The heuristic may not discover the best packing, but we endeavor to show that it always
provides results close to the optimum. For some algorithm, ALG, let ALG (L) represent
the number of nonempty bins required by ALG to pack L. For instance, OPT (L) denotes
the number of bins required in an optimal packing of L. We restrict our attention to
two off-line! algorithms: FFD (first fit decreasing) and B2F (best two fit). Given any list
L, it is known from [6] that FFD (L) does not exceed (%) OPT (L) + 4, and from the
Appendix to this paper that B2F (L) does not exceed (3) OPT (L) + 4. Moreover, ex-
amples exist that demonstrate that these bounds are asymptotically tight.

It seems reasonable to suggest that these two heuristics produce particularly inferior
packings for rather small, distinct regions of the input space. Based on this conjecture,
we analyze a compound algorithm, CFB, in which both FFD and B2F are applied and
the better packing selected. This notion of combining two or more heuristics is an attractive
one, but the analysis of such an algorithm can be especially difficult; only a few compound
algorithms have been successfully analyzed in the literature (see, for example, [2], [8],
[9]). We note that a tight worst-case bound of 71/60 has recently been reported for a
modification of the FFD algorithm [5], thereby yielding the lowest bound yet published
for an efficient bin packing heuristic. This bound is superior to the upper bound of % that
we prove here, but is inferior to the lower bound of 227/195 provided by the worst

* Received by the editors June 19, 1989; accepted for publication (in revised form) May 8, 1990. A
preliminary version of a portion of this paper was presented at the twentieth Allerton Conference on Com-
munication, Control, and Computing held in Monticello, Illinois in October, 1982.

+ Department of Computer Science, Texas A&M University, College Station, Texas 77843,

{ Department of Computer Science, University of Tennessee, Knoxville, Tennessee 37996-1301 and De-
partment of Computer Science, Washington State University, Pullman, Washington 99164-1210. This research
was supported in part by National Science Foundation grants MIP-8603879 and MIP-8919312, and by Office
of Naval Research contract N00014-88-K-0343.

! An off-line algorithm is free to preview and rearrange items before it begins to pack them.
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examples we know of for CFB. Moreover, the novel analysis we devise for our compound
algorithm merits attention and may, we hope, be applicable in other settings.

We shall employ the technique of “weighting” L so that the FFD and B2F packings
can be compared to an optimal packing. Although we would like to determine the min-
imum of { FFD (L), B2F (L)}, the analysis involved is extremely complicated. Instead,
we investigate the average of { FFD (L), B2F (L)}, in an effort to obtain a weak upper
bound on the minimum. In particular we show that, after eliminating certain cases where
we can guarantee that one or the other algorithm performs within our bound of £, our
weighting of L ensures that the average and hence the minimum number of bins used
by the two algorithms is within the bound.

In the next section, we present some preliminary analysis and demonstrate that
CFB (L) can be as great as (227/195) OPT (L). We also introduce a typing scheme for
the items of L based on size. In § 3, we establish the specific conditions required for the
FFD packing to use more than ¢ the optimal number of bins. Section 4 contains an
analogous determination for B2F. We present our main result in § 5, proving that CFB (L)
does not exceed () OPT (L) + 8. The final section contains remarks about proving a
tighter performance bound for CFB. In the Appendix, we discuss in further detail the
B2F algorithm and derive its asymptotic worst-case bound.

2. Preliminary discussion. We begin by describing the FFD and B2F heuristics
more precisely. The FFD algorithm can be implemented by first sorting all items so that
their sizes are arranged in nonincreasing order. Each bin is packed by repeatedly placing
in it the largest unpacked item that fits. When no more items are available that fit, the
next bin is packed. The B2F algorithm modifies this in the following way. First a bin is
packed as by the FFD rule. If the bin contains more than a single item, then the list is
checked to see if the smallest item in the bin could be replaced by two items that would
pack the bin more nearly full. If so, those two whose sum is largest are used in place of
the smallest item in the bin. A number of other schemes could be used to decide which
two replace the smallest item, but almost any choice will satisfy our analysis, subject to
the following modification made to simplify the proof: items of sizes less than or equal
to & will be held back until all larger items are packed. An FFD-like procedure is used to
complete the packing when only items of size no greater than ¢ are left. The purpose of
this modification is to reduce the number of combinations to consider in proving an
asymptotic $ bound, although it seems likely that this modification actually detracts
somewhat from the performance of the compound algorithm.

Figure 1 depicts the worst example (independent, of course, of an additive constant)
that we were able to contrive for the CFB algorithm. For simplicity, the bin size has been
expanded to 559. All of the examples we devised that were even close to being this poor
were dependent on the small items being held back, so that the FFD and B2F packings
are the same.

We denote the size of an item ;€ L by s(/;). Thus, after sorting, s(/;)=
s(h) Z -+ = s(Iy). We use last to denote the index of the last item packed by FFD.
Note that /,; may not be the smallest item in L, since smaller items may have been
packed earlier where /, did not fit.

To prove that ¢ is an asymptotic upper bound on the worst-case behavior of CFB,
we now proceed by contradiction and henceforth assume that L denotes a counterexample.
That is, we assume that both FFD (L) and B2F (L) exceed (%) OPT (L) + 8. Without
loss of generality, we also assume that L is minimal. By this we mean that no counter-
example exists with which OPT can use fewer bins, and that no counterexample is possible
with fewer items for this minimal number of bins. (Of course, minimality for CFB does
not imply minimality for either FFD or B2F alone.)
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FiG. 1. Example for which CFB (L) = (227/195) OPT (L), using bin size 559.

An immediate consequence of this is that L contains no item whose size is less than
or equal to £. If it did, then minimality requires that one or more such items must be
packed in the last bin by either the FFD or the B2F algorithm, in which case all preceding
bins would be packed to a level of at least 2. A simple “conservation of size” argument
ensures that, for such a list, no packing could use fewer than (3)(CFB (L) — 1) bins.

With this in mind, we let s(/.s) = ¢ + A, for some A > 0. Since no item has size
less than or equal to ¢, we know that no bin in any packing of L has more than
five items.

We use the notation B* for an arbitrary bin of the optimal packing, and | B*| to
denote the number of items B* contains. For the bins of the FFD or B2F packing, we
use By, B,, - - - as the sequence of bins in the order in which they are packed.

LEMMA 2.1. L contains no item I; with s(I;) = %.

Proof. To obtain the proof, assume otherwise. In both the FFD and B2F packings,
the largest item /; is packed in B; with at most one other item, the largest that would fit.
The optimal bin containing /, can contain at most one additional item and in fact can
be packed no better than B;. If the item or items of B, are removed from L, then all
three of FFD (L), B2F (L), and OPT (L) can be reduced by one, contradicting the
presumed minimality of L with respect to CFB. O

There can be no bin containing only one item in the FFD packing (except, possibly,
for the last bin). If there were, s(/i.s) must exceed 3, since otherwise /.5 would have fit,
and it is known that FFD (L) is bounded by (2) OPT (L) + 2 whenever s(/,) exceeds
4. (See [6, Thm. 4.10].) From this it also follows that A must be less than or equal
to 13.

Each item of L is assigned a type as shown in Table 1. Although this typing scheme
is motivated by the structure of a typical packing produced by the FFD rule (more will
be said on this in the next section), we classify items exclusively by their size so that we
can compare both FFD (L) and B2F (L) to OPT (L). Note that A cannot exceed 35 if
Y, or X; items exist.

3. A close look at FFD. We say that an item is “regular” if there is no larger item
available when it is packed. A “fallback” item is one that is packed when one or more
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TABLE 1
Item types based on size.
Type Min size Max size
Y, >4 <3
X, >5— A2 =1
Y, >1 =5 - A2
X, >%F—A3 | =4
Y; >1 =5 - A3
X, >2% —4/4 = «lt
Y, >4 =& — A/l
Xs > =3

larger items are available. Thus the notation we have used in Table 1 roughly agrees with
the way items are packed by FFD. That is, regular items of type X; are generally packed
by FFD in a bin consisting of the i largest items available when the bin is packed. We
call such a bin an X; bin. Regular items of type Y; are generally packed with i — 1 other
Y, items and a (smaller) fallback item. We call such a bin a Y; bin. (Note that no Y; bin,
i Z 2, can have more than one fallback item, as the following argument shows. If two
fallback items are used, then they combine to fill more than 3 of the bin. In this event,
however, the two or more regular items fill less than % of the bin, and the smaller regular
item has a size less than %, implying that another regular item would have fit in the bin
as well.)

This motivates the range of sizes we have selected for each item type. For example,
the sum of the sizes of the two items in an X, bin must exceed 1 — (3 + A), or else lag
would have been used as a fallback item in that bin. Hence, with the exception of items
from the first or last X, bin, every regular X, item must have a size in the range
(55— A/2,%]. Similar size restrictions are used to define the other item types as summarized
in Table 1. We use these same size ranges to assign a type to each fallback item.

There may also be some bins, which we define as “exceptional” for the FFD packing,
that are not packed by FFD with items of the expected sizes. These can only be the first
or last bins of a particular type, subject to the following constraints. If the last bin of type
Y; is exceptional (that is, it does not contain i items of type Y;), then the next bin is an
X, bin that is not exceptional if there are at least two X; . ; bins. Similarly, if the last
bin of type X; is exceptional, then the first bin of type Y, is not exceptional unless it is
also the last Y; bin.

Consequently, there are at most eight exceptional bins in the FFD packing, including
the last bin packed (which contains /, ). We define an exceptional item to be one packed
in an exceptional bin or one smaller than /..

We now seek to determine the precise conditions necessary for FFD (L) to exceed
() OPT (L) + 8. In this effort, we employ a weighting function wz: L — R*.
We extend w to subsets of L in the obvious fashion. For example, wg(B;) denotes
ZIiij wr([;). Our intent is to assign each item as small a weight as possible and yet
ensure that the weight of any nonexceptional FFD packed bin is at least 1. Table 2
describes our definition of wr for nonexceptional items.

Recall that fallback items, like regular items, are assigned a type based on their size.
We deviate slightly from this definition of wr for items packed in Y, bins. Consider any
two Y, items a and b, where a precedes b. Since s(a) = s(b), we increase w(a), if
necessary, to ensure that w(a) Z w(b) and reduce the weight of any item(s) packed with
a accordingly. For future reference, we state this formally as follows:
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TABLE 2
Weighting function wr based on FFD packing.
Type of nonexceptional
items in an FFD-packed bin Weights assigned
Y}, any two items $4.3
Y, X 3.3
Y, Y, 2,2if 37, bin(s), else
5,3ifs(Y) =324, else
%’ 14_5
Yy, X 33
Y., Ys 13 15
Y X4 $i
Y,, Y, or smaller item %, 3
X, X, 23
Y, Yo, X3 55, 3, 15
Y,, Y, Y3 or smaller item %, §, %
X, X3, X 553
Y3, Y3, Y3, any item %,14_5, %,%
X4a X4, X4a X4 %’ %’ %,%
any five items 55454

Y, weighting rule: If a and b are Y| items, and a is packed in a bin before the bin
containing b, then wr(a) = wg(b).

An exceptional item receives a weight of zero, completing our definition of wg. For
the convenience of the reader, Table 3 provides a listing of the possible weights for each
nonexceptional item type.

LEMMA 3.1. The FFD weight of an optimal bin cannot exceed ¢ unless the bin
contains a Y, item or a Y, item whose FFD weight exceeds }.

Proof. Suppose that B* is a bin of the optimal packing that has weight greater than
¢ and B* contains neither of the items mentioned in the statement of the lemma. Clearly
B* must contain at least 3 items.

Case 1. Suppose | B*| = 3. Then at least one item must have weight greater than
1 and, from the assumptions of the lemma, it can only have type X,. There cannot be
}wo lsucl; items, or else no item larger than /, could fit with them. Thus wg(B*) < 5 +
3t3=%.

TABLE 3
Possible FFD weights for each
nonexceptional item type.

Type Weight
Yl %, '43" —:—;’ %’ %
X 5%

Y L3
X3 %’ lis'v %

Y3 %,%

X4 %’ %
Xsor Y, %




66 D. K. FRIESEN AND M. A. LANGSTON

Case 2. Suppose | B*| = 4. If B* does not contain an X, item, then the smallest
item packed must have weight exceeding %, else wx(B*) < 3(3) + 1 = ¢. No item larger
than J,;; can be packed with three items of type X3, and there cannot be four items
greater than § in size. Thus there must be one item of weight at most § and one other
item of type Y3 or smaller, and wg(B*) is at most 3 + 3 + s + 5 < £. Consequently, B*
must contain an X, item. The second largest item of B* must be of type Y3 or X,,
implying that the remaining two items either ( 1) are each of type Y, or less or (2) contain
an item smaller than /. In either case, wp(B*) < $.

Case 3. Suppose | B*| = 5. B* must contain an X3 or Y3 item since it can contain
neither a Y, item nor four X, items and any item as large as /.;. Therefore, the second
largest item of B* must be of type X,, implying that the remaining three items either
(1) are each of type Y, or less or (2) contain an item smaller than /.. In either case,
we(B*)<$. O

LEMMA 3.2. The FFD packing of L contains no Y, bin.

Proof. Suppose there is a Y, bin. Consider the sorted sublist L’ obtained from L by
deleting every item that is smaller than § + A, every item that is larger than 2 — 2A, and
every item that is placed in a bin with an item larger than 3 — 2A in the FFD packing of
L. Clearly, the FFD packing of L' must also have a Y, bin. Moreover, since FFD (L) >
(%) OPT (L) + 8, it follows that FFD (L) > (£) OPT (L') + 8. (Deleting items smaller
than ¢ + A does not affect the number of bins used by FFD and cannot increase the
number required by OPT. After that, as long as the first item of the list is larger than
2 — 24, it and any other item FFD packs in B, can be deleted, reducing the number of
bins used by FFD by one and the number needed by OPT by at least one.) Thus, from
these observations and the last lemma, it suffices to restrict our attention to L’ and an
optimal bin B* that contains z, a Y, item or a Y, item whose FFD weight exceeds 3,
and show that, due to the presence of a Y, bin, wg(B*) = % We assume wp(B*) > $ and
consider the possible cases.

Case 1. Suppose zis a Y, item.

Suppose wg(z) > % Then the smaller Y, item in the Y, bin did not fit with z in the
FFD packing. Hence s(z) > 1 — (35 — A/2) = & + A/2.If | B*| = 2, then the second
item can have weight at most 3 and since the weight of z is at most 2, wx(B*) < $. Since
| B*| must be less than 4, we must have | B*| = 3. If the second largest item were
at least § in size, no third item would fit. If both items are of type Y, or Xs, then
wr(B*) = ‘5—‘ + 2(1) = £. Thus there must be an X, item in B* and, moreover, it
must have weight 4. If FFD packs this X, item in a bin with subscript less than that
of the bin containing z, then the Y, weighting rule implies that its weight is at most
1 — we(z) and we would get wy(B*) < £. But this X, item would fit with z, so the item
packed with z by the FFD algorithm is at least as large as an X, item. Thus wg(z) =
3 and wp(B*) = ¢. (Note that the Y; weighting rule cannot cause z to have a weight
exceeding 3 unless every X, item has a weight less than 1.)

Now suppose that wi(z) = 2. Then certainly | B*| = 3. No item of size greater than
1 can then be used. If either of the other items had weight less than 3, then wp(B*) <
3 + 1+ 3% =% However, the only items of weight § have size greater than }, and no two
items of size greater than § could fit with a Y; item. We conclude that z cannot be a
Yl item.

Case 2. Suppose z is a Y, item.

Clearly | B*| = 3 or 4. Suppose | B*| = 3. The only possible problem occurs if B*
contains an X; item, a, and an X; item, b. In this event, A > 35, or else s(B*) > 1. But
then s(z) + s(b) >3+ 35— A/3 > 2 — 2A, the maximum size for a Y, item. Thus a
would fit with any Y; item. Since it must be the case that wp(a) = 3, all fallback items
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in Y, bins must be of type X,. Therefore z is packed by FFD into some Y, bin, B;.
Certainly b would fit as the fallback item in B;, and we conclude that either wg(b) = 1%
or wr(z) = 11/30. In either case, wp(B*) < $.

Suppose | B*| = 4. The second largest item of B* can only be of type X3, the third
only of type X4. Thus w(B*) < % unless the smallest item is an X, item as well. But this
is impossible, since s(Y3) + s(X3) + 2s(X4) = 1 implies A > 55 and s(Y>) + s(X3) + 2s
(any item) = 1 implies A < 5. We conclude that z cannot be a Y, item.

By definition, wg(L')Z FFD(L’)—8. Lemma 3.1 and the analysis just
completed demonstrate that wp(L') = (£) OPT (L'). Hence we derive FFD (L') <
(%) OPT (L') + 8, contradicting the presumed existence of a Y, bin. .

We state here some important consequences that follow from our analysis of the
FFD packing.

COROLLARY 3.1. If x is a Y, item, then wp(x) = . If B* is any optimal bin not
containing a Y, item, then wp(B*) < .

LEMMA 3.3. If B* is any bin of the optimal packing containing an item of size less
than t + A, then wg(B*) = 1.

Proof. Suppose B* contains such an item, a. Then certainly | B* | must be at least
3, since a is exceptional and therefore wx(a) = 0.

Case 1. Suppose | B*| = 3. Then there must be a Y, item, b. The remaining item,
¢, would fit when b was packed. If it is unavailable, then its weight is at most 1 — wg(b)
by the Y, weighting rule. If it is available, then the item used in place of ¢ must be at
least as large. Since s(c) < 3, there is no way for ¢ to receive more weight than the item
packed with b by FFD (see Tables 1, 2, and 3).

Case 2. Suppose | B*| = 4. There must be an item of weight exceeding % that, by
Lemma 3.2, cannot be of type Y,. Thus it must be an X, item. If each of the remaining
items have weight at most 3, then the lemma holds for B*, so there must be a Y3 or X;
item. If both items have size at least § + A, then s(B*) > 5 — A/2 + 1+ ¢+ ¢ +
A > 1. On the other hand, if there is a second item whose size is less than £ + A, then cer-
tainly wp(B*) = 1.

Case 3. Suppose | B*| = 5. There must be an item of weight exceeding §, or else
wr(B*) = 4(3). It cannot be larger than 1 in size, so it must be of type X3 or Y3. There
cannot be two items exceeding § in size, or else s(B*) > 1. The remaining three items
must all have size at least - + A. If two are less than % in size, however, wp(B*) < § +
1+ 2(}) < 1. If two are to receive weight §, however, s(B*) > 4 + 5 — A/2 + £ +
t+A> 1.

Thus, in any case, we conclude that wg(B*) is at most 1 if B* contains an item
smaller than /.. O

4. A close look at B2F. We now seek to determine the precise conditions necessary
for B2F (L) to exceed (£) OPT (L) + 8. In defining the weighting function wj for the
B2F packing, we shall retain the type classification described in § 2. That is, items are
still classified strictly according to size as listed in Table 1. Most of our definition for wg
is straightforward and is given in Table 4.

The definition of wpg for items in Y; bins is more complicated and is described in
the following paragraphs.

We wish to maintain the fact that the sum of the weights of the items in any nonex-
ceptional bin is 1. Thus in any Y, bin with only one item, that item has weight 1. (Unlike
the FFD packing, such a one-item bin may exist in the B2F packing.) We would also
like to keep smaller Y, items from having greater weight than larger ones, and we would
like the fallback items to have their weight assigned according to their type. The difficulty
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TABLE 4
Weighting function wg for bins not containing an item
of size exceeding % in B2F packing.

Type of nonexceptional items in a B2F-packed bin Weights assigned

X,or Y, X;orY,

X, or Y,, X; or Y,, any item
X,orY,, Xsor Y, Xz0rY;

X, or Y3, X; or Y3, Xy or smaller item
X,or Yy, Xyor Yy, Xsor Y,
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Xyor Yy, Xyor Ys, Xy or s 53
X; orYs;, X; or Y3, X; or Y3, X, or smaller item %,%,%,%
X; or Y3, X; or Y3, X, or smaller item, X, or
smaller item 1—30, 1—30, 5 %
X,or Yy, X, 0r Yy, Xy 01 Yy, X, 01 Y, I
any five items 535533

comes with small items (those with size less than or equal to 3), in which case wy depends
on the last such item packed in a Y, bin.

Specifically, let / be the index of the last bin in the B2F packing containing a Y,
item, no X, or Y, item, and at most one fallback item. All subsequent Y; bins contain
either two fallback items or one fallback item of type Y, or X,. In either case, the Y,
item is given weight 2. If there is one fallback item, it is given weight ; if there are two,
each is given weight 1.

If | By| = 1, then a By,’s Y, item and all earlier Y, items are assigned weight 1, and
all earlier fallback items are assigned weight zero.

If B, = {y, x}, where y is of type Y, and s(x) = 1, then we determine the weight
of x by examining all items of size less than or equal to s(x) that are packed after the
last Y, item. That is, we set wg(x) = max { wp(?)|s(¢) = s(x), ¢ not packed ina Y, bin }.
Of all items that are available when x is packed that would fit (no larger item would fit),
and that are not packed in Y, bins, we choose the one that has maximum weight (using
Table 4). If there are no such items, then we set wg(x) = zero.

Once Bj, and wg(x) have been determined, the rest of wy is defined as follows. The
Y, item y in By, is given weight wy(y) = 1 — wp(x). Since s(x) < 1 and the maximum
size of any Y, item is 2, x must have fit in any preceding bin. Thus each such bin contains
either two fallback items, or one fallback item at least as large as x. All Y, items preceding
B, are assigned weight wg(p). If there are two fallback items, each is assigned weight
wg(x)/2; if there is only one, it is assigned weight wg(x).

If B;, does not exist, then 4 = 0 and all Y, items are assigned weight 2 with their
associated fallback items given weight 2, or § each if there are two of them.

The example depicted in Fig. 2 illustrates the role of B, in determining wg. Types
of items packed in each bin are given on the inside, wg is listed on the outside. In this
example, & = 4, and one of the X, items in B; is no larger than the X, item in B,.

DEFINITION. The following bins are exceptional for the B2F packing: the last bin
to contain an item of each of the types X5, Y3, X3, Y3, X4, Y,, the last bin containing
exactly three X; or Y3 items, and the last bin of the packing.

In general, therefore, the last bin containing an item of a particular type is exceptional,
although Y, and X items are excluded from this. Note that if an X, item is packed with
two Y, items, there can be no X; items left (since any X, item is larger than any two Y,
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FI1G. 2. The role of By, in determining wg. Here, h = 4.

items) and the bin is exceptional. If an X; item is packed with an X, item and a Y, item,
there can be no X, items left and the bin is exceptional. Similarly, if an X, or Y, item is
packed with an X, or Y, item and an X; item, the bin is exceptional since there can be
no more X, or Y, items available. A bin whose largest item is of type X3 (Y3) is configured
as described in Table 4 unless there are no more X3 (Y3) items available. Also, a bin
whose largest item is of type X4 (Y,) is configured as described in Table 4 unless there
are no more X, (Y3) items left. Finally, the last bin containing three X3 or Y3 items and
nothing else is classified as exceptional. Although this bin might not otherwise qualify
as exceptional, it could cause problems in our proof if its items were each to receive
weight 3.

We conclude that there are at most eight exceptional bins in the B2F packing. We
define an exceptional item simply as one packed in an exceptional bin. Such an item
receives a weight of zero, completing our definition of wg. For the convenience of the
reader, Table 5 provides a listing of the possible weights for each nonexceptional
item type.

Before proceeding with the principle results of this section, we first prove some
preliminary lemmas that reveal details of the B2F packing. The first of these concerns is
the occurrence of items of weight 3, the second the impossibility of a certain configuration
containing Y3 and Y, items.

LEMMA 4.1. Ifthere is an item, x, of B2F weight %, then there must be a bin in the
B2F packing containing exactly three items, each of which has size no larger than s(x).

Proof. The only possible types for x are X3 and Y3, and the only possible bins for
X to be packed in are a three-item bin or one with an item of type Y;, packed in a bin
B;, where i < h. Suppose x is packed with a Y, item. From the definition of wp, it is
clear that the fallback item in By, also has weight § and is no larger than x. Without loss
of generality, we can assume that x is the fallback item in Bj. If x has weight 1, however,
then there must be another item packed after the Y, bins that is no larger than x and

TABLE 5
Possible B2F weights for nonexceptional
items in a bin B;, where i exceeds h.

Type Weight

Y,
X;
Y,
X3
Y,
X,
Y,
Xs

Gl Bl Bl Wi W= NI N= Gl
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has weight 3. From Table 4 we know that this item must be packed in a bin containing
exactly three items each of weight . Moreover, we know from Table 1 that any one of
these three items would have been used in place of x if it were larger. Thus we may
assume that the lemma holds unless x is an X3 or Y3 item packed in a three-item bin.
However, the last such bin will contain the three smallest such items (and hence is
exceptional ). Thus the last three-item bin satisfies the conditions of the lemma. O

LEMMA 4.2. If there is a Y, item of B2F weight %, then there is no Y item of B2F
weight 3.

Proof. Suppose there are such Y; and Y, items. In order to have a Y3 item of weight
1, there must be a B2F bin, B, containing three Y items and nothing else. (A bin with
three items, some of type X3 and some of type Y3, would be exceptional since it would
contain the last X; item, and hence its items would have weight zero.) Of course, a Y;
item can have weight } if it is packed in a Y, bin, but even in this case there must be
another bin containing three Y3 items of weight . If there were two Y items available
when B was packed, then they would have replaced the last Y3 item since any two Y3
items and any two Y, items will always fit in a single bin. Thus the Y, items must have
been packed as fallback items in a bin before B was packed. The only way such a fallback
item can have weight § is if it is packed in a bin containing a Y, item and two Y, items.
(Note that a bin containing an X, item and two Y, items, or one X, item and one Y,
item, is exceptional.) But if such a bin were to occur before B, then two of the available
Y; items would have been packed instead with the Y, item. Thus we cannot have both
items, as specified in the statement of the lemma. O

LEMMA 4.3. If B* is a bin of the optimal packing containing a Y, item, then
wg(B*) <&,

Proof. Assume otherwise for some bin B* containing a Y, item, a. Since a cannot
fit with three or more items in any bin, we must have | B*| = 3. We begin by observing
that if a has weight exceeding 2, then we can, without loss of generality, assume that a
is the Y, item B2F packed in B;. Otherwise, it would come from a bin preceding B, in
the B2F packing, and would consequently be at least as large as the Y, item in B),. Thus
the Y, item in B;, would fit in B* in place of a, and we may as well assume that it is a.

Case 1. Suppose | B¥| = 2. Then certainly some item in B* must have weight
exceeding %, and we can assume that a is packed in Bj,. Let b be the other item in B*.
Since b would fit in By, either b was packed earlier and thus was not available, or the
item packed with g in By, is at least as large as b. If b is packed by B2F in a Y| bin after
By, then wg(b) = % since b cannot be of type X; or Y, (if it were, the item packed in B,
could not be of size J or less). Thus wg(B*) = ¢ in this case. If b is packed before a, or
if b is packed after the Y| bins, wg(b) = 1 — wg(a) and so wg(B*) is at most 1 in this
case. We conclude that if | B*| = 2, wp(B*) cannot exceed .

Case 2. Suppose | B*| = 3. Let B* = {a, b, ¢} with s(b) = s(c). Then s(b) < 3}
and s(c) <31, orelse s(B*) > 1. Therefore, their weights are at most § and §, respectively.
Consequently, we know that wg(a) must exceed 2 if the lemma is to fail. Thus we can
assume that a is the Y, item in B,. We now employ the same argument that we used in
Case 1 to prove that the sum of the weights of a and either b or ¢ can be at most 1. If
both were available, then B, would use two fallback items, so either b or ¢ must be packed
before a. Then certainly the sum of the weight of a and the weight of that item is at most
1. If one is still available, and it is not packed in a Y, bin after a, then it is no larger than
the item packed with a by B2F. Consequently, its weight is no greater, and the sum of
its weight and that of a is at most 1. If the available item is packed in a Y, bin after By,
then its weight cannot be 2 since its size is at most 3. But if its weight is £, the weight of
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B* %s at most $. From this we conclude that both b and ¢ must have weight exceed-
ing s.

Let d be the fallback item in Bj,. Thus s(b) + s(c) > s(d), because s(d) < 1 and
s(b) 2 s(c) > &. It could not be the case that both b and ¢ were available when d
was packed, or else they would have replaced d. Suppose s(d) > s(b). Since s(d) +
s(any Y; item) = 1, and since d is larger than either b or ¢, whichever of these is packed
before d must be one of two fallback items in its bin and hence will have weight less than
1. Suppose s(b) = s(d) > s(c). Then ¢ would have fit with g and d in B, had it been
available. Since it was not used, we conclude that ¢ must be packed before d in a bin
with two fallback items, and hence has weight less than . The only remaining possibility
is that s(¢) = s(d). Now, however, any item no larger than d would fit in B;, with a and
d. Since none was placed there, none can have been left to be packed after the Y bins,
and therefore wg(d) is zero. In this event, since b and ¢ are packed before d, wg(b) and
wa(c) are zero as well, contradicting the assumption that wg(B*) > £. O

LEMMA 4.4. The B2F weight of an optimal bin cannot exceed $ unless the bin contains
either a Y, item of B2F weight greater than s or an item of size less than & + A.

Proof. To obtain the proof, suppose otherwise for some B*. We know from Lemma
4.3 that B* cannot contain a Y, item. It is easy to see then that | B*| = 3.

Case 1. Suppose | B*| = 3. Then the only item of weight exceeding 1 can be an X,
item. Since any two such items and an item of size greater than § + A would be
too big to fit, there can be at most one item of weight exceeding 3 and wgz(B*) < § +
2(1/3) <&

Case 2. Suppose | B*| = 4. Suppose first that the largest item in B* is an X, item.
There cannot be another item of size greater than , because then the sum of these sizes
would exceed 5 — A/2 + 3+ 2(: + A)> 1. Items of size at most § (X, Y4, X5) can have
weight at most 3. If any of these items were to have weight less than or equal to £, then
wg(B*) would be at most  + 2(3) + 1 = £. Thus all three items besides the X, item
must be X, or Y, items of weight %. But such items have size exceeding % and then
s(B*) > & — A + 3() which is at least 1 if A = 55. If A > 55, however, s(B*) >
& — A/2 4+ 3(¢ + A) > 1. Thus in all cases where | B*| = 4 and B* contains an
X, item, wg(B*) = ¢.

Suppose now that the largest item is a Y, item, which has weight less than or equal
to 1 by assumption. If there were two additional items of size greater than 1, we would
have s(B*) > % + 2(3) + £+ + A > 1. Thus there must be two items of size less than or
equal to 1, and hence of weight at most . Since there can be no item of weight exceeding
1, we must have wg(B*) = 2(3 +1) <&.

Since | B*| = 4, there must be at least one item of weight exceeding 35, which must
be of type X; or Y3 and of weight 3. If any item has weight less than or equal to £, wg(B*)
would be at most 3(3) + £ = £. If there are two items of weight 5, we would still have
wg(B*) < $. There cannot be four items of size greater than }, so there must be an X,
or Y, item of weight ; and three X or Y3 items. At least two of the X3 or Y5 items must
have weight 3, and so there must be a bin in the B2F packing containing three X3 or Y;
items of weight $. In particular, the last three-item bin is exceptional and must contain
three items no larger than those in B*. (Even if the items in B* are fallback items, there
must be such a three-item bin, and the last bin is exceptional.) If the item, x, of weight
1 were still available when this three-item bin was packed, then x and any other item of
weight 1 would replace the bin’s last item. Thus x must be packed as a fallback item in
an earlier bin. The only way to have weight  would be in a bin with an X, (or Y,) item
and another item of weight 1. In this event, however, x and any of the items in the last
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three-item bin would fit with the X, item since they fit with two other X; or Y3 items.
(Note that x cannot be packed as a single fallback item in a Y, bin, since any X3 or Y3
item would fit and be used instead of x.)

Case 3. Suppose | B*| = 5. Ifany item has size exceeding 3, s(B*) would be greater
than § + 4(§ + A) > 1. Similarly, not all items can have size exceeding %. If all items are
no larger than § in size, then the weight of B* would be at most ¢ since none of the items
could have weight more than } and at least one would have weight at most 1. Thus there
must be at least one X3 or Y3 item, and at least one X5 item.

Suppose there is an X3 item. If there are two additional items of size greater than
1 s(B*) > — A/3 +2(3) + 2(} + A) > 1. Thus there is at most one item of weight
exceeding 1 and one additional item of size exceeding . Hence, wz(B*) < § + § +
3 <4

Suppose finally that the largest item in B* is of type Y3. B* can contain at most
one such item, or else s(B*) > 2(4) + 3(¢ + A) > 1. Also, B* cannot contain a Y3 item
and two X, items, or else s(B*) > 5 + 2(3% — A/4) + 2(3 + A) > 1. However, if B*
contains three items each of weight less than or equal to 3, wg(B*) = 5 + § +
3(%) < $. There must be at least two items of size (and hence weight) no greater than 2,
orelse s(B*)> %+ 3(3) + # + A> 1. The only remaining possibility is for B* to contain
a Y;item, a Y, item, an X, or Y, item, and two X items. By Lemma 4.2, either the Y3
item has weight less than j or the Y, item has weight less than ;. Either of these possibilities
contradicts the assumption that wz(B*) > $. O

LEMMA 4.5. There cannot be a Y, item a with wg(a) Z 5 if there exist items b and
c with wg(b) = %, s(¢) > max (5 — A/4,  + A), and s(a) + s(b) + s(c) = 1.

Proof. We shall show that under these conditions no bin of the optimal packing
can have a B2F weight exceeding . Suppose L contains such items and that, for some
optimal bin B*, wg(B*) > . As we have seen before, there is no loss of generality in
assuming that g is the Y; item in Bj,. We know from Lemma 4.4 that B* must contain
a Y, item of weight greater than j or an item of size less than § + A. If there is a Y, item
of weight exceeding 3, however, then there must have been such an item available when
By, was packed. Since any such item is smaller than the sum of the sizes of b and c, it
would fit with a in B, contradicting the definition of Bj,. Thus the only possiblility is
for B* to contain an item, d, of size less than  + A. When a was packed, if 4 and any
other item of size at most that of » were available, they would be used in place of the
fallback item in By,. Since wg(b) = 1, either b itself must have been available or b must
be packed in an earlier Y; bin and some item no larger than » must have been available.
In either case, there must have been an item no larger than b available when B, was
packed. Thus d must not have been available. But if d is packed in a Y, bin before B,
it cannot be the only fallback item, since there must be an item of weight 3, no larger
than b, available that would fit with any Y, item. Thus d must have weight no greater
than {. At this point, we must consider the possible configurations for B*. Certainly B*
must contain at least three items.

Case 1. Suppose | B*| = 3. By Lemma 4.3, B* cannot contain an item of weight
greater than 3. Thus wy(B*) =3 +1+1=1

Case 2. Suppose | B*| = 4. B* must contain an item of weight greater than 3,
which can only be an X, item by Lemma 4.3 and by the above arguments focusing on
the weight of Y, items. Moreover, if there is not a second item of weight greater than 3,
then we would have wg(B*) < § + 4 + § + ¢ = Z. If there is a second item larger than §
in size, then there must be a second item whose size is less than § + A, or else s(B*) >
- A/2+ %5+ E+ L+ A> 1. Since this second small item will also have weight no
greater than &, we again have that wp(B*) <1+ 31+2@)=1.



ANALYSIS OF A COMPOUND BIN PACKING ALGORITHM 73

Case 3. Suppose | B¥| = 5. B* must contain an item of weight greater than .
There cannot be two such items, or else s(B*) > 1. If any of the remaining items has
weight less than or equal to £, then wg(B*) = 3 + 2(3) + + + = £ But this
means that there must be one item whose size exceeds § and three additional items
each of whose sizes exceeds . Thus s(B*) > & + 3(3) + £ > 1. Hence, in all cases,
wa(B*) = §.

To complete the proof of Lemma 4.5, we observe that wz(L) = B2F (L) — 8 since
each nonexceptional bin has a weight of 1, while wz(L) = (£) OPT (L) since each optimal
bin has a weight bounded above by $. Combining these yields B2F (L) < (§) OPT (L) +
8, contradicting the assumption that L was a counterexample for CFB. O

5. Proof of the main result. We shall now employ our weighting function averaging
technique to obtain the final result. From Corollary 3.1 and Lemma 4.4 we know the
optimal bin configurations that may have “too much” weight from the respective FFD
or B2F weighting function, and that since FFD fails to achieve the required bound, any
Y, item receives an FFD weight of 3. Also, from Lemma 4.5, we know that since B2F
fails, any Y, item either cannot be packed extremely well or receives a B2F weight of 2
The heart of the proof of the main result is now contained in the following lemma.

LEMMA 5.1. If B* is any bin of the optimal packing of L, wy(B*) = (wp(B*) +
wp(B*))/2 = 4.

Proof. To obtain the proof, suppose otherwise for some optimal bin B*. Clearly,
at least one of the two weighting functions must give B* a weight exceeding .

Case 1. Suppose wp(B*) > £. Then we know that B* must contain a Y item, a,
and that | B*| = 3. If | B*| = 2, then the second item, b, would fit with a when a was
packed. If it is unavailable, then the Y, packing rule for FFD implies that b cannot have
weight exceeding 1 — wg(a). If b is available, then the item packed with a is at least as
large as b. If b has weight less than or equal to %, then wr(a) + we(b) = %, since a cannot
have weight exceeding # unless nothing fits with it. Since we already know that there are
no Y, bins in the FFD packing by Lemma 3.2, b must be an X, item. In this case,
however, a must also be packed by FFD with an X, item. Thus wg(a) = ? and
wr(B*) < §.

Therefore, we may assume that B* = {a, b, ¢}, where s(a) > s(b) = s(c). It is
easy to see that s(c) < 1 and s(b) < 3, or else s(B*) would exceed 1. Hence wg(c) = i
and wg(b) < 3, implying that wx(a) must be greater than 3. Let B; denote the FFD bin
containing a. Since b would fit in B; with @ (or any other Y, item), wp(b) = 1 — wr(a),
and wp(B*) < 3. Note further that ¢ must be an X, item, or else its weight would be i
and B* would have weight less than or equal to §.

This is, for those readers already acquainted with FFD, exactly the kind of situation
where one expects FFD to perform poorly. We now show that, in this case, the averaging
process with B2F permits our compound algorithm to succeed.

Suppose wg(a)=2. Unless wp(b)=3% and wp(c) =3, we have wy(B*)=
(3 +23/20)/2 = $. Now wg(b) = § implies the existence of a bin containing three items
of type X; or Y3, each of weight 3. There must also be a bin containing three such items
each no larger than b, although their weight may be zero if they are exceptional. If ¢
were available when this three-item bin was packed, it and any smaller item would
replace the last Y3 or X; item. But if ¢ is the smallest item left, it is either /,, and hence
is exceptional, or it is a fallback item and has weight at most 1. Therefore, ¢ must not be
available. If ¢ were packed in a Y, bin, the items of the three-item bin would have been
used unless c is packed with a second fallback item. However, it then has weight at most
1. The only remaining possibility would be for ¢ to be packed with another X, or Y, item
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and an X, or Y, item. In this event, however, ¢ and any item from the three-item bin
would have fit with any X, or Y, item and been used instead. Thus we know that it is
impossible for a to have weight 2 in the B2F weighting.

Suppose wg(a) > 2. It must be that g is in a Y, bin packed no later than Bj,, and
as argued before there is no loss of generality in assuming that a is packed in B,,. Let d
be the fallback item packed with a in B,. Thus s(b) + s(c) > s(d), and both b and ¢
could not have been available when d was packed, else they would have replaced d. If
s(d) > s(b), then wg(d) =Z max { wg(b), wg(c)} and whichever of b or ¢ is not available
has weight less than or equal to (3)wg(d). This causes wg(B*) to be at most 1 +
(})ws(b) no matter where b was packed by B2F. Unless b has weight 3, this quan-
tity is at most 23/20 and w,(B*) would be at most $. But this is precisely the situation
ruled out by Lemma 4.5. If s(b) = s(d) > s(c), then we reach the same conclusion,
since it must still be that wg(d) = wg(b) and since c¢ is not available implying wg(c) =
($)wg(d). Finally, if s(c) = s(d), then any item no larger than d would fit in B,
along with a and d. Since none was used, wg(b), wg(c) and wg(d) are all zero.

Case 2. Suppose wg(B*)> % and B* contains a Y, item of B2F weight ex-
ceeding 3.

Certainly | B*| < 4, since no bin can contain an item of size greater than 3 and
four additional items.

Suppose | B*| = 4. Then there can be no other X, or Y, items and at most one
other item of size exceeding %, or else s(B*) > 1. If all other items are at most } in
size, then wg(B*) =<3 + 3(3) = 3. Since wp(B*) =1 + 3(3), we would have w,(B*) <
¢. Therefore there must be an X3 or Y; item.

Suppose B* contains an X; item. Then there must also be either an item of size at
most $ or an item of size less than § + A. To see this, observe that if all items have size
exceeding 1, s(B*) >3+ % — A/3 + %2 1if A = 55. If all items have size greater than
orequalto + A, s(B*) >3+ 5 —A/3+2G+A)=1ifA> 5. However, if there is
an item of size less than £ + A, then wp(B*) = 2(3) + § + 0 = 11/12 while wp(B*) <
L+ 44 2(%) =4 If, on the other hand, B* contains an Xs item, then wg(B*) < 3 +
1+ 141=177/60 while we(B*) < 2(3) + % + £ = 67/60. In either case, w,(B*) < .

Suppose B* contains a Y item, x. Since wp(x) = 15, we(B*) =3 + 5+ 2(3) =
11/10. Thus w(B*) must be more than 13/10, or else w,(B*) cannot exceed $. This
implies that wz(x) must be 5. In this event, there must be a three-item bin with three Y3
items each of weight 3. If there is a Y, item of weight 1, it must come from an earlier bin
containing exactly two Y, items. The second of these items would have been replaced,
however, by any two of the Y3 items, since any Y, item will fit with any two Y3 items.
Thus there can be no Y5 items of weight 3 in the B2F packing, and the weight of the Y,
item must be %. Therefore, wg(B*) =< % + 1 + 2(3) < 13/10.

Suppose now that | B*| = 3. If there is no X, item or if there is an item of size less
than L + A, then wg(B*) = 1 and w,(B*) < £. Thus we may assume that B* contains
an X, item and that its remaining item is at least £ + A in size. Even if the small item,
v, is of type X3, then wp(B*) is at most 1+2(3) = %. If the Y, item, x, has B2F weight
less than 1, wg(B*) =1+ 2 + L and w,(B*) =< £. The only way that x can have weight
1 is to be in a two-item bin, B;, with another Y, item. This means that y must not have
been available when B; was packed, since it would have fit with x and any Y, item (it
fits in B* with x and an X, item). Thus y cannot have weight § unless there is a three-
item bin consisting of items no larger than y. These items, however, must have been
available when x was packed, and thus y still cannot have weight 5. Therefore, the max-
imum B2F weight for y is 3.

If yis a Y item, then wg(y) = 15 and wp(B*) =3 + 4 + 7 = 11/10. Thus wg(B*)
isatmosti+1+ 3 =13/10and w(B*)=$.
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Therefore, y must be an X; item. It must also be that A exceeds 35, or else s(B*) >
5 — A/2+3%+ 7% — A/3 2 1. Let B; be the bin containing the Y, item, x, in the FFD
packing. We know from Lemma 3.2 that B; is a Y, bin. Let z be the X, item in B*. If z
were packed in a Y, bin in the FFD packing, its weight would be % and w,(B*) would
be =%. Thus z must have been available when B; was packed. Since it was not used in
place of x, the size of the Y, item in B; exceeds 1 — s(z). But z fits with x and y, so
s(z)<1—3%—(%—A/3)=+%+ A/3.Then 1 —s(z) = 11/18 — A/3, which is greater
than 2 — 2A if A > 3. The weighting function for FFD gives weight at most 75 to a Y>
item packed with such a large Y, item, and again we have w,(B*) =< $.

Case 3. Suppose wg(B*) > ¢ and B* contains an item a, where s(a) < ¢ + A.

We know that B* contains neither a Y, item nor a Y, item of weight exceeding %
by Lemma 4.3 and Case 2 above, respectively. We also know that wg(a) is at most §
since s(a) < 1. By Lemma 3.3, we know further that wy(B*) < 1, so that if w,(B*) is
to exceed ¢, we must have wgz(B*) > %. Thus | B*| > 3, since any two items with a can
each have weight at most 3.

Suppose | B*| = 4. Then there must be an X, item, or else wg(B*) = 3(3) + §.
There can be at most one additional item exceeding § in size, or else s(B*) > 5 —
A/2+2()+ 1> 1. Butthen we(B*) =3 +3+2(3) <1

Suppose | B*| = 5. There cannot be an X, item, or else s(B*) > 5 — A/2 +
4(3)> 1. Nor can there be two items of size greater than 3, or else s(B*)>
2(3) + 3(}) = 1. Finally, if only one item has size exceeding i, wgz(B*) = § +
4(3)<3. O

THEOREM 5.1. Min {FFD (L), B2F (L)} =< (}) OPT (L) + 8.

Proof. To obtain this inequality, we observe that our presumed counter-
example obeys min { FFD (L), B2F (L)} — 8 = (FFD (L) — 8 + B2F (L) — 8)/2 =
(wp(L) + wg(L))/2 = wy(L) by our definitions for wr, wg, and w,, while w,(L) =
($)OPT (L) by Lemma 5.1. O

6. Remarks. We have limited our analysis to proving that, for any list, either the
FFD or the B2F algorithm will asymptotically use within ¢ the optimal number of bins.
However, we have been unable to find examples that are even close to this bound. In
fact, the only examples we have been able to contrive that exceed % the optimum depend
heavily on the modification that we introduced to B2F to simplify our proof. For these
instances, this modification forces the B2F packing to be the same as the FFD packing.
If “small” items are not held back, the exact bound might be significantly better (although
a proof of this may well be extremely difficult).

Our weighting function averaging technique actually proves that, even if both al-
gorithms produce particularly egregious packings for some list, the average of the number
of bins used by FFD and the number used by B2F is asymptotically at most ¢ the optimal
number of bins for that list. Presumably, the minimum may always be considerably less
than this upper bound on the average. Furthermore, we remark that the additive constant
we have used (eight) is much higher than necessary. Instead of assigning a weight of zero
to every exceptional item, we could assign a weight that agrees with an item’s type, and
easily reduce this constant. Nevertheless, because we believe that the ¢ coefficient is itself
inflated, the additive constant appears to be of little significance.

Appendix. Bin packing results for B2F alone. We seek to determine the worst-case
behavior of the B2F algorithm. Before doing so, however, we briefly discuss some other
aspects of this approach to bin packing.

We could extend the idea of “best 2 fit” to “best j fit,” for arbitrary j > 2. It seems
likely that the expected performance of these more complex algorithms might be better,
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although the worst-case performance can be shown to be worse, approaching a number
greater than 1.3 as j grows without bound. Simple tests using a uniform distribution for
item sizes seem to back up the improved expected case, although the run time increases
rapidly.

B2F can also be used in the multifit approach to multiprocessor scheduling. Again,
its worst-case performance is poorer than that of FFD. In [3], it is shown that B2F’s
asymptotic worst-case bound is precisely ¢, while it has been proved in [4] that FFD can
be implemented to ensure a tight bound of 72/61.

Returning to bin packing, Fig. 3 depicts an example illustrating that B2F may require,
asymptotically, as many as 3 the optimal number of bins.

To prove that the 3 ratio cannot be exceeded by B2F, we modify the algorithm
slightly in that items less than or equal to £ the bin size will be held back and packed by
the FFD algorithm. This certainly does not affect the example illustrated in Fig. 3, but
it allows us to assume that no items of size § or less are used in packing L, which we
now presume to be minimal counterexample. This reduces the number of cases we must
investigate, thereby simplifying our proof (although it probably detracts from the expected
performance of the algorithm).

LEMMA A. Every item in L has less than 3.

Proof. Let b be the largest item in L and suppose s(b) = 2. Then b is packed in B,
by the B2F rule. Removing the items of B, cannot change the remainder of the packing.
Since s(b) = 2, | B;| =2 and, if | B;| = 2, then B, contains the largest item that would
fit with b in a bin of size 1. If the item or items of B, are removed from L, then both
B2F (L)and OPT (L) can easly be reduced by one, contradicting the presumed minimality
of L with respect to B2F. O

THEOREM A. B2F (L) = (3) OPT (L) + 4.

Proof. We classify an item, x, by its size so that if 1 /(i + 1) <-s(x) = 1/i, then x
is of type X;. The reasoning above shows that all items are of types X, X, X3, or X,
and items of type X, are less than 2 in size. We now define a weighting function w on
the items of L based on the B2F packing.
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If B is any bin with four items in it, each item is assigned a weight of 1. Suppose B
is a bin containing an X; item, b. Then if | B| = 3, w(b) = i, and the other two items
are each assigned a weight of . If | B| = 2, then w(b) = & and the other item is assigned
a weight of 1% if the other item is of type X,. Otherwise, w(b) = % and the remaining item
is assigned a weight of .

Suppose the largest item in B is of type X5. Then if | B| = 2, each item must be of
type X, and is assigned a weight of Z, except possibly for the last bin containing an X,
item. If the last bin containing an X, item has only 2 items in it, it will be classified as
exceptional (as will its items). All exceptional items are given weight zero. (This is an
unnecessarily strict weight reduction, accounting for the constant 4 in the theorem. A
more careful analysis using larger weights for the exceptional items could likely reduce
this constant to 1.) If | B] = 3 and B contains two X, items, each is given a weight of
3 and the remaining item is given a weight of . If B contains only one X; item, then it
is given a weight of  and the other two are each given a weight of 1. If the largest item
is of type X3, then | B| = 3 implies all three items are of type X3, except possibly for the
last such bin (which is also classified as exceptional). All three X; items in such a bin
are given a weight of ,%. One additional exceptional bin shall be identified. If the last X,
item of size exceeding iz is packed with an X, item of size less than 7, then this bin is
classified as exceptional, and its items assigned weights of zero.

The definition of w is summarized in Table 6.

We now show that each bin B* of the optimal packing must satisfy w(B*) = 1.
This, together with the observation that w(B) = % for each nonexceptional bin in the
B2F packing, will complete the proof of Theorem A.

Suppose B* is a bin of the optimal packing with w(B*) > 1. Clearly, | B*| > 1. (If
B* contains an exceptional item, then after removing the item w(B™*) would still exceed
1. Thus it is enough to show that w(B*) = 1 for bins not containing exceptional items.)

Case 1. Suppose | B*| = 2.

If neither item has weight greater than %, then w(B*) < % < 1. Thus B* must contain
an item of type X;. The weight of this item is less than or equal to 2 and the weight of
an X, item is less than or equal to %. Since B* cannot contain two X items, w(B*) =
3+2=1.

Case 2. Suppose | B¥| = 3.

The largest item in B* must have a weight exceeding 3, and so must be of type X;
or X,.

TABLE 6
Weighting function w used in analysis of B2F alone.
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Suppose the largest item is of type X, so that B* = {b, ¢, d}, where s(b) >
s(c) 2 s(d). Then neither ¢ nor d can be of type X,. If both are of type X, then
w(B*) = 1. Both cannot be of type X3, since s(b) + s(c) + s(d) cannot exceed 1. Thus
cis of type X3, w(c) = 75, d is of type X,, and w(d) < 4. If both ¢ and d were available
when b was packed, then either b was packed with an X, item or with two other items.
In either case, w(b) = & and w(B*) = & + & + 1 = 1. Therefore, w(b) must be 3. If ¢
is packed before b, then w(c) = % and w(B*) = 1. If d is packed before b, then it must
be packed with an X; item and another item, since ¢ would have fit and was not used.
Hence w(b) = Zand w(B*) =3+ &+ &= 1.

Thus the largest item in B* must be of type X,. If there is only one X, item,
w(B*) = % + 2({5) < 1. Thus B* = {b, c, d} with b and ¢ both of type X,, where
s(b) 2 s(c). If w(d) =%, then w(B*) = 2(3) + 3+ = 1. Thus d is an X; item and
w(d) = +5. Also, w(b) = w(c) = %, since otherwise w(B*) =3 + {5 + {5 < 1. Since
s(d) > 1, it must be that s(c) < 3. If d were packed before c, then w(d) would only be
1, so that d must be available. In order for w(c) to be %, ¢ must be packed by B2F in a
bin B = {c¢, x} or {c, y, z}. If | B| = 2, then since d would not fit in B, s(x) > s(b)
and b must be in a bin with an X, item and one other item, contradicting w(b) = 2. If
| B| = 3, then neither y nor z can be of type X,. Since there must be an X, item, u, left
(or else B would be exceptional) and since u is smaller than ¢, the B2F rule would
have placed ¢, #, and an X; item in B since ¢, u, and d would have fit. Thus it is impos-
sible to have w(b) = w(c) = % while w(d) = 75 and we conclude that, in any event,
w(B*) = 1.

Case 3. Suppose | B*| = 4.

B* cannot contain an X, item, since 3 + 3(3) > 1. Neither can it contain two X,
items, since 2(3) + 2(3) > 1. Similarly, it cannot contain four X; items, since each has
size greater than 3. However, if it contains three items of type X3 and one of type Xi,
then w(B*) < 3(:%) + + = 1. Thus B* must contain exactly one X, item. If the other
three items have weight less than or equal to %, w(B*) = 2 + 3(2) = 1. If there were
two X; items, s(B*) > 3 + 2(5) + $ > 1. Thus B* must contain exactly one X; item.
Let B*={b,c,d, e}, with b of type X,, and ¢ of type X3. If w(b) < 2 then
w(B*) = % + {5 + 2(3) < 1. Thus w(b) = $ and w(c) = 5. This means ¢ must be
available when b is packed.

If b is the largest item in some bin B of the B2F packing, then B would contain two
X, items and another item since s(b) + s(c) + s(d) + s(e) = 1 implies that 2s(b) +
s(c¢) < 1. This cannot happen, however, so it must be that B = {x, b} where s(x) >
1 — 2s(c), since b was not replaced by two smaller items. Because s(c) <1 —3 — % =
&, we know s(x) > . Thus B is the third exceptional bin (s(b) < 1 — % — % = %) and
again w(B*) = 1.

Now, to complete our proof of Theorem A, we note that w(B) = % for all but at
most four B2F bins (the three exceptional bins and the last bin), so that 2., w(x) =
($)(B2F (L) — 4). At the same time, w(B*) = 1 for all B* in the optimal packing en-
sures 2,cz w(x) = OPT (L). Combining these two inequalities yields B2F (L) =
(3)OPT (L) + 4, as desired. O
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SEMIKERNELS, QUASI KERNELS, AND GRUNDY
FUNCTIONS IN THE LINE DIGRAPH*

H. GALEANA-SANCHEZf, L. PASTRANA RAMIREZ}, aAND H. A. RINCON-MEJiA}

Abstract. It is proved that the number of semikernels (quasi kernels) of a digraph D is less than or equal
to the number of semikernels (quasi kernels) of its line digraph L(D). It is also proved that the number of
Grundy functions of D is equal to the number of Grundy functions of its line digraph L(D) (in the case where
every vertex of D has indegree at least one).

Key words. Grundy function, kernel, line digraph, quasi kernel, semikernel
AMS(MOS) subject classification. 05C20

1. Introduction. For general concepts we refer the reader to [1]. Let D = (X, U)
be a digraph (also we denote X = V(D) and U = A(D)). A set K = X is said to be a
kernel if it is both independent (a vertex in K has no successor in K) and absorbing (a
vertex not in K has a successor in K).

This concept was introduced by Von Neumann [10] and it has found many appli-
cations [1, p. 304], [2]. Several authors have been investigating sufficient conditions for
the existence of kernels in digraphs, namely, Von Neumann and Morgenstern [9], Rich-
ardson [11], Duchet and Meyniel [4], [5], and Galeana-Sinchez and Neumann-
Lara [7].

In [8] Harminc proved that the number of kernels of a digraph is equal to the
number of kernels in its line digraph. In this paper we find similar relations for concepts
nearly related to the concept of kernel, and we survey the theorems relating these concepts.

DEFINITION 1.1 [10]. A semikernel S of D is an independent set of vertices such
that for every ze(V(D)—S) for which there exists a Sz-arc there also exists
an zS-arc.

DEFINITION 1.2 [3]. A quasi kernel Q of D is an independent set of vertices such
that X = QU T (Q)U T (I' (Q)) (where forany 4 =< X, I'"(4) = {xe€ X|x has a
successor in 4 }).

DEFINITION 1.3 [1,p. 312]. A nonnegative integer function g(x) is called a Grundy
function of D if, for every vertex x, g(x) is the smallest nonnegative integer which does
not belong to the set {g(y)|yeI'"(x)}.

This concept, originated by Grundy for digraphs without directed cycles, was ex-
tended by Berge and Schiitzenberger.

The Grundy function can also be defined as a function g(x) such that

(1) g(x) = k > 0 implies that for each 0 = j < k there is a y € I'"(x) with
gy)=7J.

(2) g(x) = k implies that each y € I'*(x) satisfies g(y) # k.

THEOREM 1.1 [3]. Every finite digraph has a quasi kernel. A generalization of this
theorem was obtained by Duchet, Hamidoune, and Meyniel [6].

THEOREM 1.2 [10]. If' D is a digraph such that every induced subdigraph has a
nonempty semikernel then D has a kernel.

THEOREM 1.3 [1, p. 313]). If D is a digraph such that every induced subdigraph
has a kernel then D possesses a Grundy function.

* Received by the editors April 5, 1989; accepted for publication December 18, 1989.
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COROLLARY 1.1. If D is a digraph such that every induced subdigraph has a non-
empty semikernel then D possesses a Grundy function.

2. Semikernels, quasi kernels, and Grundy functions in the line digraph.

DEFINITION 2.1. The line digraph of D = (X, U) is the digraph L(D) = (U, W)
(we also denote U = V(L(D)) and W = A(L(D))) with set of vertices the set of arcs of
D, and for any 4, k € U there is (4, k) € W if and only if the corresponding arcs 4, k
induce a directed path in D, i.e., the terminal endpoint of 4 is the initial endpoint of k.
In what follows we denote the arc 4 = (u, v) € D and the vertex 4 in L(D) by the same
symbol. If H is a set of arcs in D, it is also a set of vertices of L(D). When we want to
emphasize our interest in H as a set of vertices of L(D) we use the symbol H; instead
of H.

DEFINITION 2.2 [8]. Let D = (X, U) be a digraph. We denote by P (X) the set of
all subsets of the set X, and f: P (X) — P (U) will denote the function defined as follows:
foreach Z< X, f(Z) = {(u,x)e Ulxe Z}.

LEMMA 2.1 [8]. If Z < X is an independent set of D then f(Z), is an independent
set in L(D).

THEOREM 2.1. If D is a digraph such that every vertex has indegree at least one,
then the number of semikernels of D is less than or equal to the number of semikernels
of its line digraph L(D).

Proof. Let & be the set of all semikernels of D and %, be the set of all semikernels
of L(D). First we will prove that if S is a semikernel of D then f( S), is a semikernel of
L(D). Let S be a semikernel of D. It follows from Lemma 2.1 that f(.S), is an independent
set. Let (s, x) € Wbe with s € f(S)., then in D we have {s = (s, $2), x = (52, 8) } € U,
5, €S, and since S is a semikernel of D there exists s € S such that (¢, s3) € A(D) and then
y = (¢, 83) € f(S), with (x, y) € A(L(D)). We will prove that f": & — &, where [’ is
the restriction of f to ., is an injective function. Let Sy, S; € & and S, # S». Let us
suppose, e.g., that S|, — S, # . Let v € S; — S,. Since indegree of v is at least one, there
exists (x, v) € A(D). Clearly, (x, v) € (f(S)) — f(S2)). O

THEOREM 2.2. If D is a digraph such that every vertex has indegree at least one
then the number of quasi kernels of D is less than or equal to the number of quasi kernels
of its line digraph L(D).

Proof. Let Q be the set of all quasi kernels of D and Q; the set of all the quasi
kernels of L( D). First we will prove that if Q is a quasi kernel of D, then f( Q). is a quasi
kernel of L(D). Let Q be a quasi kernel of D. It follows from Definition 1.2 and Lemma
1.1 that f( Q). is an independent set of V' (L(D)). Let x € (V(L(D)) — f(Q).); then
x = (x;, x,) € A(D) and since x ¢ f(Q), it follows from Definition 2.2 that x, €
(V(D) — Q), and there exists a directed path from x, to Q of length at most two. We
will analyze the two possible cases:

Case 1. There exists a directed path from x, to Q of length one. Let 7' = (x;, u) be
such a path, then u€ Q, y = (X2, u) € f(Q)r, and (x, y) € A(L(D)).

Case 2. There exists a directed path from x, to Q of length two. Let T = (x;, u, w)
be such a path, then we Q, y = (u, w) € f(Q), and denoting z = (x;, ) we have that
T' = (x, z, y) is a directed path contained in L(D) with y € f(Q)r.

In any case we have that there exists a directed path from x to f(Q), in L(D) of
length at most two, so f( Q). is a quasi kernel of L(D).

Now, we will prove that /”: Q — Q,, the restriction of f to @, is an injective
function. Let Q; and Q, € Q be such that Q; # Q,. Let us suppose, e.g., that Q; — Q, #
&, and v € (Q, — @,). Since indegree of v is at least one, there exists (x, v) € F(D),

clearly (x, v) € (f(Q1) — f(Q2)) and then f(Q1). # /(Q2)r. O



82 GALEANA-SANCHEZ, PASTRANA RAMIREZ, RINCON-MEJfA

Remark 2.1. The hypothesis that each vertex has indegree at least one cannot be
omitted in Theorems 2.1 and 2.2. It suffices to consider D with V(D) = {u, u,, us}
and F(D) = {(uy, u2), (uz, u3) }.

Remark 2.2. For each n € N let us define the digraph D, as follows: V(D,) =
{u, v, wy, -+, wn}, F(Dy) = {(u, wi), (w;, v)|ie{l, ---,n}}. The number of semi-
kernels of D, is two and the number of semikernels of L(D,,) is 2" — 1.

Remark 2.3. Let K3 to be the complete symmetric directed graph with 3 vertices
and H, the digraph obtained by taking » mutually disjoint copies of K3 . The number
of quasi kernels of L(H,) minus the number of quasi kernels of H,, is at least #.

LEMMA 2.2. Let D be a digraph and xo € V(D). If f| and f, are Grundy functions
of D such that for every y € T (x0), f1(¥) = f2(¥) then fi(x0) = f2(Xo).

Proof. The proof follows directly from Definition 1.3. O

THEOREM 2.3. If D is a digraph such that each vertex has indegree at least one,
then the number of Grundy functions of D is equal to the number of Grundy functions of
its line digraph L(D).

Proof. Let us suppose that /> V(D) —> N U {0} is a Grundy function of D and
denote f;.: V(L(D)) = NU {0} the function defined as follows: f (x) = f( x,) for each
X = (X1, xp) € V(L(D)).

OBSERVATION 2.1. f; is a Grundy function of L(D).

(1) fu(x) = k> 0 implies that for each 0 = j < k, there is a y € I'7(p)(x) with
f(y)=j.

Suppose that f; (x) = k> 0 and 0 = j < k, then x = (x|, x;) € A(D) and f(x,) =
k > 0. Since f is a Grundy function of D and 0 = j < k, there exists x3 € I'},(x,) such
that f(x;) = j and then y = (x,, x3) € A(D), (x, y) € A(L(D)), and fi.(y) = j; 1.e., y €
T py(x), with fL.(y) = j.

(2) fu(x) = k implies that each y € I'7 p)(x) satisfies f.(y) # k.

Suppose that f; (x) = kand y € T'}py(x); then x = (x;, x,) € A(D), y = (x2, X3) €
A(D), f(x,) = k, and x3 € I'5(x,) and since f is a Grundy function of D, it follows that
S(x3) # kand fi.(y) = f(x3) # k.

OBSERVATION 2.2. If f', f? are Grundy functions of D such that f' # f? then
fL# fi.

Suppose that £} = f7 and that x, € V(D). Since indegree of x, is at least one then
there exists an arc (z, xo) € A(D). By the hypothesis we have that f1((z, X)) =
fi(z, x0)), ie., [ (X0) = f2(Xo).

Let us suppose that g: V(L(D)) = NU {0} is a Grundy function of L(D) and let
us denote gp: V(D) = NU {0} the function defined as follows: for each xy € V(D) let
f = (y, x0) € A(D) any arc of D with terminal endpoint x, (the hypothesis of Theorem
2.3 implies that there exists at least one such arc) and define gp(xy) = g(f).

OBSERVATION 2.3. gp is well defined.

Let xo € V(D) and suppose that f; = (¥, Xo) and f> = (), xo) € A(D).

If T5(x0) = & then T'Lp)(f1) = TLpy(f2) = & and Definition 1.3 implies g(f;) =
g(f2) = 0.

If T'5(xo) # & then Definition 2.1 implies that 'S 5)(f1) = 'S (p)(f2) and it follows
from Definition 1.3 that g(f;) = g(/>).

OBSERVATION 2.4. gp is a Grundy function of D.

(1) gp(x) = k> 0 implies that for each 0 = j < k, there exists a y € I'f p,(x) with
&n(y) =J.

Suppose that gp(x) = k > 0 and 0 = j < k; the hypothesis and the definition of g,
imply that there exists ' = (z, x) € A(D) with g(f) = k > 0 and since g is a Grundy
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function of L(D) there exists f’ € I'fp)(f) such that g(f’) = j, f' = (x, w) for some
we V(D), gp(w) = g(f") =j. Clearly w € T'5(x) and take y = w.

(2) gp(x) = k implies that each y € I'}(x) satisfies gp(y) # k.

Suppose that gp(x) = k; then there exists f = (z, x) € 4(D) such that g(f) = kand
y € T'h(x), so (x, y) € Tip)(f). Since g is a Grundy function of L(D) it follows that
g((x, y)) # kand gp(y) = g((x, y)) #* k.

OBSERVATION 2.5. If g', g* are Grundy functions of L(D) such that g' # g* then
gb #* &b.

Suppose that g, = g3 and let f = (x, y) € A(D); then gh(y) = g5(y). The
definition of g}, g3 implies g'(f) = g*(f).
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WEAK THREE-LINKING IN EULERIAN DIGRAPHS*
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Abstract. Let G be an Eulerian digraph, and a, b, ¢ an ordered triple of its vertices. A polynomial time
algorithm of O(e + n?) time is presented to decide whether G contains three arc disjoint ab-, bc-, and ca-paths,
where e and n are the numbers of arcs and vertices, respectively. The algorithm is based on a structural char-
acterization of minimal infeasible instances of the problem.

Key words. Eulerian digraph, disjoint paths, planar graph, polynomial time algorithm, weak three-linking
AMS(MOS) subject classifications. 05C20, 05C38, 05C45, 90B10

1. Introduction. Let G = (V, E) be a digraph and (s;, ), i=1,---,k, be
ordered pairs of terminals. A collection of k arc disjoint s;z;-paths is called a weak
(s1t1, =+, Setr)-linking. When the number of pairs of terminals is restricted to a constant
k, the problem of existence of a weak (s,¢;, - - - , Skt )-linking is called the weak k-linking
problem. (The term linking is used for a collection of vertex disjoint paths, but we do
not consider this problem here.)

The digraph H = (V, F)ywhere F = {t;s;:i =1, - - - , k} is called the demand graph.
In this paper we solve the weak 3-linking problem in case G + H = (V, E U F) is Eulerian.

Let us recall some related known results on weak linking problems in digraphs.
Fortune, Hopcroft, and Wyllie [2] proved that the weak 2-linking problem is NP-complete
for a general digraph. However, there are some classes for which the problem is poly-
nomially solvable. If k is fixed, weak k-linking is polynomial for acyclic digraphs [2],
and weak 2-linking is polynomial for tournaments [1]. Another result on weak linking
in digraphs is due to Frank [3]. He characterized those demand graphs H for which a
condition called “directed cut criterion” is necessary and sufficient in case G + H is
Eulerian. Another work where the Eulerian condition is involved is [6], where the integral
multicommodity flow problem is solved for a class of acyclic planar networks. A recent
survey on linking problems, both in directed and undirected graphs, can be found
in [4].

To solve the weak 3-linking problem for G + H Eulerian, it is sufficient to consider
only the special case when s; = #3, s, = f;, and s3 = £, and G is Eulerian. (Let G and
(si, 4), 1 =1, 2, 3, be an instance of the weak 3-linking problem. Construct G’ by adding
three new vertices a, b, and ¢, and arcs as,, 4,0, bs,, t,c, ¢s3, and t3a. Then G has
three arc disjoint s;¢;-paths if and only if G’ has three arc disjoint ab-, bc-, and ca-paths.)

Let G be an Eulerian digraph, and a, b, ¢ an ordered triple of its vertices. We say
that an instance (G; a, b, ¢) is feasible, if there are three arc disjoint ab-, bc-, and ca-
paths. Otherwise the instance is infeasible. The specified vertices a, b, and ¢ are called
the terminals. We say that an instance is minimal infeasible if it is infeasible, but after
contraction of any arc, at least one of whose head and tail are not in {a, b, c}, we get a
graph G’ such that (G'; a, b, ¢) is feasible. We prove the following theorems.

THEOREM 1.1. Let (G; a, b, ¢) be a minimal infeasible instance. Then G has the
following properties:

* Received by the editors May 1, 1989; accepted for publication (in revised form) March 27, 1990.
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(1) G is planar 2-connected. The terminals have degree 2, and all other vertices
have degree 4.

(i1) G has a planar representation in which every face is a directed cycle, (or equiv-
alently, the arcs incident to a vertex are alternatively oriented out and in), and the ter-
minals lie on a common face which goes through them in the order c, b, and a.

Conversely, any instance (G; a, b, c¢) satisfying (i) and (ii) is infeasible (but not
necessarily minimal).

An example of a minimal infeasible instance is given in Fig. 1.

THEOREM 1.2. There is a polynomial time algorithm to decide whether an instance
(G; a, b, c) is feasible or infeasible.

Theorem 1.1 will be proved in the next section where a more general problem, with
possibly more terminals, is considered. We introduce a notion of an irreducible infeasible
instance and show that every such instance has a certain decomposition, which is called
a series. The series decomposition of an irreducible instance enables us to reduce the
question of feasibility to a collection of subproblems. A polynomial time algorithm,
whose existence is stated in Theorem 1.2, will be presented in § 3. There we also show
that the weak linking problem, when the number k of terminal pairs is a part of the
input, is NP-complete for G + H Eulerian.

We conclude this section with some necessary notation.

Notation. A digraph G = (V, E) consists of a set V of vertices and a set E of directed
arcs. For technical reasons, we allow multiple parallel arcs, but loops are excluded. We
recall that a digraph is Eulerian if it is connected, and the outdegree and indegree of each
vertex are equal.

Under a path or a cycle, we always understand a directed path or cycle. Repetition
of arcs is not allowed, but we do not require all vertices of a path or a cycle to be distinct.
A cycle that visits every arc exactly once is called Eulerian. A path from x to y is called
an xy-path. If P is a path, and x and y are two of its vertices, such that x precedes y on
P, we denote by P,, the segment of P starting at x and terminating at y. Similarly, if C
is a cycle and x and y are two of its vertices, then C,, is the part of the cycle from x to
y. If Py, P,, ---, Py is a collection of arc disjoint paths such that the last vertex of P;
coincides with the initial vertex of P;,, foreachi =1, ---, kK — 1, we denote by P =

FIG. 1. A minimal infeasible instance (G; a, b, ¢).
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(Py, P, -+, Py) the concatenation of the paths. In the following discussion, graph G,
path P, or cycle C may sometimes be treated either as a vertex set or an arc set, as far as
its meaning is unambiguous from the context. If it is necessary to specify, we use E(G)
to mean the arc set, and V' (G) to mean the vertex set.

For a subset .S of vertices, §*(.S) denote the set of arcs from S to V'\S, 6 (S) the
set of arcs from V\S to S, and 85 = 6 (S) U 6*(S). If G is Eulerian, then |67(S)| =
|67(S)| for every S, where | A| of a set 4 denotes its cardinality. A set S is called a k-
cut if |6S] is k. (Since we consider Eulerian digraphs only, kX must always be even.)

Given two disjoint sets U, W < V, we denote by A(U, W) the maximum number
of arc disjoint paths from U to W. A set S satisfying S > U, V\S > W, and 6 (S) =
AU, W)is called a minimum (U, W)-cut. It is well known that the minimum (U, W)
cuts are closed under union and intersection. Hence, among all minimum (U, W)-cuts,
there exists one largest cut S with the property that S > $’ for any other minimum
(U, W)-cut S'. The largest minimum (U, W)-cut can be found as a by-product of the
Ford-Fulkerson algorithm of maximum flow.

Some further notion, such as degree, planarity and edge, and vertex connectivity
properties refers to the unoriented graph G obtained from a digraph G by forgetting
the arc orientations. In particular, the degree of a vertex is the sum of’its out- and indegrees,
and a digraph is called connected if G is connected. A subset U c V is a vertex cut if
G\ U has more connected components than G. A vertex v is called an articulation if {v }
is a vertex cut. A digraph is k-connected if it does not have a vertex cut of size < k. A
maximal (with respect to set inclusion ) 2-connected subgraph of a graph is called a block.

2. Structural characterization of infeasibility. In this section we formulate and solve
a more general problem. Let G = (V, E) be an Eulerian digraph and X = (xy, - - , X,),
m = 3, be an ordered m-tuple of its vertices, which are called terminals. We also write
x < x' for terminals x = x; and x' = x; if i < j. We say that an instance (G; X) is feasible
if there is a triple x;, X;, and x; of terminals such that x; < x; < x; and (G; x;, x;j, Xx) is
feasible in the sense of the previous section. Such a triple is called a feasible triple, and
a cycle through these terminals is called a feasible cycle. Equivalently, (G; X ) is infeasible
if every Eulerian cycle goes through the terminals in the order x,,, - - - , x; (up to a cyclic
shift). It follows that a feasible instance (G; X) contains a feasible cycle through x for
any terminal x € X.

Let us also remark that, to establish feasibility, it is sufficient to find two arc disjoint
paths, say x;x;- and x;x,-paths with x; < x; < x; (up to a cyclic shift), because the third
one always exists since G is Eulerian.

Another sufficient condition for feasibility, which will be used in the proof of Lemma
2.7 (case iiib), is the existence of a disjoint x;x3-path P'* and x,x,-path P*. Since G
is Eulerian, there exists also a pair of arc-disjoint paths from {x,, x3} to {x;, x4} in
digraph G\ E(P'3 U P*?), i.e., either a pair P34, P?! or a pair P3!, P?* (where P" stands
for a x;x;-path). In the former case, (P, P**, P*?, P?') forms a feasible cycle through
terminals (x;, x3, x4). In the latter case, C'* = (P'3, P3') and C** = (P?**, P*?) are
two arc disjoint cycles. Let u € V(C'3) and v € V(C?*) be a pair of vertices for which
the length of the shortest #v-path P is minimum. Then P is arc disjoint with both C'3
and C?* and since G is Eulerian, there is a vu-path P’ in G\E(C"? U C* U P). It is
easy to check that the instance (C'> U C** U PU P'; x,, X2, X3, X4) is feasible for any
mutual position of # and v on C'3 and C?* (four possibilities), where P and P’ may be
empty paths. Some other configurations sufficient for feasibility are considered in the
proof of Lemma 2.2.

We say that an instance (G; X)) is reducible if one of the following reductions can
be performed.
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(1) Let Sbe a2-cut and SN X = &. Let u be the tail of the arc from V\S to S,
and v the head of the arc from S to V'\S. Delete S and add the arc uv.

(2) Let Sbea2-cut, | S| =2, and S contain exactly one terminal x. Then contract
S to x and delete the loops. (Terminal x becomes a vertex of degree 2.)

(3) Let S be a 4-cut such that the subgraph induced on S is connected, | S| = 2,
and S N X = . Then contract S to a single vertex (of degree 4), and delete the loops.

LEMMA 2.1. (G; X) is feasible if and only if it is feasible after performing any of
reductions (1), (2), or (3).

Proof. 1t is obvious that if an instance is feasible, then it is feasible also after any
of the reductions. The converse is not difficult to see for reductions (1) and (2). For
reduction (3), it follows from the following fact. Let s and s’ be the heads of the two
arcs entering S, and let ¢ and ¢’ be the tails of the arcs leaving S. Since S is connected
and G Eulerian, there are both an (st, s't')-linking and an (s, s't)-linking in S. O

We say that (G; X) is irreducible if none of the reductions (1), (2), or (3) can be
performed.

LEMMA 2.2. Let (G, X) be an infeasible irreducible instance. Then each terminal
has degree 2, and each nonterminal vertex has degree 4.

Proof. Assume that the degree of some terminal, say X, is at least 4. We distinguish
two cases.

(i) There are at least two arc disjoint paths from x; to X\ x;. Let the end vertices
of these two paths be x; and X;, respectively. Since G is Eulerian, these paths can be
completed to two arc disjoint cycles C and C’ containing {x;, X; } and {x;, X;}, respec-
tively. If x; # x; and i < j, then (X;, Cx,x;s Xi» Cxxys Chixs Xjs Chyr,) s a feasible cycle
through (x;, x;, x;). If i = j, let x; be a terminal distinct from x; and x;. There must
exist some third cycle C” containing x; and a vertex u of V' (C U C’), and such that C”
is arc disjoint with C U C". It is easy to show feasibility for { x;, x;, Xx) using arcs of C U
cuc.

(i1) If the assumption of (i) does not hold, there is, by the Menger Theorem, a set
S with SN X = {x;} and |6S| = 2. Hence reduction (2) can be performed.

Let u be a nonterminal. Clearly, the degree of u is at least 4, otherwise reduction
(1) can be performed for S = {u}. Assume that the degree of u is at least 6. We again
apply the Menger Theorem. There are either three arc disjoint paths from u to X, or
there is a set S containing u, SN X = & and |6S| = 4. Clearly, (G; X) is reducible in
the latter case. In the former case, the three paths from u lead to distinct members of X,
say X1, X, and X3, since the degrees of terminals are 2. These three paths can be completed
to three arc disjoint cycles. It is then easy to see that (G'; X) is feasible. O

Let (G; X) be an irreducible instance and let y be a nonterminal vertex of degree
4 which is an articulation of G. Then G\ y has exactly two connected components which
we denote by U; and U,. Let us say that articulation y well splits the terminals, if X N
U =(x, Xj41, s xkem)and XN Uy = (Xk, **+ 5 Xy X1, ° 5 Xj—1) for some 1 =
Jj < k = m (the roles of U, and U, can be interchanged). In this case we define the 1-
decomposition of (G; X) at y as the following pair of instances (G,; X;) and (G,; X3).
For i = 1, 2, let G; be the subdigraph of G induced on vertex set V; = U; U {y} and
X;=(XNU)U{y}. The terminals in X; are ordered as in X, and y is added as the last
one. (Observe that both G, are Eulerian and | X;| = 3 (otherwise | XN U;| =1 and G
is reducible). Hence the instances (G;; X;), { = 1, 2 are correctly defined.

LEMMA 2.3. Let (G; X) be an irreducible instance such that the degrees of all
terminals and nonterminals are 2 and 4, respectively. Let y be an articulation of G. Then
(G; X) is infeasible if and only if

(i) articulation y well splits the terminals; and

(ii) (Gy; Xy), i = 1,2, of the 1-decomposition of (G, X) at y are both infeasible.
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Proof. Assume that (G; X) is infeasible and let C be an arbitrary Eulerian cycle of
G. If we start at terminal x,,, cycle C goes through the terminals in the unique order x,,,,

Xm_1, "+, X since (G; X) is infeasible. Vertex y is entered by C twice, so the terminals
are well split. It is easy to see that feasibility of either of (G;; X;), i = 1, 2 yields feasibility
of (G; X).

The converse follows by an analogous argument. O

Now we present a rather technical lemma which will be used later in the proof of
Lemma 2.7.

LEMMA 2.4. Let F' and F be the digraphs given by either Fig. 2(a) or Fig. 2(b).
Then the existence of weak (sit,, s:t;)-linking in F' implies the existence of weak linking
in F for the same pairs of terminals, for every choice of (not necessarily distinct) terminals
s, m€Sandt, t, €T, where S and T are defined as follows.

S={ai,a,y}and T={a,,y'} for Fig.2(a),
S={ay,y} and T={a,,ay,y'} for Fig. 2(b).

Proof. Let F' and F be defined by Fig. 2(a). Then F' has weak (¢, $»f;)-linking
for the following seven choices of terminals (siZy, $:t2): (a1, yv'), (a1y', yay),
(a1az, ¥y, (a1y', a3y'"), (@142, a2y"), (Y, @2y"), and (ya,, a,)'). It is easy to check that
also F has weak (5,1, s»f2)-linking in each of these cases. The proof is analogous when
F and F' are given by Fig. 2(b). O

Our main result is the following description of irreducible infeasible instances.

THEOREM 2.5. Let (G; X) be an infeasible irreducible instance. Then

(i) G is planar, all terminals have degree 2 and all the other vertices have degree
4; and

(b)

FIG. 2. The graphs for Lemma 2.4.
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(ii) G has a planar representation in which every face is a directed cycle (or equiv-
alently, the arcs incident to a vertex are alternatively oriented out and in), and the terminals
lie on the outer face, which is oriented against the order of terminals.

Conversely, every such instance is infeasible (but not necessarily irreducible).

Proof. We show first that every instance (G; X)) satisfying the conditions of the
theorem is infeasible. We may assume that G is drawn so that the terminals are on the
boundary, which is oriented against their order. Assume there is a feasible triple, say x,
X2, X3, of terminals. Let P and P’ be arc disjoint x;x,- and x,x;-paths. Let y and y’ be
the predecessor and successor of x, on the boundary (see Fig. 3). Since x, has degree 2,
y and )’ must lie on the paths P and P’, respectively. The boundary of G divides the
plane into two regions: inner and outer. The inner region is split by path P’ into regions
R, and R,, where R, contains vertex x;, and R, contains vertices x, and y. Let u be the
vertex of V(P) N V(P') such that P,, lies entirely in R,, and the length of P, is
maximum. Then the arc of P entering and leaving u lies in R, and R,, respectively. The
degree of u is 4. But then the two arcs leaving u are neighbouring, which contradicts our
assumption that each face of G is a directed cycle.

To prove the converse, we need to introduce some additional notation. Let P =
(Vo = X1, Vi» " ** » Vk» Yk+1 = X2) be an x;x;-path. The graph G\ E(P) may split into
several components. A component will always mean a connected component of G\ E(P).
The collection of these components will be called a decomposition given by P. We will
classify the components according to the position of terminals. The component containing
terminals x; and x,, which belong to the same component because G is Eulerian, will

FIG. 3. The proof of infeasibility in Theorem 2.5.
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be called basic, and denoted by B. The components distinct from B that contain some
terminals will be called important. Finally, the components without terminals will be
called plain. Also note that each component, different from the basic component, is
Eulerian.

We say that a component Kj is surrounded by a component K (or that K surrounds
K) if there are three vertices v, = y;, V2 = y;,, U3 = y;, of P, i; < i < i3, such that v,,
v; € K; and v, € K,. We say that an x;x;-path P creates a series decomposition of
(G; X) if the following are satisfied.

(1) There are no plain components in the decomposition.
(ii) The important components do not surround each other (but they may surround
or be surrounded by the basic component).

(iii) The basic component contains only terminals x; and x,.

(iv) Let K, K3, - -+ K, be the important components in the order in which they
are visited by P (cf. (ii)). Then the terminals are distributed in the important
components against their order, i.e., if x; € K,, x; € K, for some 2 < i < j, then
rs.

A series decomposition is depicted in Fig. 4.

An instance (G; X)) is called trivial if every vertex of G is a terminal. It is not difficult

to see that trivial infeasible instances are just simple directed cycles if G is 2-connected.

Now we prove two lemmas before completing the proof of Theorem 2.5.

LEMMA 2.6. Let (G; X) be an infeasible irreducible instance. Then it has a series

decomposition for some x,x,-path P.

Proof. Let us start with an arbitrary x; x,-path P. We will modify P until we get a
series decomposition.

(i) Let us denote by #(P) the set of vertices that are in plain components. We
must find a decomposition satisfying, among others, & (P) = . For this assume that
P is chosen so that | & (P)| is minimum. Assume that a plain component K surrounds
some nonplain (i.e., basic or important) component K'. Let v;, v,, and v; be three
vertices of P that lie on P in this order and such that v;, v; € Kand v, € K'. Let Qbe a
v;v3-path in K. Define a new x;x;-path P’ by P' = (Py,,,, O, P,x,), and consider the
decomposition given by P'. Obviously, we get & (P') = & (P)\ {v;, v3} which contradicts
our assumption on the minimality of . (P). Therefore assume that a plain component

K3 K2
X3 x4 x5
o) © ©
(?4———04—— ®
| ! P
I : P\
I i I
| | | \
| ' P
= ! i
| | | ‘\
©<——8 J><-——o<~-—g be
x2

B

FIG. 4. A series decomposition (broken arcs denote x, x,-path P).
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K does not surround any nonplain component but may surround some other plain
components. Let £ be the minimum set of components defined as follows: (a) K€ £
and (b) K” € # whenever K” is surrounded by some K’ € #. Then 2 contains only
plain components and S = UZ is a 2-cut (where 65 consists of two arcs of P), which
contradicts the irreducibility (cf. property (1)) of (G; X). Thus property (i) of series
decomposition is established.

(ii) Assume there are two important components K and K’ such that K sur-
rounds K'. Let v;, v,, and v; be vertices of P as in the definition of surrounding. Let x
and x’ be terminals contained in K and K’, respectively, and C and C’ be Eulerian
cycles in K and K, respectively. Consider the paths (Py.,, C, Py, C'y Py,x,) and
(Pyyyy C', Py, C, P,,y,). The former path traverses terminals in order x;, x, x" and the
latter one in order x;, x', x. This shows that instance (G; X) is feasible.

(iii) Assume that the basic component B contains some terminal x;, i > 2. Let Q
be a x,x; path in B. Then P and Q are arc disjoint, and hence (G; x;, X, Xx;) is feasible.

(iv) Assume that property (iv) of series decomposition does not hold. Then it is
easy to see that terminals x; € K, and x; € K| can be traversed in the order x, x;, X;,
which shows feasibility of (G; X). O

Let (G; X) be an instance in which G is 2-connected and the degree of each terminal
is 2. Let (B, K, - - -, K,) be a series decomposition of (G; X) with respect to an x;x;,-
path P. Let us call a component K; trivial if it consists of only one vertex, a terminal.
Component B is defined to be trivial if it consists of only two vertices x; and x;. If every
component is trivial, then the instance (G; X) trivially satisfies (i) and (ii) of Theorem
2.5 since it is a directed cycle whose every vertex is a terminal. If a component is nontrivial,
then the path P must contain at least two vertices of the component (which are not
terminals) by the 2-connectedness of G. The terminals are not on P because they have
degree 2 and lie in a nontrivial important component.

We define a new ordered set Y; of terminals for every nontrivial component K; as
follows. The set Y; consists of the original terminals from X which belong to K; in their
original order, and followed by the new terminals which are all the vertices of path P
belonging to K;, ordered in the direction of P. We call each instance (K;; Y;) a subproblem
of the instance (G ; X). For the basic component B, the subproblem is defined in a slightly
different way. We identify in B the terminals x; and X, into a new vertex xo and call the
resulting digraph Kj. (Observe that K is Eulerian.) The set Y, of terminals consists of
all the vertices of P, including xg, which lie in Kj. The order of terminals is given by the
direction of P.

LEMMA 2.7. Let (G;X) be an infeasible irreducible instance, and let
(B,K;, -+ ,K,),p 2 1, be a series decomposition with respect to some x,x,-path. Then
component K; is either trivial, or the subproblem (K;; Y;) is also irreducible and infeasible
foreveryi=0,---,p.

Proof. We show first that every subproblem is irreducible. For contradiction, assume
that a subproblem (K; Y) is reducible. We distinguish some cases according to which
reduction of (1), (2), or (3) can be performed.

(i) If Sisa 2- or 4-cutin Kand SN Y = &, then S'is also a 2- or 4-cut in G and
SN X = . Hence reduction (1) or (3) can be performed for (G; X).

(ii) Assume S'is a 2-cut in K and S contains exactly one terminal ¢ from Y. If ¢ ¢
X, then ¢ is a vertex of P, and S is a 4-cut in G with S N X = . Then reduction (3)
can be performed. If 1 € X, then S is a 2-cut in G, and reduction (2) can be performed.

Further, we have to show that every subproblem is infeasible. For contradiction,
assume that some (K; Y) is feasible. It is not difficult to see that we may assume that a
feasible triple contains at least one terminal x € X, since there is a feasible cycle for any



92 T. IBARAKI AND S. POLJAK

terminal from Y as stated in the first paragraph of § 2. Let C be a cycle in K which
traverses a feasible triple of terminals. Again, we distinguish several cases.

(i) The feasible triple of terminals consists of three terminals from X. Then the
triple is feasible already for (G; X).

(i1) The feasible triple consists of two original terminals and one new terminal, say
(K; x, x', ) is feasible where x, x' € X, x < x', and y is a vertex in P N K. We recall
that C is a cycle in K that traverses the terminals in the order y, x, x. Then the paths
Py = (Py,y, C,x) and P, = C,,- are arc disjoint, and hence (G; xi, x, x') is feasible.

(iii) The feasible triple is of the form x, y, y’where x€e Xand y, Y e PN K, y <
y'. Here we distinguish two subcases: (iiia) P, K, and (iiib) P,,- K, where P,,-and
K are viewed as sets of vertices.

(iiia) Denote by v a vertex of P,,-\V'(K). If K is not the basic component B, then
veB. Let Q be an xpv-path in B. Then the paths (P,,,C,,, Pyx,) and
(Qxyos> Puyr, Cyri) are arc disjoint, which shows that (G; x;, x2, x) is feasible. If K = B,
then x = X, and the existence of cycle C through X, y, ' means existence of an x,x;-
path Q in B through y and y’ (in that order) because terminals x; and x, have degree
one in B. Denote by K’ the component containing the vertex v, and let X' € X be a
terminal in K’, and W a cycle through v and x’ in K'. Then (Qx,y, Py, Woxr, Win,
P/, Q,+,) is a path that proves feasibility of (G; xz, X', x;).

(iiib) This case is the crucial one in our analysis. Assume that K is not the basic
component. ( The case when K is basic is quite similar.) We recall that P, is the segment
of P from y to ', and that it is entirely contained in K, and that C is a cycle through y,
y'and x in K. Let us denote by S, the vertex set of P,,» U C,,-. Let P be the maximum
segment of P such that it contains P,,.and all its vertices are in K. Let K* be the digraph
obtained from K by reversing the arcs of C,,, and adding the arcs of P,,, N P (in their
original direction) and the arcs of P, N P in the reversed direction. We define the set
S as the set of vertices in K* that are reachable from S, by a directed path in K*. Fig. 5
illustrates these concepts, in which P is indicated by broken arcs, and set .S by bold arcs.

We claim that either (bl) S'is a 4-cut in G with S N X = &, or that (b2) (G; X) is
feasible.

Case (b1). Assume that SN X = & and S N P c P, where P and P are viewed as
sets of vertices. We will show that .S is a 4-cut in G. Since we also assume SN X = &,
reduction (3) can be performed with S for (G; X), which contradicts the irreducibility
of (G; X).

CLAIM. The arcs of 6S may only belong to either C or P.

Let U be a connected component of K\ E(C). Since K is Eulerian, U is Eulerian
as well. Hence U is strongly connected and we have either V(U) = Sor V(U)NS = &
by the definition of S. This proves the claim.

Next we show that | SN E(C)| = 2,and | SN E(P)| = 2. By the definition of S,
terminal x (lying on C) never belongs to S. Let us denote by u the vertex of .S satisfying
ue V(Cyy)and SN V(Cy) = {u} (i.e., uis the “highest” vertex of S on C,/,; we have
u := a, in the example in Fig. 5). Let us denote by u' the successor of # on C,, (we have
u' := x in Fig. 5). Then, by the definition of S, all vertices of C,, belong to S, and no
vertex of C,, belongs to S. Hence uu' is the only arc of C,-, which belongs to 4S. Quite
analogously, S also contains exactly one arc of each segment Cy,,, Py,,, and Py, since
S does not contain any vertex of P outside P by assumption. This proves that |6S| = 4.

Case (b2). Assume that either S N X # &, or S contains a vertex v of P\P. We
show that (G; X) is feasible in either case. Observe that S cannot contain the terminal
X, since the terminals have degree 2. So if S N X # & then S contains some x’ # x. The
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FIG. 5. Sequence W = (b, C', a;, P', by, - -+ , bs, C7, a; = v).

assumption implies that there is a vertex v € .S such that v € X or v € P\ P, for which
there is a sequence

W=(b09Cl,aIaPl,bl,CzaaZ,stbZa o .ak—l,Pk_l,bk—laCk,ak=v),

such that the following are satisfied:

—-b() € So;

—C'is a segment of a cycle C;in K\E(C),i=1,2, -+ k;

—every P'is a segment of Cy,, Cyrx or P\E(P,)");

—the cycles and paths in the sequence are mutually arc disjoint;

—b,_; and a; are verticesof C', i =1, -+ - , k;

—if P'is a segment of C,, or P,,, then it is an a;b;-path;

—if P’ is a segment of C, or P, then it is a b;a;-path.

An example of a sequence W from b, to a; is given in Fig,. 5.

For any sequence W, let us define a pair ay and 8y of vertices of P as follows.
Vertex ay is that @; which lies on PN P,,, and has the highest subscript /; in case there
is no such a; we set ay = y. Similarly, By is that a; which lies on P N P,,, and has the
highest subscript i; in case there is no such a; we set 8y, = y'. Assume that we are given
a shortest sequence W (i.e., k is minimum ) which starts in a vertex by € Sy and terminates
at vertex v € S N (X U (P\V(P))). Let H be the digraph obtained as the union of the
cycle C, the path Pawﬂw, and the cycles C;, C,, - -+, C,. We may assume that a; # b;,
and the members of W do not have other common vertices than those required, since
otherwise W could be shortened.

CLAIM. H has both a weak (awx, v8w)-linking and a weak (awv, xBw)-linking.

This claim will be proved by induction, with use of Lemma 2.4. For k = 0, 1 the
statement can be easily verified. Let k = 2. Construct an auxiliary digraph H' from H so
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that the part W, = (by, C', a,, P, b;, C?, a,) is replaced by W = (by, C'?, a;) where
C'? is a segment of a new cycle Cj, (not existing in G) containing b,, a, and disjoint
from other members of the sequence (old cycles C; and C; are deleted in H'). Denote
the modified sequence by W', By induction hypothesis, the claim is valid for H' since
the length of W' is k — 1. For simplicity, let us assume that ay = ap- and By =
Bw (ie., a1 ¥ aw, Bw). The case when a; € { aw, Bw} will be discussed later. Let us
denote by L' = (L, L%) one of the claimed linkings in H' where L and L) are arc disjoint
paths. Now we have to show that L' = (L', L) can be modified to L = (L, L,;) which
is a weak linking in H for the same pair of terminals as L’ in H'. Assume that a, € Cy,
U P,y . Let Fand F' be subdigraphs of H and H' as depicted in Fig. 2(a), which represents
the portions of H and H' relevant to the above W, and Wy. (In the case when a, €
Cyx U Py, the pair from Fig. 2(b) is used. We omit the proof because it is quite
analogous to the considered case.) Observe first that each L} can enter F’ only from q,,
a,, or y and can exit only from a, or y'. Observe also that either of L' and L) can go
through F’ at most once, because there is no pair of vertex disjoint paths from
{a;, ay, y} to {a,, y'} in F' such that both use some arcs of F'. Assume that both L)
and L) go through F’. Let us denote by sy, ¢, and s, f, the entrances and exits of L’ and
L5in F', respectively. Since L and L} induce a weak (s, s»t,)-linking in F’, by appli-
cation of Lemma 2.4 there is a weak (s¢;, $2t;)-linking (Q,, @>) in F. For i = 1, 2,
let L; = (LY'\(L")sy) U Qi. Then L = (L, L,) is the required linking in H. If only
one of L' and L5, say L, goes through F', then set L; = (L'\(L");,,,) U Q1, where Q,
is an si¢,-path in F, and L, = L5. If both L} and L) are disjoint with F’, then set
Ll = Lll and L2 = le

It remains to discuss the case when a, € { aw, 8w}, say a; = aw. Then ay =y,
and the induction hypothesis asserts that one of the initial vertices of L' = (L, L)
is ay» = y, but we need to start a path in @; = ay. In such case we extend it by P,,,,
because P,,, does not belong to H'. Thus the claim is proved.

Now the claim will be used to finish the proof of the remaining part of case (iiib).
Assume v = x' € X (v is a terminal). Then either x < x’ or x’ < x hold. Assume x < x',
say x = x3 and x" = x4. Let (L,, L,) be a weak (apx, v8y)-linking which exists by the
claim. Then (Pya,, L1) and (L,, Ps,,) are arc disjoint x,x3- and x,x,-paths, which
proves the feasibility of (G; X), cf. the conditions discussed after the definition of feasibility
in § 2. If x’ < x, then the role of x and v = x' is exhanged, and the weak (apv, XBw)-
linking is applied.

Assume v € ley\V(F). Let (L,, L,) be a weak (apx, v8y)-linking, and Q be an
X,z-path in B where z € P,,,, N\ B. Then (Py,, L2, Pg,,x,) and (Q, P..,,, L) are arc disjoint
X1Xx2- and x,x-paths. Hence (G; X) is feasible.

Assume v € P,,,,\V (P). Let (L, L,) be a weak (awv, xBu)-linking, and Q be an
zx;-path in B where z € Ps, N B. Then (Py,q,, L1, Pux,) and (L,, Pg,,, Q) are arc disjoint
X)X~ and xx,-paths. Hence (G; X)) is feasible. ]

Now we can summarize and conclude the proof of Theorem 2.5. Given an infeasible
irreducible instance (G; X ), consider its series decomposition (B, K, - -, K,) with
respect to an x; x,-path P. By Lemma 2.7, each subproblem is also irreducible and in-
feasible for a nontrivial component. Using Theorem 2.5 as an induction hypothesis for
the subproblems, we obtain that each component is planar, and having the properties
formulated in Theorem 2.5. We may draw each component so that the specified face
with the terminals is the outer face of the component. Assume that the terminals of a
subproblem are placed clockwise on the boundary (i.e., its outer face is oriented anti-
clockwise) for components K, -- -, K, and anticlockwise for component Kj (i.e., its
outer face is oriented clockwise ). Split terminal xo in K back to x; x,. Then interconnect
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the components by the path P so that the graph remains planar (see Fig. 4). Degrees of
terminals from X remain two, and degrees of all other vertices become four. Also, each
face of the digraph is oriented. O

Proof of Theorem 1.1. Theorem 1.1 follows from Theorem 2.5 when the number
of terminals is restricted to three. Observe that every minimal infeasible instance defined
in § 1 is infeasible and irreducible in the sense of § 2, since each of the reductions (1),
(2), and (3) can be performed as a sequence of arc contractions. (The converse need
not be true.) Finally, an irreducible instance with three terminals must be 2-connected
by Lemma 2.3, since 1-decomposition can be defined only if | X | = 4. O

3. Complexity results. In this section we show that feasibility of an instance
(G; X) can be decided by a polynomial time algorithm, and we prove NP-completeness
of the weak linking problem for G + H Eulerian when the number of terminal pairs is
not fixed. Although the proof of Theorem 2.5 can be directly turned into a polynomial
time algorithm, we prefer to present an algorithm based on the structural characterization
of infeasible instances by Theorem 2.5.

LEMMA 3.1. Let G be a 2-connected digraph, and (G, X) be an infeasible irreducible
instance. Then G has a unique plane representation in which all terminals are on the
outer face.

Proof. Let H = G + z be obtained from G by adding a new vertex z and the set
of arcs {xz|x € X }. We claim that H is 3-connected. For contradiction, assume that
G + z has a vertex cut {u, v}. Clearly z ¢ {u, v}, since otherwise G would have an
articulation, and is not 2-connected. There must be at least one component S of G\
{u, v} which does not contain any terminal, otherwise, H\ { #, v} would be connected.
We have |8S| > 4, otherwise, reduction (1) or (3) can be performed for S in (G; X).
Since |8S| > 4, u and v are not terminals, and since the degrees of # and v are 4, we have
|6(SU {u, v})| = 2. Thus (G; X) is reducible, and the claim is proved. By the well
known Whitney Theorem, a planar 3-connected graph has a unique plane representa-
tion. O

Let n and e denote the number of vertices and arcs of a digraph G, respectively.

THEOREM 3.2. Feasibility of an instance (G; X) can be tested by an O (e + n?)
time algorithm (i.e., O(n?) time algorithm when G is without multiple edges).

Proof. Given an instance (G; X ) where G is an Eulerian digraph and X an ordered
set of terminals, we will perform a test consisting of the following Phases 1, 2, and 3. At
each phase, if the instance is found feasible, it terminates the whole test. On the other
hand, if the instance passes a phase, the next phase is performed.

Phase 1. Transformation to an irreducible instance.
Label all vertices of G (including the terminals) as “unscanned”;

for every unscanned terminal x € X do

begin
Decide whether A(x, X\x) 2 2, and if not, find the largest minimum
(x, X\x)-cut S (largest in the sense of | S| );
If AM(x, X\x) = 2, then the instance is feasible. Stop;
If A(x, X\Xx) = 1, then perform reduction (2) with .S, and label terminal x
as scanned.

end;

for every unscanned vertex u € V\ X do
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begin
Decide whether A(u, X)) 2 3, and if not, find the largest minimum (u, X)-
cut S (largest in the sense of | S|);
If A\(u, X) = 3, then the instance is feasible; stop;
If \(u, X) = 2 and | S| > 1, then perform reduction (3) with S, and label
the vertex obtained by contracting .S as scanned;
If \(u, X) = 2 and | S| = 1, label vertex u as scanned;
If \(u, X) = 1, then perform reduction (1) with S.
end.

The maximum number A(u#, X) of arc disjoint paths from u to X (which is equal
to the size of minimum (u#, X)-cut) can be computed by Ford-Fulkerson max-flow-
min-cut algorithm where all arcs of G receive capacity 1. Given a current flow, the search
for an augmenting path requires O(e) time (since the capacities are 1). If no augmenting
path exists, the labelling procedure provides a minimum (u, X)-cut S. If the labelling
procedure is started from the set X, then | V\.S| is minimum, and hence S is the largest
minimum (u, X )-cut.

We are not interested in the exact value of A(u, X)) in case A(u, X') = 3, since then
the instance is feasible by (the proof of) Lemma 2.2 (note that, after the first loop, all
terminals have degree 2). Thus we have to perform at most three searches for an aug-
menting path, and thus the complexity of scanning a vertex remains bounded by O(e).
Since there are at most » vertices to scan (the number of vertices of G is decreased when
performing a reduction 1, 2, or 3), the complexity of Phase 1 is O(en).

This time bound can be further improved by the following technique. Let G be the
undirected graph obtained from G by neglecting its arc orientation. Since G is Eulerian,
AUy, Uy) 2 kif and only if A\s(U,, U,) = 2k for any disjoint subsets U; and U, of V,
where A the edge size of a minimum (U,, U,)-cut in G. For any positive integer k, the
method of [7] provides a spanning subgraph H of G in O(e) time, such that (i) H has
atmost (n — 1)k edges, and (ii) for any disjoint subsets U; and U, of V, any minimum
(U, Uy)-cut in H is a minimum (U;, U,)-cut in G if Ag(U,, U,) < k (as proved in
[81). Therefore, construct H with kK = 5 and apply the above test to H instead of G.
Since the number of edges in H is O(n), an augmenting path can be found in O(n) time,
and the total time required in Phase 1 becomes O(e + n?) including O(e) time to con-
struct H.

We must show that Phase 1 yields an irreducible instance unless it is shown feasible.
For a contradiction, assume that the instance still admits a reduction after passing Phase
1. Let S be a set which may be reduced, say it admits reduction (2), and let x be the
terminal in S. But it is not possible since the cut, which is largest in the sense of | S|,
had been taken when x was scanned.

Phase 2. Decomposition into the blocks (i.e., 2-connected components).

{If | X| = 3, Phase 2 is not necessary since G must be 2-connected.

The input of Phase 2 is an irreducible instance (G; X') with the degrees of terminals
equal to 2, and the degrees of nonterminals equal to 4.

The output of Phase 2 is a collection (G;; X;), i = 1, - - - , k, of irreducible instances
with the property that (G; X) is feasible if and only if at least one instance
(Gy; X;) is feasible. Moreover, the graphs G; are 2-connected, since they are the
blocks of G.}
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Decompose G (as an unoriented graph) into the blocks, and compute the list
of articulations. This can be done by the algorithm of Tarjan [10] in O(n)
time, since the number of edges of G is linear in n. Let k be the number of
blocks, and Vi, V5, - - -, Vi be the vertex sets of the blocks of G ordered so that
[ViNU;.Vj| =1foreveryi=1, -+, k— 1.Lety;be the articulation for which
ViNU;. V= {y:}. Set (formally) G,:= G and X;,:= X.

fori=1tok—1do

begin
Check whether articulation y; well splits the terminals of (G’_;; xj—;). If
not, the instance (G; X)) is feasible. Stop;
Perform 1-decomposition of (Gi-;; X;_,) at y; into (G;; X;) and
(Gy; X)), where V(G;) = V; and G is the remaining part of G}_, i.e.,
V(G)) =V U---UViand X} = X N V(G?).

end.

The complexity of Phase 2 is O(n). The correctness follows from Lemma 2.3. Then
apply the next phase to each block (G;; x;).

Phase 3. Planar representation test.

{ The input of Phase 3 is an irreducible instance (G; X) with the degrees of
terminals equal to 2, and the degrees of nonterminals equal to 4. Moreover, G is
2-connected.

The output is a planar representation of (G'; X ) satisfying the conditions of Theo-
rem 2.5, unless it is proved that the instance is feasible. }

Use planarity test to decide whether G is planar. If not, (G; X) is feasible. Hence
assume G is planar. Use the planarity test again for the graph G + z defined in
Lemma 3.1. If G + z is not planar, then (G; X) is feasible, because it does not
have a plane representation with terminals on one face. If G + z is planar, test
whether its plane representation, which is unique and is also obtained as a by-
product of the planarity test, meets the remaining conditions in (ii) of Theorem
2.5. If yes, (G; X) is infeasible, and it is feasible otherwise.

The time complexity of Phase 3 is O(n), since planarity of a graph can be tested in linear
time, and also the planar drawing can be obtained at the same time (see [5] and [9]).
We must apply Phase 3 repeatedly to instances (G;; X;), i = 1, - - -, k. However, the
total complexity remains bounded by » (the number of vertices of the instance of Phase
2),since 2| V;| = 2|V].

Therefore the time complexity of the whole algorithm (Phase 1 + Phase 2 + Phase
3 (applied to each block separately)) is O(e + n?). O

Theorem 1.2 is a corollary of this result.

Let us call the weak k-linking problem with G + H Eulerian the Eulerian weak k-
linking problem. When the number of terminal pairs is not restricted, we call the weak
linking problem with G + H Eulerian the Eulerian weak linking problem.

The Eulerian weak 2-linking problem is easy to solve (cf. [3]): a necessary and
sufficient condition is that G is (weakly) connected. The Eulerian weak 3-linking problem
has been polynomially solved in this paper. We conjecture that the Eulerian weak k-
linking problem can be polynomially solved for any fixed k. However, if k is not fixed,
the problem becomes NP-complete.
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THEOREM 3.3. The Eulerian weak linking problem is NP-complete.

Proof. The problem obviously belongs to class NP. The NP-completeness will be
proved by reducing to it the (general) weak 2-linking problem, which is known to be
NP-complete (see [2]).

Given an instance G = (V, E) and (s;, ;), i = 1, 2, of the weak 2-linking problem,
where G is a general digraph, construct the following instance of the Eulerian weak
linking problem.

Let us denote by indeg(v) and outdeg(v) the indegree and outdegree of a vertex v
inG+ H=(V,EU {151, 15, }), respectively. Set G' = (V' U {s, t), EU E’) where E’
consists of (outdeg(v) — indeg(v)) parallel arcs sv for each v for which the difference is
positive, and (indeg(v) — outdeg(v)) parallel arcs vt for each v for which the latter dif-
ference is positive. The multiple arcs can be modified to simple arcs by inserting artificial
vertices. Let p be the sum of (outdeg(v) — indeg(v)) over all v for which the difference
is positive. For i = 3,4, --- p + 2, define 5, = sand ¢, = t. Now, G' and (s;, t;), i =
1, ---, p+2,is an instance of the Eulerian weak linking problem. It is not difficult to
see that this instance is feasible if and only if the original instance of weak 2-linking
problem was feasible. O

Acknowledgment. We thank the anonymous referee for many detailed improve-
ments of the text.
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SPANNING TREES WITH MANY LEAVES*

DANIEL J. KLEITMANf AND DOUGLAS B. WEST}%

Abstract. A connected graph having large minimum vertex degree must have a spanning tree with many
leaves. In particular, let /(n, k) be the maximum integer m such that every connected n-vertex graph with
minimum degree at least k has a spanning tree with at least m leaves. Then /(n,3)=n/4+2, I(n,4)2
(2n + 8)/5,and I(n, k) = n — 3| n/(k + 1)] + 2 for all k. The lower bounds are proved by an algorithm that
constructs a spanning tree with at least the desired number of leaves. Finally, /(n, k) = (1 — bIn k/k)n for
large k, again proved algorithmically, where b is any constant exceeding 2.5.

Key words. spanning trees, vertex degrees
AMS(MOS) subject classifications. 05C05, 05C35

1. Introduction. Given a connected simple graph G, suppose we wish to find a
spanning tree in G with many leaves. If G is a cycle, we can only guarantee 2 leaves, but
we may have better luck if we require that every vertex have degree at least k. To make
this precise, let G, denote the collection of connected n-vertex graphs with minimum
degree at least k. We wish to determine /(n, k), the maximum m such that every graph
in G, has a tree with at least m leaves. Note that /(n, 2) = 2.

The question of determining /( n, k) has occurred independently to several research-
ers. For this investigation, the question was raised by Lovész and Saks [6]. Independently,
Payan, Tchuente, and Xuong [7] showed that every 3-regular graph has a tree with at
least n/4 leaves, and Storer [ 8] gave the lower bound of n/4 + 2 for that case. This was
subsequently rediscovered by Linial and Sturtevant [5] and extended to minimum degree
3. Another proof appears in [3]. Storer was motivated by complexity considerations.
The problem of finding a spanning tree with maximum number of leaves is NP-complete,
even if G is regular of degree 4 [2]. We provide here a simple algorithm to construct a
tree with at least n/4 + 2 leaves in any G € G,, ;. Extending this approach, we also present
an algorithm to construct a tree with at least (2n + 8)/5 leaves in any G € G,,4. Finally,
we present a simple family of algorithms that provide lower bounds implying (7, k) >
(1 — bln k/k)n. In particular, this means that the fraction of the vertices that can be
guaranteed to be leaves in the spanning tree with the most leaves approaches 1 as
k grows.

For arbitrary k, a simple construction yields a G € G, with no tree having more
than n — 3\ n/(k + 1)] + 2 leaves. When k = 4 and k + 1 divides #, this achieves the
bound. Griggs and Wu [4] have proved optimality for k = 5 (and give an alternate proof
for k = 4). Linial [ 5] conjectured that this construction is essentially optimal in general,
i.e., that [(n, k) Z n — 3n/(k + 1) + ¢ for each k and an appropriate constant ¢;. More
generally, Linial suspects that a connected graph with degree sequence d, = d, = -+ =
d, Z 2 has a spanning tree with at least Z(d; — 2)/(d; + 1) leaves.

Albertson and Hutchinson [1] have investigated spanning forests. If we seek a forest
of ¢ components with many leaves, then the upper and lower bounds presented here still
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hold, with 2 replaced by 2 c. Albertson and Hutchinson were further interested in limiting
the diameter of the components, but our methods do not seem relevant to that question.

2. The upper bound construction.

THEOREM 1. I(n, k) =n— 3 n/(k+ 1)+ 2.

Proof. We construct G, x € G, having no tree with more than n — 3| n/(k+ 1)+
2leaves. Let m = |n/(k + 1)jand r = n — m(k + 1). Partition the vertex set V'(G) into
sets Ry, -, R,—;, where |R;| =k+1 for i#0 and |Ry| =k+ 1+ r. Choose
Xi, i € R;. Place edges between all pairs of vertices in R; except Xx;y;. Add the edges Z =
{XiVi+1ymoam: 0 S i<m},andlet W= {x;} U{y;}.

It suffices to show that any spanning tree T of G, has at most n — 3m + 2 leaves.
Every pair of edges in Z forms an edge cut so T lacks at most one edge of Z. Suppose
first that x;y;,, ¢ T; T then contains an x;y;-path in R; for each i. This forces a nonleaf
in R; — W for each i, and each vertex of W must be a nonleaf except {x;, ;+, }. On the
other hand, if T omits no edge of Z, then T lacks an X;, y;-path in R, for one value of i,
say j. This forces at least 3(m — 1) nonleaves in ¥ — R;, and k = 2 forces an additional
nonleaf at x; or ;. ad

Note that G, contains many copies of the “almost clique” K ,  — e. If this induced
subgraph is forbidden, a higher proportion of the vertices must be leaves. In particular,
Griggs, Kleitman, and Shastri [3] have shown that every G € G, 3 that does not contain
K4 — e has a tree with at least (n + 4)/3 leaves; this was earlier conjectured in [7]. The
proof is more difficult than that of the unrestricted result in the next section.

We also note that when k is even there is another class of graphs where the tree with
the most leaves has n — 3| n/(k + 1) ] + 2 leaves, as shown by a similar argument. The
graph can be described as a cyclic sequence of cliques in which each vertex is also joined
to every vertex of the clique before and after it. The cliques have sizes k/2, k/2, 1, k/2,
k/2, 1, --- . Note that G, can also be described in this way with the clique sizes being
Lk—-1,1,1,k—=1,1,---

3. The case k = 3. The lower bound for k = 3 appeared in [7] and in [8] for 3-
regular graphs. We include a short proof of the general result, different from those in [7]
and [8], to illustrate the method we will use for k = 4. Another proof, similar in spirit
to this but phrased also in terms of 3-regular graphs, appears in [3].

This and the later proofs grow the desired spanning tree of G via an iterative algo-
rithm. In each case, we let T denote the current tree with » vertices and / leaves. If x is
a leaf of T, then the out-degree of x, denoted d'(x), is the number of neighbors it has
in G — T. The operation of expansion at x consists of adding to T the d’(x) edges from
X to all its neighbors not in 7. We grow T by vertex expansion sequences (also called
“operations”); this guarantees that all edges from 7 to G — T are incident to leaves
of T.

THEOREM 2. Every G € Gy has a spanning tree with at least N/4 + 2 leaves.

Proof. A leaf x of T with d'(x) = 0 is dead; no expansion is possible at a dead leaf,
and it must be a leaf in the final tree. Let m be the number of dead leaves in 7. An
expansion that makes y a dead leaf kills y. We call an expansion sequence admissible if
its effect on T satisfies the “augmentation inequality” 3A/ + Am = An.

We initialize 7 to a small subtree and provide a collection of admissible operations
to grow T into a spanning tree of G. If G is not 3-regular, we initialize T to be all edges
incident to a vertex of maximum degree A = 4. If G is 3-regular and every edge belongs
to a triangle, then G = K, and the claim holds. Otherwise G is 3-regular and has an edge
in no triangle, and we initialize 7T to consist of such an edge and the four other edges
incident to it.
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If T is grown to a spanning tree with L leaves by admissible operations, then all
leaves eventually die and summing the augmentation inequality yields 3(L — A) + L =
N — A —1if Gis not 3-regular, or 3(L —4) + L = N — 6 if G is 3-regular. These simplify
to4dL=N+2A—-1=N+T7and 4L = N + 6, respectively. We can improve this to
4L =z N + 8 by considering the final admissible operation. For this operation, the aug-
mentation inequality is satisfied with an excess of at least two because the operation kills
at least two final leaves whose deaths are not usually guaranteed for the operation.

It remains to present a collection of admissible operations of which at least one is
always available until 7 absorbs all vertices, and to verify the statement claimed about
the last operation. The three operations we use are illustrated in Fig. 1.

Ol: If d'(x) = 2 for some current leaf x, then expanding at x yields Al = An —
l=z1land Am= 0.

02: If d’(x) = 1 for every current leaf x and some vertex outside 7 has at least two
neighbors in 7, then expanding at one of them yields A/ = 0, Am = 1 = An.

O3: If y is the only neighbor of x outside 7 and y has at least two neighbors not in
T, then expanding at x and then y yields A/ = An —2 = 1 and Am = 0.

Because k = 3, any neighbor not in T of a vertex in 7 has at least two neighbors in
T or at least two neighbors outside 7'. This implies that one of O1-O3 is available until
T becomes a spanning tree. Also, the inequalities they satisfy imply that each is admissible.

Now consider the final operation. Each of the three operations adds (at least one)
leaf z to T that did not previously belong to 7'. That leaf has a neighbor w not appearing
in the illustration; since this is the last operation, w must have been a nondead leaf of
T. Since z and w both die now, we obtain the needed excess of two dead leaves. O

Before leaving this section, we note that the operations used above also yield the
following result.

THEOREM 3. If every edge of G belongs to a triangle and G # K, then G has a tree
with at least (|V(G)| + 5)/3 leaves, and this is best possible.

Proof. We use the same terminology as in the previous proofs, except that now an
operation is admissible if it satisfies the augmentation inequality 2A/ + Am = An. Op-
erations O1 and O2 above satisfy this admissibility inequality; we claim they suffice to
grow T to a spanning tree. If 7" does not yet span, then there is an edge xy with x € T,
y ¢ T; xy forms a triangle with some additional vertex z. If z ¢ T, then O1 applies; if z
€ T, then O2 applies.

If G # K3 and A(G) < 4, then G = K, or G = K4 — ¢ and the bound holds. Otherwise
G has a vertex of degree at least 4 to use as the center of the initial 7. If also 6(G) = 3,
then again the last operation provides two additional dead leaves, and summing the
augmentation inequalities yields 2(L —4)+ L —2= N—5,or L =Z (N + 5)/3.

If 6(G) = 2, then the last operation may provide only one additional dead leaf if it
is O2 to a 2-valent vertex. However, if G has a 2-valent vertex x, then the edge-in-triangle
property leads to a vertex w of degree at least 4 within distance 2 of x. If w is adjacent
to x, then beginning at w makes x initially a dead leaf and we have the same inequality
as above. Otherwise, x and w have two common (adjacent) 3-valent neighbors u, v. If

o1

FIG. 1. Operations used when k = 3.
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X
03

o1

FIG. 2. Elementary operations used when k = 4.

the initial tree is the star at w plus the edge ux, then we begin with x, v as dead leaves
and again get an extra at the end. Now the inequality is2(L —4)+ L —3 = N — 6, or
again L = (N + 5)/3. O

To show that this is best possible, consider the graph G, 3,3 of § 2, delete one
cut edge, and contract the remaining cut edges.

4. The case k = 4. For the case k = 4 we will use arbitrarily long expansion sequences
as operations. We use the same terminology and notation as above, except that now an
expansion sequence (or “‘operation”) is admissible if it satisfies the augmentation in-
equality 4A/ + Am = 2An.

THEOREM 4. Every G € Gy4 has a spanning tree with at least (2N + 8)/5 leaves.

Proof. Again we initialize T to be a small subtree and we provide a collection
of admissible operations to grow 7 into a spanning tree of G. If we provide an exhaus-
tive set of admissible operations, summing the augmentation inequalities will yield
4(L—c)+ (L —c)Z2(N—c3),or L=2N/S + ¢, where c,, ¢ are the number of
leaves and vertices in the initial tree and ¢, is the number of leaves not counted as dead
by summing the general augmentation inequalities. We postpone the discussion of the
additive constant.

The first three operations are similar to those used for & = 3 and are illustrated in
Fig. 2.

Ol: If d'(x) = 2 for some current leaf x, then expanding at x yields A/ = An —
1= 1and Am= 0.

02: If d'(x) = 1 for every current leaf x and some vertex outside 7 has at least three
neighbors in T, then expanding at one of them yields A/ = 0, Am = 2 = 2An.

03: If y is the only neighbor of x outside 7" and y has at least three neighbors not
in T, then expanding at x and then y yields Al = An —2 2 2 and Am = 0.

Each of these operations is admissible. If none of O1-03 are available, then every
nondead leaf of T has out-degree one and its neighbor outside 7" has two neighbors in 7’
and two neighbors outside 7.

The subsequent operations, which involve arbitrarily long expansion sequences, will
apply in this case. We consider only principal expansion sequences; these expand a single
leaf x = y, of T and then other leaves that do not belong to 7 before the initial expansion.
The length r of a principal expansion sequence Y is the number of expansions outside
T. A principal expansion sequence is /ive if each expansion after y, introduces two new
vertices to the tree. Y also denotes the set of vertices expanded.

When O1-03 are not available, a live sequence almost satisfies the augmentation
inequality for admissibility. The expansion at y, adds one vertex and kills the other
neighbor of y; in T. Each subsequent expansion in Y increases / and adds two new
vertices. Altogether, 4A/ + Am = 4r + 1 and 2An = 4r + 2, leaving a deficiency of one
in the augmentation inequality.

04-07 rely on various additional conditions that imply admissibility and are illus-
trated by example in Fig. 3. For specification of O4-07, let Y be a live sequence of length
r and assume O1-03 are not available. Let 1 denote the set of leaves introduced by
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executing Y and let U = V(G) — (T U Y U W); U is the set of vertices that would
remain outside the tree after executing Y.

O4: If some w € W has a neighbor u € T, then Y is admissible. Executing Y kills u,
which increases Am by one to eliminate the deficiency.

O5: If some w € W has all its neighbors in Y U W, then Y is admissible. Executing
Y kills w, which increases Am by one to eliminate the deficiency.

06: If some w € W has at least three neighbors in U, then Y followed by (w) is
admissible. The final expansion satisfies 4A/ — 2An = 2, which eliminates the deficiency.

O7: If v is the unique neighbor in U for at least four vertices of W, then Y followed
by expansion at one of these vertices is admissible. The final expansion kills (at least)
three leaves, yielding Am — 2An = 1, which eliminates the deficiency.

Next we show that some operation of types O1-O7 is always available until T
becomes a spanning tree. To prove this, we consider a special class of expansion sequences.
A linear expansion sequence is a live sequence Y = (3o, - - - , ¥,) such that, for each i =
1, yi+, is one of the two leaves introduced by expanding y;. The illustrations in Fig.
3 suggest linear sequences although expansion sequences of types O4-O7 need not
be linear. For a linear sequence, we let z; denote the other leaf introduced by expand-
ing y; and let z,, w denote the two leaves introduced by expanding y,. We may refer
towasy,+.Let Z={z, -, zand W=YUZU{w}.For1 =isr,letY;=
(o, *+,yi)and Z; = {z;, -+, z;}. We use R-S for the concatenation of two vertex
sequences, N(a) for the set of neighbors of vertex a, and N(S) for U,.sN(x).

If O1-03 are unavailable and T does not span G, then any neighbor of T'is the end
of a linear sequence of length 1; i.e., linear sequences exist. Because G is finite, linear
sequences cannot be arbitrarily long. If O1-O7 are unavailable, then for a maximal linear
sequence it must be true that each leaf introduced by the last expansion has exactly one
neighbor in U.

Suppose O1-O7 are unavailable and let Y = ()0, -+, »,) be a maximal lin-
ear sequence. In addition to y, and one vertex v € U, w has at least two additional
neighbors. Because Y is live, these must appear in Z. Suppose z,, z; € N(w) with ¢ =
min {i:z;e N(w)},s0t<s=r.

We claim that z, must have exactly one neighbor u# not in W. Otherwise, Y is of
type O5 (killing z,) or Y;-(z,) is of type O6. Furthermore, if # # v, then Y, -(z,, w) is of
type O6. Hence we may assume u = v. If s <r,then Y;_ (2, Vo415 - * , Vs+2) IS a type
O5 sequence killing y,;. Hence we may also assume s = 7.

FIG. 3. Complex operations used when k = 4.
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Applying the same arguments to z, = z, = w’, we obtain a neighbor z;- of w’ adjacent
tov' e W(see Fig. 4). If t = ¢/, then {w, w', v, v'} = N(z,) and Y,-(z,) is of type O6. If
t#t'and v # v, then Y,_-(z, z;) is a type OS5 sequence killing y,. If t # t'and v = v,
then v is the only neighbor in U for each of { z, z,», w, w'} and Y -(w) is of Type O7.

We have provided an exhaustive set of admissible operations. Now consider the
additive constant. Recall that L = 2N/5 + ¢, where ¢ = (¢, + 4¢; — 2¢3)/5 and ¢y, ¢,
¢; are the number of initial leaves, leaves not counted as dead, and initial vertices. As
for k = 3, each operation illustrated has a leaf incident to another edge not drawn, which
again means that the last operation must kill at least two additional leaves (except for
02 and O7, the extra count is always at least four). Since G' has minimum degree at
least 4, we have c = (2 + 16 — 10)/5 = 8/5. O

It should be noted that there are only two known examples of graphs in G, 4 that
have no tree with at least 2N /5 + 2 leaves. These are the 4-regular graph on six vertices
and the 4-regular graph on eight vertices around a circle in which each vertex is joined
to the four vertices closest to it. The desired bound asks for five and six leaves, respectively.
On six vertices, having five leaves would require a 5-valent vertex, and on eight vertices,
having six leaves would require two vertices whose neighborhoods include all the vertices.
We conjecture that 2N /5 + 2 is a lower bound except for these two examples. If G has
a vertex of degree at least 5, then starting with the edges incident to it yields ¢ = 2. If G
is 4-regular and has an edge not in a triangle, then starting with its endpoints and their
neighbors yields ¢y, ¢, ¢; = 6, 2, 8 and ¢ = 2. Hence any graph that violates this bound
is 4-regular and has every edge in a triangle.

5. Larger values of k. In general the conjectured lower bound on I(n, k) is
(k—2)n/(k + 1) + 2, except possibly for small exceptions. Whenever k is even, there
is a small example that slightly violates this bound. Whenever k > 2, we can choose #
so that 3k/2 + 2 = n < 5(k + 1)/3 and let G be the graph on # vertices around a circle
in which each vertex is adjacent to the k closest vertices, k/2 in each direction. Then
(k—2)n/(k+ 1)+ 2> n~— 3, so the bound asks for a tree with n — 2 leaves. However,
there are no two adjacent vertices whose neighborhoods cover V' (G).

The most interesting question, of course, is the coefficient of # in /(n, k). For k =
5, Griggs and Wu [4] have proved the conjecture (they also have an alternate proof of
the bound for k = 4, using a different augmentation inequality for admissibility ). For
large k we give a short proof that the coefficient approaches 1. The ease of this argument
is attributable to the fact that we are not seeking an optimal algorithm for any individual
value of k. By considering more operations, i.e., by making the algorithm more com-
plicated, we could improve the rate of convergence.

THEOREM 5. If k is sufficiently large, then there is an algorithm that constructs a
spanning tree with at least [1 — b n k/k]n leaves in any graph with minimum degree k,
where b is any constant exceeding 2.5.

Proof. We design an algorithm as those above in which the current tree 7 is expanded
at leaves. We will develop an admissibility inequality that has the form rAl + AM =
(r — 1)An where r is a function of k. Here M is a measure of ““‘deadness” for the leaves

%

FIG. 4. Resolution of maximal live sequences when k = 4.
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of the current tree. This is not a physical concept. Rather, the final value of M is a
multiple counting of the leaves of the final tree, and the individual changes in M are an
amortized distribution of this count over the operations.

The statistic we use to measure “deadness” is M = /- o;m;, where m; is the
number of leaves of T having i neighbors outside T'; the coefficients «; will be chosen
shortly. It is natural to think that a leaf is more dead when it has fewer outside neighbors,
so we will require 0 = o, = a,—5 = -+ = ap. This requirement guarantees that
expansion at any leaf with out-degree at least r will satisfy rA/ + AM = (r — 1) An; the
net change in M will be nonnegative. Note that it makes sense to assume r < k.

If every operation used by the algorithm satisfies rAl + AM = (r — 1)An, then
beginning with a star at a vertex of degree k and summing the augmentation inequal-
itiesyields r(L — k) + oL =(r— 1) (N—k—1),or LZ[(r— )N+ (k+1-1r)]/
(r + ap) > (1 — (ap + 1)/r)N. We will choose the values of r and {«;} so that the
operations are admissible and (a9 + 1)/r < bln k/k, as desired.

For each i < r, define an i-operation to be an operation that is performed only when
the maximum out-degree of current leaves is i. Each i-operation begins by expansion at
a vertex x with d'(x) = i. This or additional expansions may add to the tree a vertex y
that was an outside neighbor of some z in the current tree with d’'(z) = j < i. The net

changes to M for this operation include — «; for the loss of x as a leaf and ;| — «; for
the effect of the edge yz on d'(z). It will suffice to consider changes of these types.
Let ¢; = a;— — o; for all . If in addition to a,_; = -+ = o we also have ¢,_ | =

- -+ = ¢y, then for any i-operation each edge from a new vertex to an old leaf contributes
at least ¢; to AM. Since we lose the contribution from the leaf expanded to begin the
operation and ignore the possible gains for the new vertices, it suffices to show rA/ +
¢iq — a; Z (r — 1) An for each i-operation, where g is the number of nontree edges from
new vertices to old vertices of the tree.

To guarantee the desired properties of the operations we will choose r = | k/5 | and
¢; = (r — i)/[i(k — 3r) — r]. Note that this formula for ¢; increases as i decreases and
that ¢; < 1 when k = 5r.

Let us now specify the i-operations. Let i < r be the maximum out-degree of current
leaves and let x be a current leaf with maximum out-degree. Either we expand at x and
stop, which we call Oi, or we expand at x and also at the new neighbor y of x for which
the second expansion gives the maximum number of additional leaves; we call the latter
Pi. We choose Pi if the number of vertices introduced by the second expansion is more
than 3r — i.

By construction there is always an operation available to grow T until T spans. For
the admissibility of Pi, we have Al = An — 2. Ignoring gains due to possible edges from
new vertices to old vertices, it suffices to show that An = 2r + «;. Since An > 3r, this
holds when ¢; = 1 since a; = 2/ 2} ¢ < re;.

For the admissibility of Oi, suppose that y is an outside neighbor of x and that a
second expansion at y would introduce at most 3r — i new vertices. Because y also has
at most i neighbors among x and the vertices introduced by expanding at x, it has at
least kK — 3r neighbors in 7 besides x. This is true for each outside neighbor of x, so g =
i(k — 3r) for the conditions under which we apply Oi. We have Al =i — 1 and An =
i, so

rAl+cqg—a;Zr(i—1)+c(g—r)Zr(i—1)+(r—i)=(r—1)An.

Finally, we study Zc; = ag. Since k = 5r, we have Z¢; = 2721 (r — i)/r(2i — 1).
Using calculus we can bound this by 1/r[r — 1 + flr—l (r — x)dx/(2x — 1)]. With the
substitution # = 2x — 1 we can evaluate the definite integral as

1[Q2r—1)In(2r—3)—(2r—4)].
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Putting this all together yields
a<i(M[4(r—1)—2(r—=2)+2r—1)In(2r—3)]<.5+.51In2r.

When we replace rby | k/5 |, we find 1 — (ap + 1)/r> 1 — bn k/k for sufficiently large
k as long as b > 2.5. O

This constant b can be reduced by choosing ¢; and r to make use of some slack in
the argument. In particular, the admissibility of Pi requires only An = 2r + «;, so we
can use Pi whenever the second expansion introduces more than 2r + «; — i additional
vertices. When this fails for all neighbors of x we have g = i(k — 2r — «;). The admissibility
of Oi requires only ¢;q — a; Z r — i, so it suffices to define ¢; iteratively with a,_; = 0,
¢i=(r—i+a;)/[i(k—2r—a;)],and a;— | = a; + ¢;. We still wish to keep each ¢; small
to make o of at most logarithmic size, and for this it suffices to have k — 2r > Br (i.e.,
r=k/(2 + B) | for some constant 8 > 0). The aim is then to bound « by some function
f(B8) In r, which would lead to the constant 3f(8) in place of b. It does not seem worthwhile
to pursue the details of this, since better improvements could be generated by considering
a larger variety of operations.

Acknowledgment. The authors are deeply indebted to J. R. Griggs and Mingshen
Wau for valuable comments on and corrections to earlier versions of this paper.
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TREE-MATCHINGS IN GRAPH PROCESSES*

TOMASZ LUCZAK+t aAND ANDRZEJ RUCINSKIt

Abstract. For a tree T a perfect T-matching in a graph G is a subgraph of G with at least |G| — |T| + 1
vertices, each component of which is isomorphic to 7. Two properties, .o/ and 4, are introduced where the
former is a modification of the fact that the largest component of G has a perfect T-matching and the latter is
a suitably chosen necessary condition for .o/ expressed in terms of forbidden “pendant’ subgraphs. We show
that in the random graph process G, the hitting times of both above properties coincide. This paper is the first
one that deals with the hitting times of nonmonotone graph properties. It extends results of Bollobas and Frieze
[Ann. Discrete Math., 28 (1985), pp. 23-46] and Bollobas and Thomason [A4nn. Discrete Math., 28 (1985),
pp. 47-98].

Key words. random graph process, hitting time, generalized matchings
AMS(MOS) subject classification. 05C80

1. Introduction. Let G(n, M)be arandom graph chosen uniformly from the family
of all graphs on vertex set [n] = {1, 2, - -+, n} which have M edges, 0 = M = (3).

Let .# be the property of having a perfect matching and let .4"J be the property
of not containing an isolated vertex. Erd6s and Rényi proved in 1966 the following
fundamental result.

THEOREM 1 [ER66]. Let x, = M/n — log n. Then

lim Prob (G(2n,M)e.#)= lim Prob (G(2n,M)eN' T )

n-> o n—>w
0 if x,—> —o0

=< exp(—2e7*) ifx,—>x
1 if x,—> 0.

We generalize this theorem in three ways. First, similarly as in papers of Bollobas
and Thomason [BT85] and Luczak [1.87], we ask about the existence of a perfect match-
ing in the largest component of a random graph. Second, we match vertices not into
adjacent pairs but into bunches which follow a tree pattern. To be precise, given
a connected graph G and another graph H we say that F is a perfect G-matching in H
if F is a subgraph of H, every component of F is isomorphic to G and |H| — | F| =
|G| — 1, where |K]| is the number of vertices of a graph K. The last condition allows
us not to care about the divisibility of | H| by |G|. This is important since we cannot
predict the exact size of the largest component of a random graph. We will be interested
in perfect T-matchings where 7T is a tree.

The most important strengthening of Theorem 1 involves graph processes. Let 4, be
the family of all (4)! sequences of graphs on vertex set [n], G, = (Go, Gy, - , Gw),
where G; has i edges and contains its predecessor as a subgraph. We turn the family 4,
into a probabilistic space by assigning to each G, the same probability. Equivalently, we
can start with the empty graph and keep selecting edges at random, one by one, in the
equiprobable manner. The resulting graph sequence is called a graph process and denoted
by G, = (G(n, 0), - -+, G(n, (). The Mth stage of the process, G(n, M), coincides
with the random graph described above.

* Received by the editors June 6, 1989; accepted for publication (in revised form) January 25, 1990.
1 Department of Discrete Mathematics, Adam Mickiewicz University, Poznaf, Poland.
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Graph processes were introduced by Erdds and Rényi in 1959, who realized that
this is the most subtle tool for investigating the evolution of random graphs.

For a graph property </ and a graph sequence G, we define the trace of .« in G,
as the binary sequence a = a(4, G ») = (do, - *+, ay) such that a; = 1 if and only if
G; € <. The hitting time of </ in G, is deﬁned as h(&/ G,) = min {{:q; = 1} X
(h(, G,) = (3) + 1 if all a; are equal zero). If o7 is an increasing property then Gy, €
o if and only if h(o#, G,) = M and so the following reformulation of Theorem 1 is
immediate.

THEOREM 1'. Let x,, = M/n — log n. Then

lim Prob (h(M,Ga,) = n(log n+x,))

n—> oo

lim Prob (h(N'T,Gy,) =n(log n+x,))

n—> oo
0 if x,—> —

exp(—2e™) ifx,—>x

1 if x,=> 0.

Bollobas and Frieze proved that actually the two hitting times almost surely coincide.
THEOREM 2 [BT85].

lim Prob (h(M,Gr)=h(N' T ,Ga))=1.

n—> oo

The meaning of this result is that in most instances vertex degrees tell us whether
a graph has a perfect matching. This approach, appropriate whenever an increasing prop-
erty o/ implies & and h(</, G,) = h(AB, G,), almost surely, fails for arbitrary .o/.
In principle, it may happen that a(.</, G,) has many l-runs and then the fact that
h(st, G,) = h(AB, G,) is useless. We cannot conclude anything about A(oZ, G,)
from the knowledge of G(n, M) (as we did deducing Theorem 1') either. It is possible
that for each M = M(n) Prob (G(n, M) € &) = 0 whereas Prob (G(n, M) € o for
some M,0 =M = (5)) > 1 as n = oo. (For instance, this is the case of the property
that the maximum degree equals Ln/2}.) One way to overcome these difficulties is
by proving that for almost all G, € %, there is only one 1-run in the trace a(<#, G,).
We say that G, is /-increasing if there is exactly one 1-run in a(«/, G,) and K, € o4,
i.e., am = 1.

Irzl the next section we introduce two graph properties .# (7)) and A" ,(T). The first
one is a modification of the fact that the largest component has a perfect 7-match-
ing where T is a tree. The latter is a carefully chosen necessary condition for #(T').
Our main result asserts that almost surely the graph process G, is .#( T)-increasing
and, moreover, h(M(T), G,) = h(N(T), G,). The asymptotic distribution of
h(AN(T), G,) will be established by standard methods.

2. Statement of the result. Let .#(T') be the property that a graph has a perfect
T-matching, where T'is a tree. A necessary condition for the existence of a perfect matching
in G, when |G| is even, is nonexistence of a “cherry,” i.e., a pair of pendant vertices
with a common neighbor. We are going to find a necessary condition for perfect 7-
matchings in terms of nonexistence of specified branches. We say that B is a branch
of G with root v if B is an induced subgraph of G, v € V3, and for each u € Vp — {v},
degp (1) = degg (1). Assume first that |G| is divisible by | T|. If G has a branch that is
a star S on |7T| + 1 vertices rooted at the center, then G has no perfect T-matching.
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However, for P being a path with at least three edges, already a ‘“‘cherry” is a constraint
for a perfect P-matching. On the other hand, a branch that is a path of any length rooted
at the endpoint does not exclude a perfect P-matching. As we can see, we need a detailed
analysis of the structure of 7 in respect to the shapes of its branches. As it will become
clear soon (see Lemma 2, § 3), we should be interested in the smallest trees that are
not branches of T'.

Let %, be the family of rooted k-vertex trees. Families %3 and %, are presented in
Fig. 1. The roots are indicated by open circles.

Let a(T') be the largest integer k such that for every U € %, there is a branch of T
isomorphic to U (the isomorphism has to map the roots on each other). We denote by
&/ (T) the set of all U € % 41+ for which there is no branch of 7" isomorphic to U. A
branch of G isomorphic to a member of o/ (T') excludes a perfect 7-matching with the
exception of T'= P;, i = 1, 2, where P; is the path of length ;. (These two trees are special
since for them and only for them a(7') = |T'|.) But it may happen that a branch of G
makes a perfect 7-matching impossible even when it is isomorphic to a member of % ;7.
To see this, define the outdegree of a branch B with root v as

d}c=degg (v) —degp (v)
and set
dyr=min {d}7: Bis a branch of T isomorphic to U}.

Let B be a branch of T isomorphic to U € % ,ry with d} r = dy,r. If there is a branch
D of G isomorphic to U with outdegree smaller than d} r then, clearly, there is no perfect
T-matching in G. Let

b(T)=max {dU,T: Uealla(r)}.

If b(T) = 1 then, provided G is connected, such a situation cannot happen. Observe
that 5(T)=0ifandonly if T = P;, i = 1, 2.

Now we are ready to list the types of branches whose appearance in G contradicts
the existence of a perfect T-matching. We say that a branch B of G is r-attached if it has
outdegree 7. As we will learn from Lemma 3 of § 3, in case b(T) > 1, only (b(T) — 1)-
attached branches of G isomorphic to a member of

@(T)= { Ue%a(T)ZdU’T_b(T)}

will be of critical importance. Hence, we say that a branch B of G is T-excluding if
(i) T=P,and B = U,, or
(11) T=P,and B e {Wz, W3}, or
(iii) b(T) > 1 and B is isomorphic to a member of o/ (T), or

AL AR

U U, W, W,

FiGg. 1



110 T. LUCZAK AND A. RUCINSKI

(iv) b(T) > 1, Bis (b(T) — 1)-attached and B is isomorphic to a member of
D(T).
For better understanding we list below the introduced notions a(T), b(T), 4 (T)
and 2(T) for paths P, stars S,, and the tree T, of Fig. 2.

a(T) b(T) A(T) 2(T)

P1=S1=K2 2 0 %3 %2
P2=S2 3 0 0”4 0”3
Pi:sz3 2 1 {U} {K3}
Sprz3 2 r—=1 {U} {K}

T, 3 2 {wi}  {Uy}

(Here S, stands for the star with r arms and trees U,, U,, W, and other members
of families %3 and %, are given in Fig. 1.)

Let A" (T) be the property that a graph G has no T-excluding branch. Then A" (T')
is a necessary condition for .#(T) provided |G| is divisible by |7|. To avoid this
constraint, let us alter slightly the property .# (T ) by imposing the restriction that all
unmatched vertices have degrees greater than 1. The new property, denoted by #'(T),
always implies A (T).

Another obstacle related to the fact that our object of interest is the largest component
and not the whole graph is that, at the early stages of the graph process, G,, the largest
component, may not be unique and, moreover, it “‘keeps changing places.” Eventually,
the process stabilizes in the sense that starting from some moment M, the vertex sets of
the largest components of G(n, M), M > M,, are well defined (i.e., there is just one
largest component) and form an increasing sequence of sets. The point M lies somewhere
around 7n/2 (see [B85]), so it is safe to assume that we begin to watch the process G,
after it acquires [ cnl edges for ¢ > 1. The constant ¢ is fixed throughout the paper.

For a graph property &/ we denote by &/, the property that a graph G has more
than ¢| G| edges and the largest component of G has &/. By € (T') we denote those from
families o/ (T'), % (T) that will be of critical importance for us, namely

{Us)} if T=P,
(W, W3} ifT=P,

A (T) ito(T)=1
D(T) ifo(T)>2

6(T)=

whereas, when b(T') = 2, € (T') consists of rooted (k + 1)-vertex trees U such that either
Ue o (T)or U= U+ v where U € P(T) and the additional vertex v, which is the
root of U, is adjacent only to the root of U'.

FiG. 2
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At last, we are ready to formulate our main result.
THEOREM 3.

(i) Almost surely, G, is /' (T )-increasing;

cen 1 A n
(11) nler;O Prob(h(./Vl(T),G,,)éza(T)

0 ifd,—>—0,|d,] =0(logn)
=< e ifd,>de(—ow,n)

1 ifd,—

(logn+c(T)loglog n+d,))

b

where ¢(T) = max {a(T), a(T) + b(T) — 2},
e 1
>

R e maut (U)°

A

aut (U) is the number of automorphisms of U that fix the root of U,
B(T)—1 ifb(T)>1
" [1 ifb(T)=1,
andk = a(T); i
(ii1) Almost surely, G, is M )( T)-increasing and
h(AMT),Gp)=h(N(T),G,).

COROLLARY 1. For all trees T, almost surely

(1) h(AM(T), Gy) = (N (Pr), Gn)
and

(ii) h(M'(T), G,) = (N T, Gy).

Let /'J ;. be the property that the second largest component has less than k vertices.
In 1960 ErdsGs and Rényi proved that for

M=%€(logn+(k— 1)loglogn+d,)

0 if d,—> —c0, | d,| =0(log n)
(1) lim Prob(G(n,M)eN' T )= exp(—k"e‘d/k!) ifd,—d
1 ifd,—> 0.

The lemma below supplements that result.

LEMMA 1. Let /T | be the property that a graph G has more than c| G| edges and
G e N T . Then, almost surely, G, is N'T |~increasing and

lim Prob (h(JV’./“'}C(T),G,,)éi(log n+(k—1)loglogn+d,))

(2) 0 ifdn")_ooaldn|=0(10gn)
={ exp (—k*e™¥/k)) ifd,~d
1 ifd,— .

Of course, provided the first part of the qssertion holds, (2) is just a reformulation
of (1). Since |T| Z a(T), almost surely, G, hits A4"(¢) at the moment when each
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component different from the largest one has less than | 7’| vertices. Thus Theorem 3
can be stated in a slightly stronger form.

THEOREM 3'. Let M, (T) [N ,(T)] be the property that a graph G has at least
c| G| edges and all components with at least | T| vertices have property #M'(T)[ N (T)].
Then, almost surely, G, is M (T )-increasing and

h(M(T),Gp) = h(N o(T), Gp) = h(N(T),G,).

The above theorems and their corollaries immediately imply respective results for
the random graph G(n, M).
COROLLARY 2. For M = (n/2a(T))(logn + ¢(T)loglog n + d,),
lim Prob (G(n,M)e#)(T))= lim Prob (G(n,M)eN'|(T))
0  ifd,~>—o0,|d,| =0(logn)

=< e jifd,~>de(—o0, o)

1 ifd,— oo,

where N is given in Theorem 3.

COROLLARY 3. If M = (n/4)(log n + 2 loglog n + d,), d, = o, then, for every
tree T, almost surely, the subgraph of G(n, M) induced by vertices of nonzero degrees
coincides with the largest component and has a perfect T-matching.

COROLLARY 4. If M = (n/2)(log n + d,), d, = oo, then, for every tree T, almost
surely, G(n, M) has a perfect T-matching.

3. The proof. Part (i) of the theorem is a consequence of the following two lemmas,
which will be proved in § 4.
LEMMA 2. ForU€e%WU, ., , let B(U) be the property that a graph contains no branch
isomorphic to U. Then, almost surely, G, is B,(U)-increasing and
lim Prob (A(£,(U), G,,)éé;—{(log n+kloglogn+d)=e?,
n—> oo
where N = (e“k* aut (U)) ™" and aut (U) is the number of automorphisms of U that fix
its root.
LEMMA 3. ForUe%U,andr= 1,2, -, let B(U, r) be the property that a graph
contains no r-attached branch isomorphic to U. Then, almost surely, G, is B,(U, r)-
increasing and

lim Prob (h(4,(U, r),Gn)éi’Z];(log n+(k+r—1)loglog n+d))=e*,
where \ = (e T 'rlaut (U)) "

Part (ii) can be shown using the routine method of moments, similarly to the proof
of (5) presented in § 4. To prove part (iii) we will define a set of properties o/ which
together with A (T) imply #(T). We will prove that, almost surely, for all M’ <
M<nlogn,M' = (n/2a(T))log n, G(n, M) € of. Knowing already that, almost surely,
h(N'(T))>M' and G, is N )(T)-increasing, this allows us to conclude that
h(AM(T), G,) = h(N(T), G,), almost surely. Moreover, the property that G €
A (T) and G is connected is increasing. Therefore, keeping in mind that the hitting
time of connectivity in G, is approximately 7 log n/2 (see Lemma 1 above with k = 1),
G, is, almost surely, .4 }( T')-increasing.
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The remainder of this section is devoted to proving that

(3) ANN(TYS M(T).
Despite technical details, the idea of our proof is simple. Let 7 be a tree with
V(T)=[t]andlet V, -- -, V, be a partition of [#] into equal size sets (for a moment

assume that # is divisible by ). To show that a graph on vertex set [#] has a perfect 7T-
matching, it is enough to find perfect K,-matchings in ¢ — 1 bipartite graphs generated by
pairs {V;, V;} for which {i, j} € E(T). An obvious weakness of this straightforward
approach is that we “lose” all edges within the sets V;. With some more effort it can be
refined to gain the required result. To do so, we distinguish “bad” vertices that have few
neighbors in at least one of V;. First we match bad vertices. Then we modify the partition
by deleting matched vertices, moving so called “safe” vertices to keep the partition even.
Then all bipartite graphs generated by the pairs of sets of the new partition, have large
minimum degree and therefore satisfy the Hall’s condition.

Now the details come. Let us set k = a(T'), V(T) = [t] and partition [n] = V|, U
-+~ UV,sothat | |V;| — |V;|| <1 foralliandj. We define di(v) = |[N(v) N V;|,i=
l,---,tand d(v) = d,(v) + -+ + d,(v). We call v bad if, for some i € [t], d;(v) <
log n/50kt; otherwise, v is called good. A vertex v is small if d(v) < 5kt%; otherwise, v
is called large.

DEFINITION (Property /). A graph G on vertex set [#n] is said to have property
o if

(i) G has no more than n/log?°! n bad vertices,
(ii) no 2kt bad vertices are within distance 10z from each other,
(iii) no k small and 1 bad vertices are within distance 10z from each other,
(iv) no small vertex lies on a cycle of length less than 3kz,
(v) for all pairs of disjoint subsets of [n] of size | S;| = |S2| = n(loglog n)?/
log n there is an edge from S| to S5,
(vi) every subset S c [n] with | S| < 2n(loglog n)?/log n contains less than
(log log n)*| S| edges,
(vii) there are less than n/log?°’ n vertices outside the largest component,
(viii) the maximum degree is smaller than 6 log 7.
(The quantities 2kt, 10z, and so on are quite arbitrary.)

LEMMA 4. For M' = (n/2k) log n, almost surely, a random graph process G, is
such that, for all M satisfying M' = M = nlogn, G(n, M) e oA.

The proof of Lemma 4 is postponed to § 4.

The proof of (3). We ignore all vertices outside L, the largest component of G.
Assume that vy, - -+ , v, are the bad vertices in L and that d(v,) = - -+ = d(v,,). Now
we describe a procedure matching the bad vertices into copies of 7. Our variables are
H—the graph induced by yet unmatched vertices and v—a bad vertex in H with the
lowest index. At the beginning we set H = L and v = v;. Actually, we show only how
the procedure matches bad vertices into branches of T such that either the root or r of
its neighbors (when the branch is r-attached in 7°) are good vertices of G. These branches
are immediately extended to a whole copy of 7. Such extensions are possible due to
property .o (ii). Below M stands for the branch and M for the copy of 7' matched at the
current stage.

Description of the procedure.

I. Assume first that v is small and choose u to be the nearest large vertex from v.
Let P be the shortest path linking v and u. By &/(iii), | P| =< k + 1. Consider
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a component C of H — V(P) with |C| < kt and a vertex x in C. By &/ (iv),
dy(x) = kt. Moreover, dp(x) — dy(x) < 2kt?, since, by o/ (ii), at most 2kt
already matched bad vertices were joined to x and, in addition, Ny (x) — Ng(x)
could have contained at most 2kz(¢ — 1) good vertices. Hence, C contains only
small vertices, |C| < k, and, by &/ (iv), C is a branch of H rooted at a vertex of
P. Let us denote by B the subgraph of H induced by P and the components of
H — V(P) of order at most k. Clearly, B is a tree. Coming back to the choice of
u, we assume that u is picked to minimize the order of branch of B hanging at
u. In general, by o/ (iii), | B| = k + 1.

I1. However, if u is bad then | B| = k.
Ila. |B| =k— 1.
Each vertex has at least 4kt? good neighbors in L and at least 2k¢? good neighbors
in H. Let w be a good neighbor of uin H. Set M = BU {uw }. By the definition
of k there is a branch of T isomorphic to M with w as the root.

Ilb. |B| = k.
B is isomorphic to a branch of T with u as the root. We pick d = dp 7 good
neighbors of u, wy, - -+, wy, and set M = BU {uwy, -+, uwy}.

12. Ironically, the case when u is good is more complicated.
12a. But not if | B| = k. Then M = B is ready.
I2b. Assume, hence, that | B| = k + 1.
Let w be the neighbor of # in P. Forall x € V(B) — {u, w}, dp(x) = du(x) =
dp(x) by o (iil).
12b(i). If dp(w) = dp(u) then B is a branch of L and, by A4"/(T), there
is a branch of T isomorphic to B with u as the root. Set A/ = B.
I12b(ii). Otherwise, w has a good neighbor different from u. In such case,
by the special choice of u, dg(u) = 1 (again, by &7 (iii)). Thus B — u is
a branch of L of order k with w as the root. By A"/(T) the out-degree of
w must be at least d = dg_, 7. Set M = BU {wwy, -+, ww,}, where
wy, -+, wy are good neighbors of w (u is among them).
Once we have gotten through the early phase of the procedure and matched all
small vertices there are no difficulties any longer.

II. If v is large, choose u among good neighbors of v. Set M = B = P = {vu}.

After each round is completed we substitute H for H — M. Since, by .27 (ii), each
vertex is joined to at most 2kz? (good or bad) already matched vertices, each vertex of
L', the subgraph of L induced by yet unmatched vertices, has at least log n/50kt —
2kt* > log n/51kt neighbors in each set V=V, L', i=1,---, t. By /(i) and
o (vii) |L'| > n—f, f = 2tn/log®® nand so, forall i,j €[], | |Vi| — |V}|| < f. To
balance the partition, let us choose a set W of “‘safe”” vertices such that for each i €
[¢t1 I1WNV: >tf and no two vertices of W are within distance two from each other.
The existence of W follows from the fact that A(L’) = A(G) < 6 log n. Indeed, W can
be defined recursively. After including vertex x to W cross out the set N¥, |[N®| <
36 log? n, of all vertices lying within distance 2 from x and repeat this step. (Let us re-
call that | V| ~ |V;| ~ n/t.) Now we move ‘“safe” vertices around and, possibly,
delete up to t — 1 of them to obtain a partition V7, ---, V7 of L' satisfying |V | =
LIL'|/t)= h,ie€[t]. Let us focus on the bipartite graph F induced in L' by (V], V).
By the careful choice of W, 6( F) > log n/51kt — 1 > log n/52kt. To finish the proof of
(3) we must find a perfect matching in F. Due to Hall’s theorem it is enough to check
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whether, for each S < V7, the set N(.S) of neighbors of Sin V'] has at least | S| elements.
Suppose there is S with |N(S)| < | S| and consider two cases.

Case 1. | S| = g = n(loglog n)?/log n.
Then | S U N(S)| < 2g which contradicts <7 (vi).
Case2. |S| > g.

Since there is no edge between S and N(S) = V7 — N(S), | N(S)| = gby o/ (v).
Let N(N(S)) be the set of neighbors of N(S) in V7. Arguing as in Case 1, we can show
that |[N(N(S))| Z IN(S)|. Thus |N(S)| =h— |N(S)| Zh~ [N(N(S))| = |S|,
since S N N(N(S)) = &.

This completes the proof of (3) and therefore the proof of Theorem 3. O

4. The proof of lemmas. In this section we will be frequently using the estimate

A—a A B\’ aB
(5) (3) () o (=5)
where A4, B, a, b are functions of »n for which B = 0(4), b = o(a), a?> = O(4), and
b? = o(B).
Proof of Lemma 1. Let My = |cn|, M, = (n/2k)(logn — logloglog n), M, =
(n/2k)(log n + (k — 1) loglog n — log log log n), M3 = n log n.
Let X; be the number of isolated paths P, in G(n, M;), i =0, 1, and let Y; be the

number of those isolated P, of G(n, M;_,) that are still isolated in G(n, M), i =1,
2. We have

e ) (6

M;—k+1 M;

~1

(2C)k_le—2kcn

ifi=0
n (2M,~)"“ ( 2kM,~) 2k
~— — exp —_—— )~

2k\ n n .

1 _ P
Wlog "nloglogn ifi=1

and

E) X, =EX(X;—1)

— _ 2 n—2k n
Z(Z)(nkk)((kzl)!) ( 2 ) (2) ~(EX;)?, fori=0,1.
M;=2k+2 ] \ M;

Hence, by Chebyshev’s inequality, almost surely, X; > EX;/2, for i = 0, 1. Clearly,
Prob (Y;=0)~ > Prob (Y;=0|X,_,=[)Prob (X;,_,=1[), where a=[EX;/2].

I>a

But Prob (Y;=0| X;_, =) is a decreasing function of / and we must only
prove that

(4) Prob (Y;=0| X;,_,=a)—>0.
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n—k n 1
o) —M,'_1+k"1 (2)_M[—1

M;—M,;_, M;—M;_,

We have
E(Y;|X;-1=a)=a

2k
Nanp(_;'(Mi—Mh-l)):ﬂ

Similarly, E,(Y;| X;—1 = a) ~ u?, and (4) follows by Chebyshev’s inequality. Hence,
almost surely, the graph process G, is such that for all My = M < M, there is a component
of order kin G(n, M).

Let Z = |{M: M, < M < M;, G(n, M) has a k-vertex component that was not
present in G(n, M — 1)}|. We will show that, almost surely, Z = 0. Since a new k-
component can only emerge by joining two smaller components,

My n—K n\\ ™! |
N B Y ) e
M-1)—(k=2)] \M—1 (2)—(M—1)

k-2 M
_0(1)2(2M) (1_%{) =0(1)((M2 Mz)f(2M2)+M3f(2M2))

=o(1),

where M5 = M, + (n/2k) log log n and f( x) = x¥~2¢7**_(Note that f is decreasing in
the interval (1 — 2/k, o0).)

Since, almost surely, G(n, M3) is connected (see [ER59]), almost surely, the graph
process G, is such that, after moment M,, no new k-component is created. Hence, for
every natural k, almost surely, G, is A" j-increasing, where A" | is the property that
a graph G has at least ¢| G| edges and there is no k-component in G. We already know
that, almost surely, G(#, M, ) has no [-component for / = k + 1. The first new /-component,
| = k + 1 after moment M, could be created only by joining two components of order
at most k and therefore / would be at most 2k. This is unlikely, since G, is, almost surely,
N [-increasing, simultaneously for all / = k + 1, - - -, 2k. This implies that, almost
surely, after moment M, no new /-component, / > k, is created and so G, is, almost
surely, &/ j-increasing. O

Proof of Lemmas 2 and 3. Let Ube a tree and W < V(U), W # & such that each
vertex of V(U) — W is joined to a vertex from W. An induced subgraph H of graph G
is called a (U, W)-subgraph of G if there is an isomorphism ¢ between U and H such
that for each x € W, dy(o(x)) = dg(a(x)). If | W| = |U| — 1, this coincides with the
notion of a branch introduced in § 2. The following lemma is a common generalization
of Lemmas 2 and 3. (An r-attached tree-branch B of G with root v can be interpreted
as a (U, W)-subgraph with U = (V(B) U Ng(v), E(B) U {{v, u} : ue Ng(v)}) and
W= V(B).)

LEMMA. Let B(U, W) be the property that a graph G has no (U, W)-subgraph.
Then, almost surely, G, is B,(U, W)-increasing and

(5) lim Prob (h(AB(u, W),G,)<

log n+(|U| — A
Jim ZIWI(Ogn (JU|=1)loglogn+d))=e?,

where X = (e‘w* " Laut (U, W)) ™! and aut (U, W) is the number of automorphisms o
of U for which c(W) = W
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Proof of lemma. Let |W| =w, |U| = u, M_, = (1 + ¢c)n/2, My = cn, M, =
(n/2w)(log n — log log log n), M, = (n/2w)(log n + (u — 1) log log n — log log log n),
M; = nlog n, and

M(d)=5n;(logn+(u— 1) log log 1+ d).

First, we will prove (5) by showing that the number X of (U, W)-subgraphs in
G(n, M(d)) converges in distribution to a Poisson random variable with expectation A.
By Lemma 1, almost surely, (U, W)-subgraphs of G(n, M(d)) belong to the largest
component. We have, with 2 = (3,)(w!(u — w)!/aut (U, W)),

A e TH T

u

M(d)—(u—1) M(d)
and
n—2w
B ( 5 )+(u—w)(u—w—1)+2w(u—w) n -1
EX(X—1)=(")<" ”)h2 (2)
wiA M(d)—2(u—1) M(d)
row 2 (1))
i \u/\u—1
(n_zw)+(u—w—l)(u—w—l—l)+(l)+w(2u—w—l)
X 2 2
M(d)—2(u—1)+1—1
5))
2
8 M(d))
~>\2+0(-1—),
n

where [ stands for the number of common vertices in two (U, W)-subgraphs. Note
that two different (U, W)-subgraphs must be W -disjoint. Similarly, one can prove that
EX(X-1)--(X—r+1)—=> XNforr=3,4,--- and (5) is shown.

Let X_, be the number of isolated U-trees in G(n, M_;). By the second moment
method one can easily prove that, almost surely, X_; > an for some constant o =
ofc) > 0. Moreover, it is known (see [ ER60]) that, almost surely, the largest component
L_, of G(n, M_,) has more than @z vertices, 8 = 8(c) > 0.

Let Y, count isolated U-trees of G(n, M_,) that are joined by an edge with V'(L_,)
and are (U, W)-subgraphs of G(n, My). (For each isolated U-tree of G(n, M_,), from
among all isomorphic choices of W, we fix them lexicographically first.) Clearly,

Prob (Yo=0)~ > > Prob(Yo=0|X_,=x,|L_,| =0)Prob(X_=x,|L_| =)

xZzanlzpn

éPI'Ob(Y():OIX-.l =an, IL—II =6n)a
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since the conditional probability is a decreasing function of x and /. We have
E(Yo|X_y=an,|L_ | =pn)
(n—w) + (u—w) +w(u—w)—M_;+w

2

2
=an

Mo—M_,

n—w u—w
( 5 )+( 5 )+w(u—w)—M_1+w~(u—w),3n

M()"-M_l

-1

(e

M()*M_l

(37 (57 [ (e

~(u—w)p(c—1)an

My—M_, My—M_,
~af(c— 1) u—w)exp (—w(c—1))n.
With only some more effort we can compute E(Yy(Yo— 1)| X_, = an, | L_;| = Bn) and

deduce, using Chebyshev’s inequality that, almost surely, Y, > «'n’ for some o > 0.
Note that (U, W)-subgraphs counted by Y, are vertex-disjoint. Now, let Y; be the num-
ber of those (U, W)-subgraphs counted by Y, which remain (U, W)-subgraphs of
G(n, M,). Conditioning on Y, we can easily show that, almost surely, Y; > 0. Note that
due to Lemma 1, almost surely, every (U, W)-subgraph of G(n, M, ) belongs to the largest
component of it. Thus, almost surely, G, is such that for all My, < M < M, the largest
component of G(n, M) contains a (U, W)-subgraph. To cover the period (M, M,) we
can prove using the same techniques that, almost surely, there are at least «” log log n
disjoint (U, W)-subgraphs in G(n, M;), where o’ > 0, and at least one of them remains
a (U, W)-subgraph in G(n, M;). Let Z = |{M : M, = M = M, G(n, M) has a
(U, W)-subgraph that was not present in G(n, M — 1)} |. By Lemma 1, almost surely,
for M =z M, the largest component cannot “catch” an isolated U-tree, so

My n—w n ! 1
EZ=o(1)+0(1) % n“( ( 2 ) )( (2)) (m\_
M A\M-1-ut2 ) \M—1 (2)—M+1
u—2
032 e (2) o0y,
M n n

By (5), almost surely, there is no (U’, W')-subgraph in G(n, M;) foral U= U, W <
V' (U'). Since this is an increasing property, almost surely, G, is such that for all M =
M; there is no (U, W)-subgraph in G(n, M). Summarizing, we have proved that, almost
surely, after moment M, no new (U, W)-subgraph emerges. Hence, almost surely, G,
is #,(U, W)-increasing. O

The proof of Lemma 4. Properties (i), & (v), o/ (vii), [/ (vi), o/ (viii)] are
increasing [decreasing] and therefore it is enough to prove that, almost surely,
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G(n, M')[G(n, n log n)] possesses them. This can be done by showing that the expectation
of the number of respective objects is asymptotically small and by then applying Markov’s
inequality (see [B85], [BF85], [L.87] for similar proofs). Properties .o/ (ii)-.o/ (iv) are
not monotone and the proofs are similar to each other and to those of previous lemmas.
We restrict ourselves to present the proof of .o/ (ii).

Let X count sets of 2kt bad vertices of G(n, M') that are within distance 10z from
each other (call them bunches) and let Y; be the number of /-vertex trees, 2kt = [ =
20kt?, containing at least 2kt bad vertices. Then, clearly,

EY,~ (n)( ! )11—2 D 12k ﬁ (”/l)
1 J\2kt my,- - - Moy < log n/50kt j=1\M;

(n) —2kt(n/t) n\\ !
x| \2 (J

—Em,——l+1 M
i

en/t2M’ "2 M\ ! 4kM’
n nz eXpy ———

=o'z (%

./
= O(I)n_l(log n)2k1+l— 1(506’) log n/25
= O(n—0.9+0.24)= 0( 1 ),

since the function f(x) = (¢/x)* is increasing for ¢ > ex. Therefore,

20ki?
EX= S EY,=o(1).
1= 2kt

Let Z= |{M: M =M = nlogn, G(n, M) has a bunch that was not present in
G(n, M — 1)}|. Clearly, the appearance of a new bunch causes the appearance of a new
l-vertex tree, 2kt = | = 20kt?, containing at least 2kt bad vertices. Let Z; count how
many times in the period (M’, n log n) of the process G, such a tree emerges. Then

n\ —2kn
nlogn n l 2kt n/t ( )
EZé ll—2 t2kt ( ) 2
: M§M’(1)(2kt) m~~~m§<:logn/50kt jl:[l m;

b M—1-3 m—1+1

_1 !
(B
2 n

M—1 (2)—M+1

oz T () -2

g\ MR n

100 ek M \'oe /25 exp [ 4kM
nlogn P

_0(1)(10g n)2kt+l 2 E(

The last series can be bounded from above by a geometric series with the same first term

and the quotient
4k logn 3k
exp( (1+0(1))(n 25M,))<exp( n)
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Thus

EZ;=0(1)(log n)2k+"23—k

= 0( 1 )(log n)2kt+l— ln*l(soe)logn/ZS
— O(n—0.9+0.24) — 0( 1 )
This completes the proof of .o/ (ii). O

n (100 ekM'\\oen/25 ex 4kM’
nlogn P
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THE EXPECTED CAPACITY OF CONCENTRATORS*

NICHOLAS PIPPENGERY

Abstract. The expected capacity of a class of sparse concentrators called modular concentrators is determined.
In these concentrators, each input is connected to exactly two outputs, each output is connected to exactly three
inputs, and the girth (the length of the shortest cycle in the connexion graph) is large. Two definitions of expected
capacity are considered. For the first (which is due to Masson and Morris), it is assumed that a batch of
customers arrive at a random set of inputs and that a maximum matching of these customers to servers at the
outputs is found. The number of unsatisfied requests is negligible if customers arrive at fewer than one-half of
the inputs, and it grows quite gracefully even beyond this threshold. The situation in which customers arrive
sequentially is considered, and the decision as to how to serve each is made randomly, without knowledge of
future arrivals. In this case, the number of unsatisfied requests is larger but still quite modest.

Key words. communication network, maximum matching, branching process, random packing
AMS(MOS) subject classifications. 68E10, 94C15

1. Batch arrivals. For the purposes of this paper, a concentrator is a bipartite graph
G = (A, B, E) comprising a set A of inputs, a set B of outputs, and a set E < 4 X B of
edges. The intended interpretation is that the inputs correspond to “customers,” the
outputs correspond to “servers,” and the edges correspond to ““‘channels” or “switches,”
each capable of providing direct access by a given customer to a given server.

We consider two modes of operation for a concentrator. In the first mode, the
operation of the concentrator takes place in “cycles,” each of which has two “phases.”
During the first phase, a subset X = A4 of the inputs, called the requesting inputs, is chosen.
This represents the arrival of a “batch” of customers. During the second phase, a maximum
matching M = E N (X X B) between the requesting inputs and the outputs is chosen.
This represents the action of a controller granting access to servers to as many customers
as possible. The cardinality # X is called the offered traffic; # M is called the carried traffic;
and #X — #M is called the lost traffic.

The actual capacity of a concentrator is the largest k such that the carried traffic is
k for all X = A4 such that #.X = k. The expected capacity of a concentrator (which is a
function of the offered traffic k) is the expected carried traffic when the requesting inputs
are chosen at random, with all sets X = A4 such that #.X = k is equally likely.

These definitions of actual and expected capacity were given by Masson and Morris
[MM], who investigated their values for “binomial” concentrators. In this paper we
study their values for a new class of concentrators that we call “modular” concentrators.
The asymptotic behaviour of the expected capacity for modular concentrators can be
estimated quite sharply, and it appears quite attractive in view of the sparsity of these
concentrators. In particular, the lost traffic is negligible when the offered traffic is less
than one-half the number of inputs, and it grows quite gracefully even beyond this thresh-
old. Scheinerman [S] has used the methods of this paper to show that even “random
concentrators” have performance only slightly worse than that of modular concentrators.

In the second mode, customers arrive sequentially, and the decision as to how to
serve each is made randomly, without knowledge of or dependence on future arrivals.
We define this mode of operation in more detail in § 7.

* Received by the editors October 10, 1989; accepted for publication (in revised form) May 8, 1990.
+ Department of Computer Science, The University of British Columbia, Vancouver, British Columbia,
V6T 1WS5 Canada.
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2. Modular concentrators. We deal with a class of concentrators for which each
input meets exactly two edges and each output meets exactly three edges. For such a
concentrator there is a natural number # such that #4 = 3n, #B = 2n, and #E = 6n.
These concentrators will be called (3 : 2)-concentrators.

We begin with the observation that the actual capacity of a (3 : 2)-concentrator is
always rather small. By the cyclomatic number of a graph with v vertices and w edges,
we mean the number w — v + 1. If the cyclomatic number of a graph is at most one,
then it contains at most one simple cycle, and thus it has at most two independent paths
between any two vertices.

THEOREM 2.1. The actual capacity of a (3 : 2)-concentrator is O(log n).

Proof. Given the (3:2)-concentrator G = (A, B, E), construct the graph

* = (B, E*) with vertices B corresponding to the outputs of G and edges E* =
{{b,b'}:{a,b}, {a,b'} € Efor some a € A} corresponding to pairs of outputs that are
connected to a common input. Let b be any vertex of G*. Since each vertex meets
exactly three edges in G*, there are exactly 3-2X~! paths of k steps starting from b.
Thus, if kK = [log, (2n + 1)1, there will be three distinct paths starting from b and ending
at a common vertex ¢. The union U of these three paths has at most 3(k + 1) — 4 =
3k — 1 vertices, since the beginning and ending vertices are common. But since there are
three independent paths from b to ¢ in U, the cyclomatic number of U must be at least
two, and thus U must contain more edges than vertices. It follows that there is a set of
at most 3k inputs in G that are connected only to a smaller number of outputs; thus the
actual capacity of G is at most 3k — 1 = O(log n). O

We now turn our attention to a class of (3 : 2)-concentrators for which the expected
capacity is much larger than the actual capacity. The girth of a graph is the length of the
shortest simple cycle in the graph. We construct (3 : 2)-concentrators with girth Q(log 7).
Our construction follows ideas of Margulis [M1] and Imrich [I].

Let PSL(2, Z) denote the group of two-by-two integer matrices (¢ 4) with deter-
minant one (ad — bc = 1), where two matrices are considered the same if their corre-
sponding entries are negatives of each other. This group is generated by the matrices
S= (%% and R = (.} }). We have S? = R?* = —1I, where I is the identity matrix.
Furthermore, these are the only relations satisfied by .S and R. Thus PSL(2, Z) is the
free product of Z/(2) (generated by S) and Z/(3) (generated by R).

Let ¢ = 5 be a prime and let PSL(2, Z/(q)) be the quotient group of PSL(2, Z)
in which two matrices are considered the same if their corresponding entries differ by
multiples of ¢g. There are (¢ — 1)g(q + 1)/2 elements in PSL(2, Z/(q)). The natural
homomorphism 7 from PSL(2,Z) to PSL(2, Z/(q)) reduces entries modulo g.

A word in S and R that is reduced with respect to S? = I and R* = I must consist
of occurrences of S alternating with occurrences of R or R? = R™!. If such a word is in
the kernel of =, it must have norm at least ¢ — 1. (By the norm of a matrix (¢ %), we
mean the maximum length of the vector (¢ Z)(j,‘), as the vector (3 ) varies over the circle
x2 + y? = 1. In particular, the norm of a matrix is at least the maximum of the absolute
values of its entries.) It follows that a reduced word in the kernel of = must contain at
least logs (g — 1) occurrences of R and R™!, where 8 = (1 + Vg) /2, since the norm of
S'is 1, the norms of R and R~! are 3, and the norm is submultiplicative.

For each prime g = 5, let G, denote the (3 : 2)-concentrator whose edges correspond
to the elements of PSL(2, Z/(q)), whose inputs correspond to pairs of elements that
differ by a factor of S, and whose outputs correspond to triples of elements that differ
by factors of R*!. Such a concentrator will be called a modular concentrator. Clearly,
n=1(q— 1)q(q + 1)/12. By the argument of the preceding paragraph, any simple cycle
in G, must have length at least 2 logg (¢ — 1) = Q(log n). Thus we have proved the
following lemma.
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LEMMA 2.2. The girth of a modular concentrator is Q(log n).

The first construction of a (3 : 2)-concentrator with girth Q(log ») is due to Gallager
([G, Appendix C]), in the form of the parity-check matrix of a low-density parity-check
code with rate 1 over GF(2). (Gallager’s construction can be carried out in “polynomial
time,” but it is not as explicit as the one given above, which can be carried out in
“logarithmic space.”) We observe that there are more sophisticated constructions that
give (3 : 2)-concentrators with even larger girth than G, (roughly (8/3) log, # rather than
(2/3) logg n) (see Biggs and Hoare [BH], Weiss [ W], Margulis [M2], and Chiu [C]).
We also observe that we do not need the full strength of Lemma 2.2. If g denotes the
girth, it is sufficient that g = o0 as n = 0.

3. Hypergeometric and binomial capacities. The expected capacity has been defined
hypergeometrically, that is, by taking all sets X of inputs with #X = k to be equally likely.
We begin by showing that it is possible to deal instead with a set X of inputs that is
defined binomially, that is, in which each input appears independently with probability
p=k/2n.

Let H(3n, k) denote the expected cardinality of a maximum matching when each
set of inputs X with # X = k is equally likely. Let J(3#, p) denote the expected cardinality
of a maximum matching when X contains each input independently with probability p.

LEMMA 3.1. ForO <p < 1,0 <e<min {p, 1 — p} and 3np an integer, we have

J(3n,p—e)—e 2=<H(3n,3np)<J(3n,p+e)+e %

Proof. Let X' be a set in which each input appears independently with probability
p + e. We have Ex (#X') = 3n(p + ¢) and Var (#X’) = 3n. Thus, by Chebyshev’s
inequality, we have Pr (#X' < 3np) = 1/3ne’. If #X' = 3np, then we may delete
#X' — 3np inputs from X' to obtain a set X with exactly 3np inputs, in such a way
that every set of 3np inputs is equally likely. The expected cardinality of a maximum
matching for X’ is thus at least H(3n, 3np) in this case. We thus have J(3n,p + ¢) =
(1 — 1/3ne?)H(3n, 3np). Since H(3n, 3np) = 3n, we obtain the right-hand assertion
of the lemma. A similar argument yields the left-hand assertion. O

In the following sections we prove the following.

THEOREM 3.2. For0 < p < 1, we have

J(3n,p)=3nh(p)+O(n/(log n)''?),
where
P, fo<p=3}
p—Q2p-1)’/3p°, if j<p<l.
Since A(p) is continuous in p, we may apply Lemma 3.1 with e &> 0 as n = oo to

obtain the following corollary.
COROLLARY 3.3. For rational 0 < p < 1 and n such that 3np is integral, we have

H(3n,3np)=3nh(p)+O(n/(log n)'’?).

4. Reduction to small components. We seek to determine the expected number of
pairs in a maximum matching when each input is independently requesting with prob-
ability p. Let F(p) be the subgraph of G obtained by deleting each input that is not
requesting and each edge meeting such an input. Let F*(p) be the corresponding subgraph
of G*, in which each edge is retained independently with probability p.

LEMMA 4.1. In an acyclic connected component of F*(p), all but exactly one of the
outputs appear in a maximum matching. In a cyclic connected component of F*(p), all
of the outputs appear in a maximum matching.

h(p) = [
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Proof. If F*(p) contains a vertex that meets exactly one edge, we may pair the
input corresponding to the edge with the output corresponding to the vertex, then find
a maximum matching in the graph that remains after this edge and vertex are deleted.
This transformation does not change the cyclomatic number of any component. Since
an acyclic component that contains an edge must contain a vertex that meets exactly
one edge, repeated application of this transformation to an acyclic component must
eventually yield an isolated vertex. This proves the first assertion. Repeated application
to a cyclic component must eventually yield a graph K* in which every vertex meets at
least two edges. In the corresponding bipartite graph K, every input is connected to
exactly two outputs, and every output is connected to at least two inputs, so the marriage
theorem ensures the existence of a matching including all of the outputs. This proves
the second assertion. O

Let Z( p) denote the expected number of acyclic component in F*(p). Lemma 4.1
implies that

(4.1) J(3n,p)=2n—Z(p).

Let g denote the girth of G, and let Y (p) denote the expected number of components
of F*(p) that contain at most g/8 edges. A component with at most g/8 edges must be
acyclic, so Y(p) = Z(p). On the other hand, there are at most 6n/(g/8) = 48n/g
components with more than g/8 edges, so Z(p) = Y(p) + 48n/g. Since g = Q(log n),
we have

4.2) Z(p)=Y(p)+O(n/logn).

Let ¥V (p) denote the expected number of vertices in F*(p) in components with at most
g/8 edges, and let W (p) denote the expected number of edges in such components.
Since these components are all acyclic, we have

(4.3) Y(p)=V(p)—W(p).
Equations (4.1), (4.2), and (4.3) together give the formula
(4.4) J(3n,p)=2n—V(p)+ W(p)+O(n/log n)

for the expected capacity in terms of the expected numbers of vertices and edges in small
components of F*(p). In the next section we determine the asymptotic behaviour of
these expected numbers.

5. Analysis of small components. Let 7 be an infinite tree in which each vertex
meets exactly three edges. Let I(p) be a random subgraph of I in which each edge is
independently retained with probability p. Let v.(p) be the probability that a vertex of
I belongs to a component of I(p) with at most k edges. Let w(p) be the conditional
probability that an edge e of I belongs to a component of I(p) with at most k edges,
given that e is retained in I(p). It is clear that

(5.1) V(p)=2nvgs(p) and W(p)=3npwgs(p),

since a neighbourhood of radius g/8 about any vertex or edge in G * is isomorphic to a
corresponding neighbourhood in 7, and all quantities in (5.1) are defined in terms of
random variables that are independent of events outside these neighbourhoods.

Let v(p) denote the probability that a vertex in I belongs to a finite component of
I(p), and let w(p) denote the conditional probability that an edge e of I belongs to a
finite component of I(p), given that e is retained in I(p). The theory of branching
processes gives the following lemma.
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LEMMA 5.1. We have

1, fo<p=s1l
v(p) = s
(1-p)’/p°, ifs<p<l;
and

1, ifo<p=1i;
w(p)= 4 a4 ey
(1-p)*/p*, if3<p<l.

Proof. Consider a branching process in which the first generation contains a single
individual, and each individual in the ith generation independently contributes to the
(i + 1)st generation a number of offspring that is binomially distributed with generating
function (1 — p + px)?. According to Harris ((H], Chap. I, Thm. 6.1]), the probability
of extinction (that is, the probability that the family generated in this way is finite) is the
root g(p) of equation x = (1 — p + px)?, given by

) 1, fo<p=3;
p =
7 (1-p)*/p% ifi<p<l.

The probability that a vertex in I(p) belongs to a finite component is simply the
probability of extinction when the first generation contains a number of individ-
uals distributed with generating function (1 — p + px)?3, the generating function for the
number of edges incident with the given vertex in I(p). This extinction probability is
(1 — p + pg(p))? (which is as given in the statement of the lemma).

Similarly, the conditional probability that an edge e in I belongs to a finite component
of I(p), given that e is retained in I(p), is (1 — p + pq(p))* (which is as given in the
statement of the lemma), since (1 — p + px)* is the conditional generating function for
the number of edges incident with e in I(p), given that e is retained in I(p). O

LEMMA 5.2. We have

v(p)=v(p)+O(k™'"?)
and
wi(p)=w(p)+O(k™'?).

Proof. Clearly, vi(p) = v(p). Furthermore, v(p) — vi(p) is simply the probability
that, in the branching process described in the proof of Lemma 5.1 (with the generating
function of the initial distribution being (1 — p + px)?3), extinction occurs after the size
of the family exceeds k. According to Harris ([H, Chap. I, Thm 13.1]), the conditional
probability that the size of the family is j, given that extinction occurs, is O(j~*/?). (The
decay is actually much faster than this unless p = 3.) Thus the probability that extinction
occurs after the size exceeds k is =;.,O(j~*?) = O(k™'/?). The proof for wi(p) and
w(p) is analogous. O

Applying Lemmas 2.2 and 5.2 to (5.1) yields

V(p)=2nv(p)+O(n/(log n)"'?)
and
W(p)=3npw(p)+O(n/(log n)"/?).

Substitution of these formulae and Lemma 5.1 into (4.4) completes the proof of Theo-
rem 3.2.
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6. Extensions for batch arrivals. The concentrators that we have considered are
one-stage networks; that is, each edge directly connects an input to an output. It is easy
to see, however, that the analysis we have given has immediate application to some
multistage networks.

Consider for example the “two-stage (9 :4)-concentrators” constructed in
the following way. Let g = 5 and ¢'= 5 be primes (equal or distinct), and set n =
(¢g—1)g(g+ 1)/12and n' = (¢’ — 1)q’'(¢' + 1)/12. Take 3n’ disjoint copies of G, and
2n disjoint copies of G,, and link each output of each copy of G, to an input of a copy
of G-, with exactly one link between each copy of G, and each copy of G,-. If the inputs
of the resulting network are independently requesting, and if appropriate random choices
of the maximum matchings in the copies of G, are made, then the inputs of each copy
of G, will be independently requesting, and the analysis given above can be applied to
each stage in turn. (The traffics offered to the various copies of G, will be dependent,
but this does not affect the expected capacity.) The expected capacity will again be piece-
wise rational, now with breakpoints at p = 3 (the onset of loss in the second stage) and
p = 1. The extension to three or more stages should be clear.

It is possible to extend the analysis we have given, with hardly any changes in the
arguments, to “(a : 2)-concentrators with large girth” (for integer a > 2). (The construc-
tion of such concentrators can be accomplished by the methods of the papers cited in
§2.) It may also be possible to extend Theorem 3.2 (though not Theorem 2.1) to
“(a : b)-concentrators with large girth” (for integers @ > b > 1). There seems to be
nothing as simple as Lemma 4.1 in this case, but the success of Karp and Sipser [KS] in
treating the problem of maximum matchings in sparse random graphs gives hope. For

= 2 we prove (and for b > 2 it is natural to conjecture) that v(p) is replaced by
q(p)? and w(p) is replaced by g(p)®~V?, where ¢(p) is now the appropriate root of
the equation x = (1 — p + px?~ 14",

7. Sequential arrivals with random hunting. We now turn to a second mode of
operation for concentrators. Consider a concentrator G = (A4, B, E). Associate with each
input a € 4 an arrival time 7 ,, uniformly distributed in the interval [0, 1], and independent
of all other arrival times. The intended interpretation is that the customer corresponding
to input a arrives at time 7.

Next associate with each input a € 4 a hunting order 3,, uniformly distributed over
the total orders among the outputs connected to a, independent of the hunting orders
of other inputs and independent of the arrival times of all inputs. The intended inter-
pretation is that when the customer arrives at input a (at time 7,), it examines the outputs
connected to a in the order prescribed by 8, until it finds one that has not been engaged
previously (that is, at a time less than 7,,). If it finds such an output, the output is engaged
at time 7,. If it finds no such output, no action is taken, and the customer remains
unserved.

Some comments about this mode of operation are in order. First, the assumption
of uniformly distributed arrival times will facilitate calculations, but other independent
and identically distributed arrival times would also result in all possible orders of arrival
being equally likely, and in the number of arrivals before time ¢ being binomially dis-
tributed. (The choice of the arrival-time distribution may be regarded as a choice of the
parametrisation of time. An exponential distribution, corresponding to Poisson arrivals,
seems the most natural physically.) Second, results concerning the expected number of
customers served for this “binomial” arrival process can easily be translated (by the
argument given in § 3) into results for the “hypergeometric” arrival process, in which
some number & of customers arrive at distinct inputs, with all possible sets of k inputs,
as well as all possible orders of arrival, being equally likely.
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8. Sequential arrivals for trees. We begin our analysis by looking at some concen-
trators that are trees. Let Cy denote the concentrator with a single input that is connected
to two outputs, one of which is called the root and the other of which is called the leaf.
For some k = 1, suppose that Cy_; has been defined. Let C; denote the concentrator
obtained by identifying the leaf of a copy of C, with the roots of two copies of Cx_; to
form an internal output (neither a root nor a leaf); the root of the copy of C, becomes
the root of Cy, and the leaves of the copies of Cx_; (of which there are 2¥) become the
leaves of Cy.

For k= 0 and 0 = ¢ = 1, let Qx(?) denote the probability that the root of Cy is
engaged at time ¢.

LEMMA 8.1. We have

Qo(1)=1/2

and

(8.1) Qk(l)=J; 1_%(1_Qk—1(5))2ds-

Proof. For the root of Cy to be engaged at time ¢, the customer must arrive by time
t, which happens with probability ¢, and must choose the root before the leaf in the
hunting order, which happens independently with probability 1. This proves the first
assertion. For the root of Cj to be engaged at time ¢, the customer must again arrive by
time ¢. If the customer arrives at time s, then it will engage the root unless it chooses the
leaf of Cy before the root in the hunting order, and the leaf of C, is not engaged by time
s. This leaf will be engaged by time s if and only if the root of one of the copies of Cy _;
would be engaged by time s (with the same arrival times and hunting orders in the
copies). These events depend on arrival times and hunting orders for disjoint sets of
inputs, so they are independent. This proves the second assertion. O

We now show that the transformation Q,_; — QO has a fixed point; that is, a
solution Q of the integral equation

(8.2) Q(z)=fo 1-2(1-0())*ds.

To do this, we differentiate (8.2) with respect to ¢ to obtain the differential equation

(8.3) Q)=1-30-0),

with the initial condition Q(0) = 0. Since (8.3) does not involve ¢ explicitly, it can be
solved by quadratures:

Q(1) dx
R | =t

where the lower limit of integration has been chosen to satisfy the initial condition.
The substitution y = (1 — x)/ V2 reduces the integral to

V2 d 1 1—0(1)
V2 j Y_—V3 tanh~! = — V3 anh—1 1220
-0z 1= y° V2 V2

Thus
0(t)=1-V2 tanh (ln(l +\/§)_L2),

since tanh ™' 1/V2 = In (1 + V2).
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LEMMA 8.2. We have Qi(t) = Q(t) uniformly int as k > .
Proof. Set Ar(t) = O(t) — Q(2). Since 0 = Qy(1), Q(2) = 1, we have |Ay(2)]| = 1.
Furthermore, (8.1) and (8.2) imply

J:Ak—- 1(3)(2_Q21<—1(S)—Q(S))ds .

Since 0 = Ok ,(s), Q(s) = 1, we have |2 — Qi (s) — O(s)| = 2, so that

[A(t)| =

| A(0)| éfo | A1 (5)] ds.

Thus by induction on k we obtain
| Ak(2)| St*/k.

This completes the proof. O

For k = 0, let D, denote the concentrator obtained by identifying the roots of three
copies of Cy to form the root of Dy; the leaves of the copies of Cy (of which there are
3-2%) are the leaves of Dy. Letting R,(¢) denote the probability that the root of Dy is
engaged at time ¢, we clearly have Ry (1) = 1 — (1 — Qx(¢))?. Finally, putting R(t) =
1 — (1 — Q(1))*, we see that R,(¢) = R(¢) uniformly in ¢ as k = oo. Thus we have
proved the following proposition.

PROPOSITION 8.3. As k = oo, the probability Ri(t) that the root of Dy is engaged
at time t tends to

R(1)=1 —(Vitanh (ln(l +V§)—%))3,

uniformly in t.

9. Sequential arrivals for modular concentrators. Now consider the concentrator
G, and arbitrarily designate one output of this concentrator as the “root.” Let N, denote
the subgraph of G, induced by the inputs of G, at distance at most 2k + 1 from the root
and the outputs of G, at distance at most 2k + 2 from the root. Call the outputs at
distance 2k + 2 from the root the “leaves” of N,. Set k = | (g — 6)/4 ], where g is the
girth of G,. Since g = Q(log ¢) (by Part I, Lemma 2.2), we have k = o0 as ¢ = 0.
Furthermore, since 4k + 4 is less than the girth of G,, N is a tree isomorphic to Dy,
with root corresponding to root, and leaves corresponding to leaves. Let S,(¢) denote the
probability that the root of G, is engaged at time ¢.

LEMMA 9.1. We have S,(t) ~ R;(t) uniformly int as ¢ = oo and hence k - oo .

Proof. Suppose we wish to determine whether the root of G, is engaged at some
time ¢. This is determined by the arrival times and hunting orders of the inputs in N,
unless some input at distance three from the root has an earlier arrival time than the
intermediate vertex at distance one; that is, unless there is a path of decreasing arrival
times from the root to some leaf of N,. Even if there is such a path, the engagement of
the root is determined by the arrival times and hunting orders of the inputs in N;, unless
there is a path of decreasing arrival times from the root to a leaf in N5. In general, the
engagement of the root is determined by the arrival times and hunting orders of the
inputs in N, unless there is a path of decreasing arrival times from the root to a leaf
in Nk.

Let X, denote the event “there is a path of decreasing arrival times from the root
to a leaf in N,.” We have Pr (X;) < 3-2%/k!, since there are 3-2* paths from the root
to a leaf in N, and the probability that the arrival times along some such path are
decreasing is 1/k! (since all k! orders of arrival are equally likely). Furthermore, unless
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Xi occurs, the root is engaged in G, when and only when it is engaged in N;. Thus we
have | S,(t) — Ri(¢)| =3-2%/k!. O
Combining this with Proposition 8.3, we have proved the following theorem.

THEOREM 9.2. As g —> o, the probability S,(t) that an output in G, is engaged at
time t tends to

R(t)=1 —(Vitanh (1n(1+\/§)——v%))3,

uniformly in t. In particular, the probability that an output is never engaged tends to
1 3
\fztanh(ln 1+V2 ~——-)) =0.0145- .
( 23

10. Extensions for sequential arrivals. The extensions we have described for batch
arrivals all apply to sequential arrivals as well. In particular, for “(a : b)-concentrators
with large girth,” we obtain integral equations that can still be solved by quadratures,
though not in general in terms of elementary functions. It is easy, however, to carry out
the quadratures numerically and to obtain the fraction of unused servers as a function
of time.

When the concentration ratio a/b is an integer, a new possibility arises that does
not occur for (3 : 2)-concentrators. In this case, it is possible to assign fixed hunting
orders to the inputs in such a way that each output is the first choice for a/b inputs, the
second choice for another a/b, and so forth. For such an assignment, there can be no
unused servers after all customers have arrived. The analysis of this mode of operation
leads to differential equations (or systems of differential equations) that cannot be solved
by quadratures. It is easy, however, to integrate them numerically, and to obtain the
fractions of requests that are served by their first choice, their second choice, and so forth.
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EDGE-DISJOINT HOMOTOPIC PATHS IN STRAIGHT-LINE
PLANAR GRAPHS*

A. SCHRIJVER?

Abstract. Let G be a planar graph, embedded without crossings in the euclidean plane R, and let I, - - - ,
I, be some of its faces (including the unbounded face), considered as open sets. Suppose there exist (straight)
line segments Ly, - -+, L,inR*sothat GUL, U -~ UL,=L;U--- ULUILU --- U I,and so that each
L; has its end points in I; U --- U I,. Let Cy, - - -, Ci be curves in R2\(/; U -- - U I,) with end points in
vertices of G. Conditions are described under which there exist pairwise edge-disjoint paths Py, -+, P;in G
so that P; is homotopic to C;in R*\(I; U - -+ U L), for i = 1, - - - , k. This extends results of Kaufmann and
Mehlhorn for graphs derived from the rectangular grid.

Key words. edge-disjoint, paths, homotopic, packing, planar
AMS(MOS) subject classifications. 05C10, 05C38

1. Introduction and statement of the theorem. Let G = (V, E) be a planar graph,
embedded without crossing edges in the euclidean plane R% We identify G with its image
inR2 Letl, ---, I, be some of its faces, including the unbounded face, called the black
holes. (We consider faces as open sets.) Moreover, let paths Cy, - - -, Ci be given with
end points in V, not intersecting any black hole. (That is, for each i, C; is a continuous
function [0, 1] = R*\([; U - -+ U I,) with C(0), C(1) € V.)

Motivated by the automatic design of integrated circuits, Mehlhorn posed the fol-
lowing question:

Under which conditions do there exist pairwise edge-disjoint paths P, - -,
(1) P, in G so that P; is homotopic to C; in the space R2\(/; U -+ U I,) (fori=1,
coe k)?

Here a path in G is a continuous function P: [0, 1] > G with P(0), P(1)e V.
Paths Py, - - -, Py are pairwise edge-disjoint if the following holds: if P,(x) = Pi(y) ¢ V
then x =y and i =j. (In particular, if P, ---, P, are pairwise edge-disjoint, then
each P; does not pass the same edge more than once.) Two paths P, C: [0, 1] = R2\
(I; U -+ U I,) are homotopic (inR*\(I; U - - - U I1,)), denoted by P ~ C, if there ex-
ists a continuous function ®: [0, 1] X [0, 1] = R?\(J; U -+ U I,) so that for all x €
[0, 1]: ®&(x, 0) = P(x), (x, 1) = C(x), ®(0, x) = P(0), (1, x) = P(1). (In particu-
lar, P(0) = C(0)and P(1) = C(1).)

Mehlhorn proposed to study question (1) with the help of the following “cuts.” A
(homotopic) cut is a continuous function D: [0, 1] > R*\(V U I; U - -+ U I,) so that
D(0) and D(1) belong to the boundary of I; U - - - U I, and so that | D™'(G)] is finite.
The cut condition (for G; Iy, -+ , L,; Cy, -+, Cy) is:

k
(2) (cut condition) for each cut D: cr (G,D)Z Y, mincr (C;, D).

i=1

* Received by the editors August 10, 1987; accepted for publication (in revised form) December 6, 1988.
+ Mathematical Centre, Kruislaan 413, 1098 SJ Amsterdam, the Netherlands.
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Here we use the following notation for curves C, D: [0, 1] = R*\(/,; U - -+ U L,):
cr (G,D):= [{ye[0,1]| D(y)eG}|,

(3) e (C,D):= [{(x,»)€[0, 11X[0, 1]]C(x) = D(») } |,
mincr (C, D):=min {cr (C,D)|C~C,D~DinR>\(I;U---UI,)}.

Clearly, the cut condition is a necessary condition for a positive answer to question
(1). It is generally not sufficient, not even for quite simple situations. For example, take
k=2,p =1, and consider

l1’

where the straight lines stand for edges of G' and where the interrupted lines stand for
curves C, and C,.

It turned out that one additional condition, the so-called parity condition, can be
helpful (cf. § 2 below):

(4) (parity condition) for each cut D: cr (G, D) = Z*_| mincr (C;, D) (mod 2).

Let us now state our theorem. We say that G; I, -+, I,,; Cy, - -+, Cy is in the
straight-line case if
there are line segments L,, - -+, L;inR*sothat GU L, U --- UL, =L, U - -+

(3) UL, U1 U --- Ul,and so that each L; has its end points in [, U - -- U I,/
and

if the aperture at vertex v of G is larger than 180°, then the number of times v
(6) occurs as end point of the curves C; is not larger than the number of edges
terminating at v.

Here the aperture at vertex v of G is the largest angle that can be made at v so that none
of the black holes adjacent to v intersect the interior of the angle. (More formally, let
p > 0 be so that the circle K of radius p and centre v does not contain any other ver-
tex of G in its interior and does not intersect any edge except for those adjacent to v. Let
K\(I; U --- U I,) have components K, - - - , Kj, making angles ¢, - - * , ¢,. Then the
aperture at v is equal to max {¢;, -+, ¢;}.) Edge e = {(1 — N)u+ M\|0 < X < 1} of
G is said to terminate at v if for some u > 1 the set {(1 — A)u+ M| 1 <\ < u} is con-
tainedin [; U --- U I,

THEOREM. If we are in the straight-line case and the parity condition holds, then
there exist pairwise edge-disjoint paths as in (1) if and only if the cut condition holds.

As an illustration, Fig. 1 gives an example of the straight-line case (where the shaded
faces, together with the unbounded face, are the black holes, and where the interrupted
curves stand for the paths C;).

The theorem generalizes a result of Kaufmann and Mehlhorn [2] for graphs derived
from the rectangular grid in the following way. G is a finite subgraph of the rectangular
grid. (That is, V' is a finite subset of Z* and each edge is a line segment of length 1.)
Iy, - -+, I, are exactly those faces of G that are not bounded by exactly four edges of G.
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Moreover, for each vertex v it is required that deg (v) + r(v) = 4, where deg (v) denotes
the degree of v in G, and

r():={i=1, - k|C(O)=v}+[{i=1, - k|C(1)=v}].

COROLLARY (Kaufmann and Mehlhorn). If the conditions given in the previous
paragraph are satisfied and the parity condition holds, then there exist pairwise edge-
disjoint paths as in (1) if and only if the cut condition holds.

In fact, Kaufmann and Mehlhorn found a linear-time algorithm to find these paths,
if they exist.

In § 4 we give a proof of our theorem. We make use of a lemma to be proved in
§ 3 (showing that in the straight-line case we may restrict the cut condition to (almost)
straight cuts (analogous to the idea of “1-bend cuts™ in [2])), and of results of [4] to be
reviewed in § 2.

2. Review of preliminary results. In this section we return to the general case of a
planar graph G = (V, E) embedded without crossing edges in the Euclidean plane R?,
with black holes I,, - - - , I, (including the unbounded face) and curves Cy, - - - , Ci. Let
each C; have its end points in vertices on the boundary of ; U - - - U I,,.

It was shown by Okamura and Seymour [3] that if p = 1 the cut condition together
with the parity condition imply the existence of paths as in (1). (Note that for p = 1 two
paths P, P’ are homotopic if and only if P(0) = P'(0) and P(1) = P'(1).) This was
extended by van Hoesel and Schrijver [1] to p = 2. It cannot be extended to higher p,
as is shown for p = 3 by:

l
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However, it was shown in [4] that, for arbitrary p, the cut condition is equivalent
to the existence of a “fractional” packing of paths as required, i.e., to the existence of
paths P}, .-+, Py, P4 -« Pk ---, P¥andrationals A}, -+, A{, NS, -+, AL, -+ -
A¥ > 0 such that:

(l) PJ,NC, (i=1,“'ak;j=la.“>ti)’

b

.o i Jj_ s .
(7) (ll) j=21>\i—1 (l 1> ak)9

ko4 .
(iii) 3 X NxPie)=1  (e€E).
i=1j=1

Here X7 (e) denotes the number of times path P passes edge e.

Another result from [4] to be used below was derived with the theory of simpli-
cial approximations. Let C, D: [0, 1] = R*\([; U --- U 1) be continuous. Let C(0),
C(1), D(0), and D(1) be on the boundary of I; U --- U I,, with {C(0), C(1)} N
{D(0),D(1)} = &. Let

(8) X:={(y,2)€[0, 11X[0,1]|C(y) = D(z2)}

be finite, where each (y, z) in X gives a crossing of C and D. For y, y’' € [0, 1] let C If'
denote the path from C(y) to C(y’) given by:

9) (CI3HN):=C((1=N)y+Ny') for Xe[0,1];
similarly for D. Define for (y, z), (3, z') € X:
(10) (y,2)=~(y,2)=(Cl})=~(D|Z) inR*\(I;U---UlL).

We call the classes of the equivalence relation = the classes of intersections of C and D.
Such a class is called odd if it contains an odd number of elements. Let odd (C, D)
denote the number of odd classes of X. Then

(11) mincr (C,D)=o0dd (C, D).

3. A lemma on straight cuts. We call a cut D: [0, 1] > R:\(VUL U ---UI)a
straight cut if

either (i) D is linear,
or (ii) the line segment connecting D(0) and D(1) is contained in G, the
(12) functions D|[0, 1] and D|[4, 1] are linear, there is no vertex of G
contained in the interior of the triangle D(0)D(1)D(1), and no
edge is intersected more than once by D.

In (ii) we might think of D as being very close to the line segment connecting D(0) and
D(1). So a straight cut is determined by its end points, in case (12) (ii) up to “slight”
homotopic shifts, which, however, do not change the number of intersections with G.

LEMMA. In the straight-line case, the cut condition holds if and only if
cr (G, D) 2 2% mincr (C;, D) for each straight cut D.

Proof. Necessity being trivial, we show sufficiency. Let the cut inequality be satisfied
by each straight cut. Suppose there exists a cut D: [0, 1] > R2\(VU L, U --- U I,)
so that

k
(13) cr (G,D)< > mincr (C;, D).

i=1
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We choose D satisfying (13) so that ¢ := cr (G, D) is as small as possible. The idea of
the proof is to straighten out D as much as possible.

First observe that we may assume that if D(1) is not on the line through the edge
containing D(0), then the line segment D(0)D(1) does not intersect V" (this can be
achieved by slightly shifting D(0) along the edge containing D(0)). Moreover, we may
assume that there exists an ¢ > 0 so that

(i) D|[0, ¢] is linear;
(14) (ii) for all & € (0, e]: D(6) does not belong to any line through any pair of
vertices of G nor to any line through a pair of points consisting of a vertex
of G and an intersection of D and G.

Let A\, ---, A\, besothat 0 =X <Xy <-:-<A_;<\=1, with D(\;) €G for all
i. Define

p1:=D(e),
(15) pi:=D()\,‘) fori:z’...,t.

Finally, we may assume that D|[e, \,] and D|[\;—;, \;] are linear functions (i = 3, - -+ , t)
(since in the straight-line case each face notin {I,, - -+, I,} is convex).

Let (D) be the smallest index 4 with 2 < & = ¢ — | so that the angle between
Dn—1Pn and Dupn4 1 is not 180°. If no such 4 exists, let 2(D) := t. We may assume that
we have chosen D so that (fixing ¢ = cr (G, D)) h(D) is as large as possible. Let
h = h(D).

First consider the case /2 < . Choose the largest A € [0, 1] so that the triangle with
vertices py, pn, and p, + N(pr+1 — pn) does not intersect I; U - -+ U I,,. Let p), := p, +
N(pn+1— pn)- Let D' be the piecewise linear function obtained from D by replacing parts
D1Dy and p,pj, of D by pipj. o

If A = 1, then pj}, = p,. 1, and hence by (14)(ii) p,p} does not intersect any vertex
of G. So D’ is a cut, with cr (G, D') = cr (G, D) (by the conditions (5) and (6) for the
straight-line case) and D’ ~ D. As h(D') > h(D) this contradicts the fact that we have
chosen D so that (D) is as large as possible.

If A < 1, then p,p), intersects a vertex v of G, on the boundary of I; U --- U I,.
This vertex is unique by (14) (ii) and has aperture larger than 180°. Consider a circle K
with center v, not containing any other vertex of G, and not intersecting any edge of G
except for those adjacent to v. Let K\(/; U - - - U I,) have components K, - - - , Kj. So
each K; is a cut. We may assume that K, intersects D’ twice. So K| is a circular arc of
angle larger than 180°. Use the notation A, B, C, E, F for the parts of D' and K, as
indicated in Fig. 2. Let H denote the part of D from p}, to p,. As we have chosen D so
that (13) is satisfied with cr (G, D) as small as possible, we have

h
cr (G,D)=cr (G,EBFH)=cr (G,EA)+cr (G,CFH)+ 2, cr(G,Kj))

j=2
+ (number of edges terminatingat v)
16 k k Kok
(16) = S mincr (C, EA)+ 3, mincr (C, CFH)+ 3, 3, mincr (C,,K;)
i=1 i=1 j=2i=1
k k

+ > (number of times v is end point of C;)Z > mincr (C;, D)

i=1 i=1

(using (6)). This contradicts (13).
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FiG. 2

As h < t leads to a contradiction, we know A4 = ¢. If the line segment D(0)D(1) is
not contained in G, then by our assumption this line segment forms a straight cut D',
with cr (G, D') = cr (G, D) and D' ~ D, whence
k k
(17) cr (G,D)=cr(G,D")YZ % mincr (C;,D')= 3, mincr (C;, D),
i=1 i=1
contradicting (13). If D(0)D(1) is contained in G, then D itself forms a straight cut,
contradicting (13). O

4. Proof of the theorem. We now prove our theorem.
THEOREM. If we are in the straight-line case and the parity condition holds, then
there exist pairwise edge-disjoint paths as in (1) if and only if the cut condition holds.

Proof. The proof is by induction on the number of faces not in {I;, - -+, I,}. If
each face belongs to {I;, - - - , I, }, then the theorem is trivially true. So assume that not
all faces belong to {1, -+, I,}.

I. We first consider those situations where the following holds:

G has an edge ¢, connecting vertices # and w, both of degree 2, so that ¢,
(18) separates a face in {I;, -+, I,} from a face not in {/,, ---, I,} and so that
one of the curves C; connects # and w following ¢,.

Without loss of generality, e, separates face I, from face F ¢ {I,, ---, I,}, and C;
connects ¥ and w following e,. Moreover, we may assume that none of C,, : -+, Cy
passes ¢y (we can make detours along the other edges of F). By the parity condition,
there exist /4, j so that Cj, has an end point in # and C; has an end point in w (possibly
h=j).

Nowlet I, := F.Clearly, G; I,, - - - , I, I,+1; Cy, -+, Cy is again in the straight-
line case, in which the parity condition holds. We show

(19) the cut condition holds for G; I, -+ , I,+1; Cy, -+, Ck.
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As the number of faces not in {/;, -, I,+} is one less than in the original situa-
tion, (19) implies by induction that there exist pairwise edge-disjoint paths P, ~ C,
coo, P~ Crin R2\(/; U - -+ U I,,,). This implies P, ~ Cy, - *+ , Py ~ Cyin R?\
(I, U - -+ U I,) as required.

We prove (19). We will refer to G; I, - -+ , Ip+1; Ch, - -+, Cy as the new structure,
andto G; I, - -+, I,; Cy, - - -, Cras the original structure. For the new structure we use
the notation mincr’ instead of mincr.

To show (19) by the lemma, it suffices to prove the cut inequality for straight cuts
only. Let D be a straight cut in the new structure. If D(0) and D(1) belong to the
boundary of I; U --- U I, then D is also a cut in the original structure, and the cut
inequality follows (as mincr’ (C;, D) = mincr (C;, D) for each i). If both D(0) and D(1)
belong to the boundary of 1, ; = F, then mincr’ (C;, D) = 0 for each i (as F is convex),
and the cut inequality follows. So we may assume that D(0) belongs to the boundary of
I, U --- U, and D(1) belongs to the boundary of F. We can extend D in Ftoacut
D' ending on ¢,. Then D’ is a cut in the original structure. Thus we have

k k
(20) cr(G,D)=cr(G,D")Y—1Z 2 mincr (C;,D')—1= >, mincr' (C;,D),
i=1 i=1
thus showing the cut inequality for D. This proves (19).

II. Now we consider the general case (i.e., we do not assume (18)). As not all faces
belong to {I;, ---, I,}, there exists an edge, say e, separating a face I, (1 = h = p)
from a face Fnot in {I,, ---, I,}. We may assume s = 1. Without loss of generality,
no path C; intersects ¢, or F (we can make detours along the boundary of F). Extend G
to a graph G’ by adding two new vertices, say ©# and w, on ¢,. Let ej be the edge connecting
uand w. Let Ci, ; and Cy . , be two curves, each connecting # and w via e;. We consider
two cases.

Case 1. The cut condition holds for G'; Iy, -+ , I,; Cy, - -+, Ciy Crs 15, Cry2. Now
we can apply part I of this proof above, and paths P, - -+, P, Pxi1, Pri2 as re-
quired exist.

Case 2. The cut condition does not hold for G'; Iy, - -+, I,; Cy, -+, Cg, Crs1,
Cy +2. Since also in this new situation we are in the straight-line case, by the lemma there
exists a straight cut D so that

k+2
(21) cr(G',D)< 2 mincr (C;, D).
i=1
Since mincr (Cy 4 1, D) = mincr (Cy 42, D) = 1 and since the parity condition holds for
G; I, -+, 1,; Cy, -+ -, C we know

k
(22) cr (G,D)= > mincr (C;, D),
i=1

and mincr (Cy 1, D) = mincr (Cy+2) = 1. Hence D has one of its end points on ¢j.

As the cut condition holds for G; Iy, - - - , I,; Cy, - - -, Cy, there exists a “fractional”
packing of paths P!, ---, Py, ---, PL, ---, P¥, with coefficients Aj, -+, N, -+,
A, -+, AF> 0, satisfying (7). By (22), at least one of the P?, say P}, passes edge €.
So P! = R,eyR; for certain paths R; and R,.

We now show the following claim.

CLAIM. For each straight cut D' (for G') we have
(23) mincr (R;, D)+ mincr (Ci+ 1, D')+mincr (R, D') = mincr (C,,D')+2.
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Proof of the claim. Since
k k 1] X X
(24) cr (G,D)= > mincr (C;,D)< > > N-cr(P},D)=cr(G,D),
i=1 i=1j=1

and since A} > 0, we know that cr (P!, D) = mincr (C;, D).

Without loss of generality, (P} |’*) coincides with path R;, (P}|3/4) with Cry 1,
and (P} |3},4) with R,. Moreover, we may assume that P}(1/2) = D(0).

Let D' be any straight cut. To show (23) we may assume that D and D’ intersect
each other at most once, and that if D’ intersects ¢y, then D and D’ do not intersect.

Let

(25) X:={(x,y)€[0,1]X[0,1]| P{(x)=D'(y)}.
Let =~ be as in (10). So mincr (C;, D’) is equal to the number of odd classes of ~.
We show
if (x, y), (X', ¥'), (X", ¥"), (X", y") € X so that (x, y) =~ (X, '), (x", ") =
(26) (x”, "), x, x" € (0, ) and x', x” € (4, 1), then D and D’ intersect and
(x,y) = (X", »y").
Indeed, as (x, y) ~ (x, y'), we know (P}|¥") ~ (D'|}"). So (P} |3 )(D’'|}) forms a

homotopically trivial cycle K. Since (P} | %) passes D(0), D splits K into two homotop-
ically trivial cycles. That is, there is a A € (0, 1] so that

either (i) 3z e[x, x']: (P}|L/?)(D]}) is a homotopically trivial cycle,
(27) or (ii) 3z € (¥, ¥'): (PIIY*)DI|3},2)(D'|2) is a homotopically trivial
cycle.

Since cr (P}, D) = mincr (P}, D), (27) (i) does not occur. So (27) (ii) applies. Hence
(28) (PLY)~ (D' 5DV,

In particular, D and D' intersect, with D(\) = D’(z). We similarly derive from the fact
that (x", y") =~ (x", y") that

(29) (P11~ (D' [3:)(D1Y).

Therefore,

(30)  (PHX)~(PLY*)WPLITR) ~ (D' NP I)ND (DY) ~ (D).

So (x, y) = (x", y"). This shows (26).
Now cr (Cr41, D') = 1. If cr (Cy 41, D') = 0, then the above implies

(31) odd (Pi,D")Z(odd (R,,D’)— 1)+ (odd (R,,D")— 1),

since by (26) all but at most one class of intersections of R; and D’ is also a class of
intersections of P} and D'. Similarly for R,. Equation (31) implies (23).

Ifcr (Ck+q, D') = 1, then D and D' do not intersect, by assumption. Hence, by
(26), no class of intersections of P} and D’ contains both (x, y) and (x’, »') with x €
(0, §) and x’ € (4, 1). Since cr (Cx+1, D') = 1, there is only one element (x, y) in X
with x € (4, 3). Except for the class of intersections of P} and D’ containing this element,

all other classes also form a class of intersections of R, and D’ or of R, and D’. Hence
(32) odd (P!,D"Y=odd (R;,D')+0dd (R,,D")— 1,
and (23) follows. 0O
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We next show
(33) the cut condition holds for G'; I, - -+ , I;; Ry, Ry, Ca, + -+, Ciy Cryy.

Suppose not. Since we are again in the straight-line case, by the lemma there exists a
straight cut D’ so that
k+1

(34) mincr (R, D’)+ mincr (R,,D’)+ 2, mincr (C;,D'YZcr (G,D')+2,
i=2

using the fact that the parity condition holds also for G'; I}, --- , I,; R;, Rz, Cs, - - -,
Ci+1. Since the cut condition does hold for G'; Iy, - - -, I,; Cy, - - -, Cy, it follows that

(35) mincr (R, D)+ mincr (R,, D')+ mincr (Cy 4 ,D’)> mincr (C;,D’).
Hence
(36) cr(Pl,DY=cr(R,,D")+cr(Ry,D")+cr(Ciyy,D")>mincr (C;,D’).

Therefore,

k L . 3 k L 3
cr(G,D)= Y > Ni-er(P},D")> > > M\j-mincr (C;,D')
i=1j=1 i=1j=1

(37) .
= > mincr (C;, D’).

i=1

However, (34) and (37) imply
k+1
mincr (R, D’)+ mincr (R,,D’)+ > mincr (C;,D')Zcr (G,D')+2
i=2
(38) .
> > mincr (C;,D')+2,

i=1

contradicting the claim.

So (33) holds, and hence by part I of this proof there exist pairwise edge-disjoint
paths Q,l ~ Rla Q,{ ~ RZ, Q2 ~ C2a tt Qk ~ Ck’ Qk+1 ~ Ck+l' By StiCking Q,la
Ok +1, Of to one path, which is homotopic to C;, we obtain paths as required. O
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Abstract. A complete characterization of the class of graphs that admit a cylindric visibility representation
is presented, where vertices are represented by intervals parallel to the axis of the cylinder and the edges correspond
to pairs of visible intervals. Moreover, linear time algorithms are given for testing the existence of and constructing
such a representation. Important applications of cylindric visibility representations can be found in the layout
of regular VLSI circuits, such as linear systolic arrays and bit-slice architectures. Also, alternative “dual” char-
acterizations are presented of the graphs that admit visibility representations in the plane and in the cylinder.
It is interesting to observe that neither of these two classes is contained in the other, although they have a
nonempty intersection.
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1. Introduction. The concept of visibility plays a fundamental role in a variety of
geometric applications [10]. Of particular interest are the problems dealing with visibility
graphs between parallel intervals, which have various applications in VLSI layout [4],
[71,181,[13], [18], motion planning [ 5], [11], and graph drawing [1], [12],[14], [15].
The combinatorial properties of these graphs have also been extensively investigated [2],
[14], [17], [19]. Visibility graphs also arise in the well-known hidden-surface elimination
problem for two- and three-dimensional figures.

Let I be a set of parallel intervals in the plane, where an interval is a segment that
might or might not contain one or both of its endpoints. Two intervals are said to be
visible if they can be joined by a line orthogonal to them that does not intersect any
other interval of 1. The visibility graph of I is the graph whose vertices are the intervals
of I, and whose edges connect pairs of visible intervals. Conversely, a visibility represen-
tation for a graph G is a set of intervals whose visibility graph is isomorphic to G. It has
been shown that G admits a visibility representation in the plane if and only if there
exists a planar embedding for G such that all the cutpoints appear on the boundary of
the same face [14], [19]. Furthermore, such a representation can be constructed in linear
time [14].

In this paper we consider visibility on a cylindric surface, where vertices are associated
with intervals parallel to the axis of the cylinder. Namely, we present a characterization
of the class of graphs that admit a visibility representation in the cylinder, and give linear
time algorithms for testing the existence of and constructing such a representation. Im-
portant applications of cylindric visibility representations can be found in the layout of
regular VLSI circuits, such as linear systolic arrays and bit-slice architectures [9]. Also,
we present alternative “dual” characterizations of the graphs that admit visibility rep-
resentations in the plane and in the cylinder. It is interesting to observe that neither of
these two classes is contained in the other, but they have a nonempty intersection.
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A graph admits a visibility representation in the plane or cylinder if and only if all
its connected components do. Hence, in this paper we only consider connected graphs.
Let G = (V, E) be a connected graph. A cutpoint of G is a vertex whose removal disconnects
G. If G has at least one cutpoint, it is said to be 1-connected; otherwise, it is said to be
2-connected. A block of G is a maximal 2-connected subgraph of G. The block-cutpoint
tree T of G is the graph whose vertices are the blocks and the cutpoints of G, and whose
edges connect every block B to the cutpoints contained in B. T can be constructed in
O(| E|) time by using depth-first search [3]. A caterpillar is a tree whose nonleaf vertices
form a path. Figure 1(a) shows a graph whose block-cutpoint tree, given in Fig. 1(b),
is a caterpillar. Blocks and cutpoints are represented by large and small circles, respectively.

We show that a graph admits a cylindric visibility representation if and only if it is
planar and its block-cutpoint tree is a caterpillar. We present linear time algorithms for
testing the existence of and constructing a cylindric visibility representation for a given
graph. Also, we characterize visibility representations in the plane and in the cylinder by
means of the block-cutpoint trees of the dual graphs. Namely, we show that a planar
graph G admits (i) a planar visibility representation if and only if it admits a dual graph
G* whose block-cutpoint tree is a star; and (ii) a cylindric visibility representation if and
only if it admits a dual graph G* whose block-cutpoint tree is a path.

Note that there exist planar graphs whose block-cutpoint tree is a caterpillar and
such that in no planar embedding all the cutpoints appear on the boundary of the same
face. Indeed, this is the case for the graph of Fig. 1. Conversely, the existence of a visibility
representation in the plane does not impose any restriction on the structure of the block-
cutpoint tree. For example, Fig. 2(a) shows a graph that admits a visibility representation
in the plane, but whose block-cutpoint tree (Fig. 2(b)) is not a caterpillar. Therefore,
visibility in the plane does not imply visibility in the cylinder, and vice versa.

In the next section we introduce the concept of cylindric orientation and show its
relation with cylindric visibility representations. In § 3 we present a linear time algorithm
that constructs a cylindric visibility representation for any 2-connected planar graph.

(C)

(b)

FIG. 1. (a) A 1-connected graph and (b) its block-cutpoint tree.
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(@

(b)

FIG. 2. (a) A graph that admits a visibility representation in the plane; (b) the block-cutpoint tree of the
graph in part (a).

The characterization of cylindric visibility representations is given in § 4. Finally, the
dual characterizations are presented in § 5.

2. Cylindric orientations. An (infinite) cylinder C is the locus of points at the same
distance from a straight line, called the axis of the cylinder. A cylinder is also the union
of an infinite family of circles with their center on the axis and drawn on a plane orthogonal
to the axis. Alternatively, C is the union of an infinite family of lines parallel to the axis,
and at the same distance from it. The circles and lines of C naturally define a coordinate
system, since every point of C is the unique intersection of a line and a circle. Every
point of C will be denoted by a pair (x, 6), where x is measured on the axis and 6 is the
angle with respect to some reference line and some “clockwise” orientation, with 0 =
0 < 2m.

We will consider cylindric embeddings of graphs, where vertices are mapped into
points of the cylinder, and edges are mapped into nonintersecting Jordan curves on the
cylinder. Clearly, a graph admits a cylindric embedding if and only if it is planar. Unlike
planar embeddings, cylindric embeddings can have two unbounded faces, which are
referred to as the lefimost face and rightmost face of the embedding.

Let T be a cylindric embedding with distinct leftmost and rightmost faces. A cycle
v of T is said to wrap around cylinder C if it intersects any Jordan curve on the surface
of C with endpoints in the leftmost and rightmost faces of T', respectively. In other words,
the removal of v disconnects C into two unbounded pieces. A cylindric orientation T
of T is an orientation of the edges of I" such that:

(1) T' has no sources (vertices without incoming edges) and no sinks (vertices
without outgoing edges);

(2) every directed cycle wraps around C in the clockwise direction.

The following lemma gives two important properties of cylindric orientations. It
can be proved using arguments similar to the ones in the proof of Lemmas 1 and 2 of
[14], which give analogous properties for planar st-graphs.
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LEMMA 1. Let IV be a cylindric orientation. We have:

(1) for every vertex v of T, the incoming (outgoing) directed edges appear consec-
utively around v (see Fig. 3(a));

(2) the boundary of each internal face of T consists of two directed paths with
common origin and destination (see Fig. 3(b)).

In the following, the concepts of leff and right refer to the orientation of the edges
in a cylindric orientation. For example, the face to the left of a directed edge [u, v],
denoted LEFT (u, v), is the face containing [u«, v] that appears on the left side when
traversing [u, v] from vertex u to vertex v. Face RIGHT (u, v) is symmetrically defined.
By Lemma 1, for each vertex v, there are two distinct faces that separate the incoming
edges from the outgoing edges. These faces are denoted by LEFT (v) and RIGHT (v),
where LEFT (v) is the face to the left of the leftmost incoming and outgoing edges, and
RIGHT (v) is the face to the right of the rightmost incoming and outgoing edges (see
Fig. 3(a)).

An interval of cylinder C is a topologically connected subset of a line of C. An arc
of C'is a topologically connected subset of a circle of C. Let I be a set of disjoint intervals
of C. Two intervals i; and i, of I are said to be visible if there is an arc a of C with
endpoints on ; and i, that does not intersect any other interval of I. Arc a is said to be
a visibility arc between i; and i, and is directed according to the clockwise orientation.
In other words, let 6; and 6, be the angles of i, and i,, respectively, with 6; < 6,; if a does
not intersect the reference line than we direct a from i; to i,; otherwise, we direct a from
iz toi 1.

A cylindric visibility representation K for a graph G is a mapping of vertices of G
into disjoint intervals of C, called vertex intervals, such that there is an edge (u, v) if
and only if the intervals associated with u and v are visible. Each edge of G is mapped
into either one or two visibility arcs. In the latter case, the union of the two visibility
arcs is a circle of C. For simplicity, we use the same name for the vertices of the graph
and their corresponding vertex intervals. Figure 4(b) shows a cylindric visibility repre-

LEFT(v) v RIGHT(v)

(a)

(b)

FIG. 3. (a) Incoming and outgoing directed edges around a vertex; (b) directed paths forming the boundary
of a face.
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FIG. 4. (a) A planar graph G; (b) a cylindric visibility representation K for G; and (c) the cylindric orientation
associated with K.

sentation for the graph of Fig. 4(a). Note that the top and bottom heavy lines represent
the same line of the cylinder, say the reference line.

From K we can construct a cylindric orientation I' by shrinking every vertex interval
into a point and accordingly deforming the visibility arcs, as shown in Fig. 4(c). Note
that the undirected graph obtained from I by ignoring the edge directions and the double
edges is isomorphic to G. The above construction shows that any graph that admits a
cylindric visibility representation must be planar.

Given a planar embedding II of a 2-connected planar graph G, and two distinct
faces f1 and f, of II, we can construct a cylindric orientation I' of G with the same
topology as I, leftmost face f;, and rightmost face f>.

ALGORITHM CYL-ORIENT.

Input: A 2-connected n-vertex planar graph G = (V, E), with n = 3. A planar embedding

II for G, and two distinct faces f; and f; of II.

Output: A cylindric orientation I' of G with the same topology as II, leftmost face f,

and rightmost face f5.

(1) Embed II on the surface of a sphere.

(2) Pierce two holes in the sphere inside faces f; and f3, and deform the pierced sphere
into a cylinder. This gives a cylindrical embedding II'.

(Note that faces f; and f, might share one or more vertices and/or edges. This,
however, does not affect the rest of the algorithm.)

(3) Orient the edges on the boundary of face f| in the clockwise direction. Mark face f|
as “oriented.”

(4) Let f be an unmarked face that is adjacent to a marked face. Since G is 2-connected,
the edges on the boundary of f can be partitioned into two simple paths, v, and v,
where v, contains the oriented edges, and vy, contains the unoriented edges. Let u
and v be the common endpoints of these two paths such that +, is directed from u
to v. We orient all the edges of vy, in the direction from u to v. This step is repeated
until all faces are marked.

(Note that this process is essentially a visit of the dual graph.)
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THEOREM 1. Algorithm CYL-ORIENT constructs a cylindric orientation T for an
n-vertex (n = 3) 2-connected planar graph G in O(n) time.

Proof. The algorithm maintains the invariant that after each iteration of step 4 the
oriented portion of the graph is a cylindric orientation. If the orientation of v, creates a
cycle in the oriented portion that does not wrap around C in the clockwise direction,
such a cycle must be the union of v, and of a directed path +; from v to . This implies
that the union of v, and 3 is a cycle that does not wrap around C, which violates the
invariant. The correctness of the algorithm easily follows by induction. Regarding the
time complexity, we observe that O(1) time is spent at each edge. O

Note that the cylindric orientation I' constructed by the above algorithm does not
have double edges. The cylindric orientation for a 2-connected graph with two vertices
is a cycle consisting of two symmetrically directed edges, and can be trivially constructed.

3. Construction of cylindric visibility representations. Given an acyclic digraph
D = (V, E), a topological ordering T on D maps each vertex v into a nonnegative integer
7(v) such that 7(u) < 7(v) for every directed edge [u, v] € E. A topological ordering can
be computed in O(| V| + | E|) time by means of the following recursive formula:

(1) 7(s) = 0, for every source-vertex s € V'

(2) 7(v) =1 + maxy e 7(1).

A face of a cylindric visibility representation is a maximal topologically connected
region of the cylinder delimited by the vertex intervals and the visibility arcs. The faces
of a cylindric visibility representation are in one-to-one correspondence with the faces
of the associated cylindric orientation. In the rest of this section we restrict our attention
to 2-connected graphs, and show how to construct a cylindric visibility representation
in linear time.

ALGORITHM VISIB-2C.
Input: A 2-connected n-vertex planar graph G = (V, F). A planar embedding II for G,
and two distinct faces f; and f5.
Output: A cylindric visibility representation K for G with leftmost face f; and rightmost
face f.
(1) Construct a cylindric orientation I' of G with leftmost face f; and rightmost face f5,
using algorithm CYL-ORIENT.
(The digraph T intuitively represents a “‘circular order” of the vertex intervals in
the #-direction.)
(2) Construct the dual digraph IT'* of T, where dual edges are oriented ‘“from left to
right.” Namely, the dual of [u, v] is the directed edge [LEFT (u, v), RIGHT
(u, v)]. I'* is acyclic and has exactly one source ( f;) and exactly one sink (f3).
(A directed edge [ f, g] in I'* implies that face f will be to the left of face g in the
cylindric visibility representation.)
(3) Compute a topological ordering « on the digraph obtained from I' by removing the
edges that intersect a path of I'* from f to f5.
(The ordering « will be used for determining the #-coordinates of the vertex intervals
and the visibility arcs.)
(4) Compute a topological ordering 8 on I'*.
(The ordering 3 will be used for determining the x-coordinates of the vertex intervals
and the visibility arcs.)
(5) Let g = 27 /n,
for each v € V' do
draw a vertex interval from (8(LEFT (v)), a(v)8y) to (B(RIGHT (v)), a(v)by),
which includes the left endpoint but not the right one;
endfor;
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(6) For each [u,v] eI do
let x = 3(B(LEFT (u, v)) + B(RIGHT (u, v)));
draw a visibility arc directed from (x, a(u)8) to (x, a(v)6y);
endfor;

An example of the construction performed by Algorithm VISIB-2C is shown in
Fig. 5: Fig. 5(a) shows a planar embedding of a 2-connected graph G; Fig. 5(b) shows
the cylindric orientation I' computed in step 1, in heavy lines, and its dual I'* computed
in step 2; primal and dual vertices are labeled with the value of the corresponding to-
pological ordering, computed in Step 3 or 4; finally, Fig. 5(c) shows the cylindric visibility
representation K computed in steps 5 and 6.

Now, we discuss the complexity of the algorithm. Since G is a planar graph, both
G and its dual G* have O(n) vertices and edges. From the results of § 2, steps 1 and 2
take O(n) time. The computation of « and 3 in steps 3 and 4 can be performed in O(n)
time. Finally, steps 5 and 6 take O(») time. Hence, we have the following theorem.

THEOREM 2. Algorithm VISIB-2C constructs a cylindric visibility representation K
for an n-vertex 2-connected planar graph G in O(n) time.

4. Cylindric visibility representations and caterpillars. As discussed in the intro-
duction, not every 1-connected planar graph admits a cylindric visibility representation.
Here, we provide a necessary and sufficient condition that characterizes the class of
graphs that admits such a representation. Before we prove the main theorem of this
section, we need some preliminary results.

LEMMA 2. Let K be a cylindric visibility representation for G, and ~ be a circle of
the cylinder that intersects at least three vertex intervals of K. Then there is a cycle in G
that consists of exactly the vertices associated with the vertex intervals intersected by .

Proof. Any two consecutive vertex intervals intersected by « are visible, and thus
the corresponding vertices are adjacent. O

i AP
36 d

200 +

3 180 +
a
00 - l
X
4
0 1 2 3

[@)] (€]

FIG. 5. A running example for Algorithm VISIB-2C: (a) a planar embedding of a 2-connected graph G
(b) the cylindric orientation T for G (in heavy lines), computed in step 1, and its dual T* computed in step 2;
(c) the cylindric visibility representation for G computed in steps 3-6.
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We define a section of a cylinder C as the portion of C generated by the rotation of
an interval i of C around the axis.

LEMMA 3. Let K be a cylindric visibility representation for G, and ¢ be a cutpoint
of G. Then the vertex interval of any other cutpoint ¢’ of G is not completely contained in
the section generated by the vertex interval of c.

Proof. Assume that there is a cutpoint ¢’, distinct from ¢, that is completely contained
in the section generated by ¢. There must exist a block B that contains ¢’ but not c. Let
v be a vertex of B adjacent to ¢’. By Lemma 2, there is a cycle of G associated with a
circle of the cylinder intersecting ¢, ¢, and v. Since every cycle must contain vertices of
the same block, we obtain a contradiction. O

The following theorem characterizes the class of graphs that admit a cylindric visibility
representation.

THEOREM 3. A planar graph G admits a cylindric visibility representation if and
only if its block-cutpoint tree T is a caterpillar.

Proof. Necessity. Assume, for a contradiction, that T is not a caterpillar. Then G
has either a cutpoint contained in three or more nonleaf blocks, or a block containing
three or more cutpoints. We discuss only the first case. The second case is similar. Let ¢
be a cutpoint contained in distinct nonleaf blocks B;, B,, and Bs, and let x; and xz be
the x-coordinates of the left and right endpoints of ¢, respectively. For i = 1, 2, 3, consider
a cutpoint ¢; in B; distinct from ¢. Such cutpoints exist since B,, B,, and Bj are not
leaves of T (see Fig. 6(a)). From Lemma 3, at least two of these cutpoints, say ¢; and
¢c,, are both on the same side of the section generated by c, i.e., either their left endpoints
are on the left of x; or their right endpoints are on the right of xz. Without loss of
generality, assume the first case. There must be vertices v; in B, and v, in B, whose vertex
intervals intersect the circle of the cylinder at abscissa x; (see Fig. 6(b)). By Lemma 2,
there is a cycle of G associated with this circle. Clearly, such cycle contains vertices from
both B, and B,, which is a contradiction to the fact that B, and B, are distinct blocks.

7
o ———; %

FIG. 6. Example for the proof of Theorem 3 (necessity).
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Sufficiency. We show how to construct a cylindric visibility representation for the
graph G from the cylindric visibility representations of its blocks. Denote the nonleaf
blocks of G as By, ‘-, By, and the cutpoints of G as ¢, ¢;, - -, cx, where block B;
contains the cutpoints ¢;_, and ¢;, for i = 1, - -+, k. In the construction of a cylindric
visibility representation K for a block B of G, we have two cases.

Case 1. Bisaleafof T.

In this case B contains exactly one cutpoint ¢ of G. We construct Ky such that both
the leftmost and rightmost faces of Kz contain the cutpoint ¢. This can be done by
selecting faces f| and f; in Algorithm VISIB-2C as two faces containing ¢. Note that all
the vertex intervals of K are contained in the section of c.

Case2. B = B;,forsomeiin {1, ---, k}.

In this case, we construct K such that the leftmost face contains cutpoint ¢;_; and
the rightmost face contains cutpoint c;.

At this point the cylindric visibility representations of all the blocks have been con-
structed. For each block B, slice K at abscissas 8(f1) and 8(f2). The sections so obtained
are then glued together along a common axis, in such a way that, foreachi =1, - - -,
k — 1, all the sections corresponding to leaf blocks connected to ¢; are placed between
the sections of blocks B; and B;, ;. The leaf blocks connected to ¢, and ¢, are placed
before block B, and after block By, respectively. To complete the construction, the sections
must be rotated so that the vertex intervals of different sections corresponding to the
same cutpoint become aligned. O

The construction described in the proof of Theorem 3 is illustrated in Fig. 7. Figure
7(a) shows the block-cutpoint tree of a graph, where blocks are denoted by uppercase
letters, and cutpoints by lowercase letters. Figure 7(b) shows the arrangement of the
sections corresponding to the blocks along the cylinder. Note the leaf blocks 4, B, D,
E, G, H, and I are contained in the sections of their respective cutpoints. Also, nonleaf
blocks C and F have one cutpoint at the left and the other cutpoint at the right, which
link them to the rest of the representation.

The time complexity of the construction described in the proof of Theorem 3 is
analyzed as follows. Let n be the number of vertices of G. The blocks and cutpoints of
G can be computed in time O(r) using depth-first search. By Theorem 2, the cylindric
visibility representation of each block B is constructed time O(mig), where my is the

(b)

FIG. 7. Construction in the proof of Theorem 3 (sufficiency).
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number of edges in B. This sums up to O(#n) because each edge belongs to a single block.
Finally, combining the sections of the blocks into a unique cylindric visibility represen-
tation is easily done in O(n) time.

To test whether a planar graph G admits a cylindric visibility representation, we
construct its block-cutpoint tree 7', and determine whether it is a caterpillar. This can
be done by removing all the leaves from 7, and verifying that the resulting graph is a
simple path. The above computation takes O(n) time. Hence, we conclude that the
following theorem holds.

THEOREM 4. Given a graph G with n vertices, there are O(n) time algorithms for
testing the existence of and constructing a cylindric visibility representation for G.

5. A dual characterization of visibility representations. In this section we provide
“dual” characterizations of the classes of graphs that admit planar visibility representations
and cylindric visibility representations.

THEOREM 5. A planar graph G admits a planar visibility representation if and only
if it admits a dual graph G* whose block-cutpoint tree is a star.

Proof. G is 2-connected if and only if all of its duals are [6, Ex. 11.4, p. 124].
Hence, the theorem is trivially true for 2-connected graphs. Now, suppose that G is 1-
connected. We recall that G' admits a planar visibility representation if and only if it has
a planar embedding such that all the cutpoints of G are on the same face, say the external
face [14]. Hence, if G admits a planar visibility representation there exists a planar
embedding of G such that all blocks are embedded in the external face. Let G* be the
Qual graph associated with this embedding. G* has exactly one cutpoint, i.e., the exter-
nal face.

Conversely, suppose that G admits a dual graph G* whose block-cutpoint tree is a
star. The embedding associated with G * has a face (the center of the star) containing all
blocks, and hence all cutpoints of G. This implies that G admits a planar visibility rep-
resentation. O

THEOREM 6. A planar graph G admits a cylindric visibility representation if and
only if it admits a dual graph G* whose block-cutpoint tree is a path.

Proof. Suppose that G admits a dual graph G* whose block-cutpoint tree 7* is a
path. Let T be the block-cutpoint tree of G. If T is not a caterpillar, then G has either a
block containing three or more cutpoints, or a cutpoint contained in three or more
nonleaf blocks. We discuss only the first case. The second case is similar. Let B be a
block containing distinct cutpoints ¢;, ¢, and ¢;. Let B, B,, and B; be blocks of G
distinct from B that contain cutpoints ¢, ¢;, and ¢z, respectively. Since B* has at most
2 cutpoints, one of them, denoted f, must contain at least two of these blocks, say B,
and B,, which are connected to B only through cutpoints ¢, and ¢,. Hence, in T*, [ is
adjacent to B*, B}, and B>, a contradiction. Therefore, T'is a caterpillar and, by Theorem
3, G admits a cylindric visibility representation.

Now, suppose that G admits a cylindric visibility representation, and consider the
one constructed in the proof of Theorem 3. By construction, for every block B, the rest
of the cylindric visibility representation is contained in the leftmost and rightmost faces
of Kp. Shrink every vertex segment to obtain a cylindric embedding of G. The above
property is preserved by this transformation, and hence the block-cutpoint tree of the
dual graph G* is a simple path. O

6. Extensions and open problems. In the definition of visibility on the cylinder we
can exchange the role of intervals and arcs, so that the family I consists of circular arcs,
and visibility is defined by intervals parallel to the axis. This new definition induces a
different type of cylindric visibility representation, which is topologically equivalent to
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an open visibility representation on the sphere, where the family I consists of open arcs
of parallels (i.e., entire parallels are not allowed), and visibility is defined by arcs of
meridians [16]. A characterization of the class of graphs that admit an open visibility
representation on the sphere (or, equivalently, the aforementioned variation of cylindric
visibility representation ) is presented in [16], where it is developed in the framework of
a new representation of planar graphs, called tessellation representation. We have the
following theorem.

THEOREM 7. [16] Let G be a planar undirected graph with n vertices. G admits an
open visibility representation on the sphere if and only if G admits an embedding such
that all the cutpoints are on the boundary of at most two faces. Also, there are O(n)-time
algorithms for testing the existence of and constructing an open visibility representation
on the sphere for G.

It would be interesting to characterize the class of graphs that admit a roroidal
visibility representation, where the intervals of I wrap around the torus in one way and
visibility is defined by arcs wrapping around the torus in the other (orthogonal) way. In
this case, the problem appears to be far more difficult, since the graphs that admit such
a representation need not be planar.
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MOTION PLANNING, TWO-DIRECTIONAL POINT REPRESENTATIONS,
AND ORDERED SETS*
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Abstract. Ordered sets are used as a computational model for motion planning problems. Every ordered
set has a two-directional point representation using subdivisions. These subdivision points correspond to direction
changes along the path of motion.
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cycle
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How may a robot arm be moved to grasp a delicate object from a crowded shelf
without unwanted collisions?

How may a cluster of figures on a computer screen be shifted about to clear the
screen without altering their integrity and without collisions?

These questions highlight instances of the recent and rapidly growing theme of
“motion planning.” Rival and Urrutia (1987) initiated the study of motion planning
using a computational model based on the theory of ordered sets. Subsequently, Now-
akowski, Rival, and Urrutia (1987) proposed the problem to characterize the ordered
sets here called “two-directional orders.”

One example of a motion planning problem is the following. Given a finite collection
of disjoint figures in the plane, is it possible to assign to each a single direction of motion
so that this collection of figures may be separated, through an arbitrarily large distance,
by translating each figure one at a time, along its assigned direction? In this model we
have considered only convex figures in the plane. Indeed, given a collection of disjoint,
convex figures, the separability problem always has a positive solution. Loosely speaking,
at least one of the convex figures is on the “outside” or “boundary” of the collection,
and therefore it may be removed. Of course, instead of disjoint figures in the plane we
can consider robots moving along assigned directions.

To make the mathematical matter more definite, we will here idealize each robot
as a point (a circle of negligible radius) on the plane. Suppose that each point is assigned
a single direction of motion not necessarily all the same. For points 4 and B we say that
B obstructs A if the line joining A to B follows the direction assigned to 4. We write
A — B. More generally, we write A < B if there is a sequence 4 = 4, > 4, > -+ —>
Ay = B. This relation < is transitive. It is appropriate to call this binary relation <
the blocking relation. If the blocking relation has no directed cycles then it is antisymmetric,
also. In that case the blocking relation < is a (strict) order on the given set of points. If
each of the points is assigned the same direction, we call the relation one-directional. In
that case, any maximal point (with respect to <) is on the “outside.”

We say that a collection of points, each assigned one of m directions, is an m-
directional point representation of an ordered set P, if its blocking relation is identical to
the ordering of P.
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Nowakowski, Rival, and Urrutia (1987) considered ordered sets, which have an m-
directional point representation, and called these m-directional point orders (see Fig. 1).
Indeed, we may even imagine such point representations as models for an assembly line
based on a many machine scheduling environment, in which the robots correspond to
machines or machine parts.

Nowakowski, Rival, and Urrutia showed that there are ordered sets with no m-
directional point representation, for any positive integer m, yet every finite ordered set
has a subdivision with such an m-directional point representation, for some m. This
subdivision consists precisely of the original ordered set with an extra element adjoined
along some of the (covering) edges (with just the comparabilities induced, in each case,
by just this edge).

Throughout the paper we will use the customary order diagram of an ordered set
in which the y-coordinate of a point b is larger than that of another point a if a < b and
an edge joins them just if b is an upper cover of a. (Say that b is an upper cover of a (b
covers a or a is a lower cover of b or a is covered by b) if a < b and if a < ¢ = b implies
b = c.) Thus, an ordered set that contains an element with m lower covers requires at
least m directions in its point representation—if it has one. We usually use upper case
characters A, B, C, - - - to stand for the robots in the point representations and lower-
case characters a, b, ¢, - - - for the elements of ordered sets and the same symbol < for
the order relation in both contexts.

An alternative, perhaps more suggestive, interpretation of subdivision is this: Let b
cover a and suppose a subdivision point (a, b) is placed along the corresponding covering
edge. In a corresponding two-directional point representation a robot A may itself be
assigned two directions, in succession, the first followed until a junction corresponding
to the subdivision point (a, b) and the second followed from this junction to B (see
Fig. 2).

Note that, by transitivity, it may be that 4 < Band B < C, thatis, 4 < C, yet Cis
not “visible” from A along either a horizontal eastward or a vertical upward path. At the
same time, although D covers A4 it may be that B lies along the line of sight from A4 to
D, apparently “obstructing the visibility”’ between them (see Fig. 3). From the viewpoint
of motion planning we may suppose that once B begins to move along its intended
direction of motion there is an unobstructed path from 4 to D. In the interest of continuity

Ao———p o C c
‘1’3 a b
A two-directional point An order diagram of the
representation of the ordered set {a<c, b<c}.

ordered set {a<b, a<c}.

FIG. 1
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we will insist, too, that all elements be assigned directions, including, in particular, the
maximal elements, even though a maximal element is not constrained to precede
any other.

Our leading problem is to characterize two-directional point orders among all orders.
Here are our main results. The first highlights a class of ordered sets, each of whose
members has a two-directional point representation. Call an ordered set a tree if its
covering graph contains no cycle (a subset a;, a,, - * - , a,, of distinct points, m = 4, such
that a; covers a;,, or a;+, covers q; foreach i = 1,2, --- , m — 1 and q, covers a,, or
am covers a;). A simple cycle in an ordered set is a cycle ay, a», -+, ax, k = 2, such
that a,; covers ay; _, foreachj =1, 2, - - - , k, and a,, covers a,. Moreover, we will call
a cycle a,, ay, a3, a4, in which a; < a; < a4 and a; < a; < a4 a simple cycle also (cf.
Fig. 4).

THEOREM 1. Every tree in which each element has at most two lower covers has a
two-directional point representation, yet an ordered set that contains a simple cycle has
no two-directional point representation at all.

On the positive side we will also show that any “lexicographic sum” of ordered sets,
with top and bottom, has a two-directional point representation, provided that both the
index set and the blocks do, also.

f :

D¢
! T d b
B —® oC
Ao a
A two-directional point An order diagram
representation of {a<b<c, a<d}. of {a<b<c, a<d}.
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a,

a; a, Ay

a,; a, oy 1
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FIG. 4

How many subdivision points along any covering edge ensure that an ordered set
has a two-directional point representation? Or, in the language of motion planning, how
many changes of direction for any robot guarantee that an order has a two-directional
point representation?

THEOREM 2. For any ordered set in which each element has at most two lower
covers, at most one subdivision point along some of its covering edges ensures that it has
a two-directional point representation.

In some sense this result is the best possible.

THEOREM 3. There exist ordered sets in which each element has at most two lower
covers such that almost half of its covering edges need be subdivided to ensure a two-
directional point representation. Moreover, there are ordered sets in which each element
has at most two lower covers with no two-directional point representation if every covering
edge is subdivided exactly once.

Note that while Theorem 2 ensures a two-directional point representation by sub-
dividing some covering edges of P, according to Theorem 3 too many subdivisions may
spoil the two-directional point representation.

We are still unable to characterize the ordered sets that have a two-directional
point representation. Nevertheless, it seems to us that the solution to the bipartite case
would shed light on the general problem.

Trees and cycles. It is easy to see that an ordered set with a two-directional point
representation also has one in which the two directions are perpendicular. We will suppose
throughout that these directions are northward (n) and eastward (e).

Our first aim is to show that no simple cycle has a two-directional point represen-
tation. Suppose that P is an ordered set with a two-directional point representation. Let
a and b be distinct elements of P. If both a and b point northward and lie on the same
vertical line in the representation of P, then they must be comparable. For if the y-
coordinate of a is below the y-coordinate of b in this representation, then as a points
northward, a < b; if the y-coordinate of b is below that of a then b < a. Now, let a, b
be distinct lower covers of ¢ in P. In the representation, ¢ must be located along the “line
of sight” of a and of b. Thus, if a and b had the same direction, then each would be
along the line of sight of the other and, according to our observation above, a and b
would be comparable. Therefore, we may suppose that a points northward and b eastward,
say, and that, therefore, c lies at the point of intersection of the northward and eastward
lines from these points. It follows, of course, that every element in P has at most two
distinct lower covers.

From these preliminary remarks it is an easy matter to deduce that no simple cycle
a, ay, - , A, k= 3 and k odd, has a two-directional representation. Suppose one did.
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As a,, az are lower covers of a, they have different direction n, e, say, respectively. Then,
as has direction n, a; e, and so on, alternatively, which, of course, is impossible as k
is odd.

We claim that no simple cycle at all has a two-directional point representation. The
cases a; < a; < asand a, < az < aq as well as a, < a,, a4 and a3 < a,, a4 can be checked
directly to have none, as a simple longhand effort shows. For the remaining cases another
remark is handy. Let ¢,, by, ¢2, by, -+, Cm, b, Cmv 1, bE @ “zigzag,” that is, ¢; covers
b, and ¢; covers b;_, and b;, for 2 = i = m, and c,,+, covers b,,, and consider a two-
directional point representation of it. We may suppose that its minimal elements b,,
b,, - -+, b,, alternate in direction n, e, - -+ . As each b;, 1 = k = m, is covered by two
of the ¢;’s, then both of them, namely c;_, and c;, lie along the line of sight of b;. As
c;—1 and ¢; are noncomparable, neither can be along the line of sight of the other. It
follows that in the representation, successive triples of the ¢;’s follow either an upward
staircase pattern or a downward staircase pattern in which an upward staircase may meet
a downward staircase with increasing subscript, yet a downward staircase continues only
downward (see Fig. 5).

Let ay, az, - - -, ax, k 2 3, be an arbitrary simple cycle, that is, a,; covers ay; _,
j=1,2, -+, k,and ay covers a,. Suppose that it has a two-directional point represen-
tation. Then its maximal elements must follow the staircase pattern indicated above.
Since the sequence a,, ay4, - - - of maximal elements will repeat following the enumeration
of the cycle, at least one portion must be a downward staircase, and, in that case, must
continue as a downward staircase throughout—which is impossible. Thus, no simple
cycle at all has a two-directional point representation.

We now show by induction on | P| that any ordered set P that is a tree does have
a two-directional point representation. Let a be an endpoint of the covering graph of P,
that is, either a maximal element of P with precisely one lower cover or else a minimal
element with precisely one upper cover. Suppose that a is maximal, that b is its unique
lower cover and that a two-directional point representation of P — {a} is given. We may
assume that b has direction n. We will locate a along the vertical from b above it. We
may choose its y-coordinate less than any other point already on this vertical yet larger
than b, and distinct from the y-coordinate of any other point. Assign a the direction e.
This constitutes a two-directional point representation of P.

Suppose now that a is minimal with unique upper cover b and that P — {a} has a
two-directional point representation. There is no loss in generality to assume that b has
direction n. By hypothesis, b has at most one lower cover ¢, besides a. Suppose ¢ has

)
Ciss® ci+lH o i3 HI !
t I t 4 ;
C: 1 0P C. 1 0P
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An upward staircase meets a downward staircase.

FiG. 5



156 AL-THUKAIR, PELC, RIVAL, AND URRUTIA

direction e. Then we may locate a on the vertical below b with y-coordinate distinct
from the y-coordinate of any other point and above any point already on this vertical
yet lower than b. We may assign a the direction n to obtain a two-directional point
representation of P. Now, suppose that ¢ has direction n, in which case ¢ lies on the
vertical through b beneath it. Before locating a we make a small change to the represen-
tation of P — { a} by shifting the location of b just an “epsilon” northward so that its y-
coordinate is distinct from the y-coordinate of any other point. In this case we may
locate a on the horizontal through b anywhere to the left of it and assign it the direction
e. This gives a two-directional point representation of P.

Actually we can say somewhat more, for ordered sets constructed as a “lexicographic
sum.” For an ordered set P and a family (Q,| p € P) of ordered sets, indexed by P itself,
the lexicographic sum %, Q, is the ordered set whose underlying set is the union of the
Qpy’sand in which x < yif x, ye Q,, forsomepe P,and x <yin Q, or,ifx€ Q,, y €
Q.and p<rinP.

PROPOSITION. Let 2, Q, be a lexicographic sum of ordered sets. If P as well as
each Q, has a two-directional point representation, and if each Q, has a top and a bottom,
then 2, Q, itself has a two-directional point representation.

Proof. Suppose a two-directional point representation of P is given. Let p € P with
coordinates (x, y), let p be directed northward, and suppose that p’, with coordinates
(x', ¥"), is the first vertex on this vertical northward path from p. If Q, is a chain, then
we may take a two-directional point representation of it in which each vertex is directed
northward. Then if we contract the total vertical distance between the bottom vertex and
the top vertex of O, to a total distance less than y’ — y, we may insert this representation
of O, into the vertical between p and p’, replacing p by the bottom of Q, and avoiding
all y-coordinates already occupied by existing points.

Suppose that Q, is not a chain. In this case we construct another two-directional
point representation of P, by shifting each vertex r on the vertical along p by a small
horizontal distance ¢ > 0 to the right less than the horizontal distance between p and
any other vertex in its representation. We now contract the region occupied by the rep-
resentation of Q, into the ¢ by y' — y rectangle from p to p’, again replacing p by the
bottom vertex of Q, avoiding all y-coordinates already occupied.

In this way we may successively add the blocks to produce a two-directional point
representation of the lexicographic sum itself.

It is not clear to us at this writing how we may naturally extend the class of ordered
sets with a two-directional point representation. Lattices with at most two lower covers,
even planar ones, need not have a two-directional point representation (e.g., the simple
cycle {a<b<d,a<c<d}).

Elsewhere (cf. Czyzowicz, Pelc, and Rival) we have studied ordered sets, and es-
pecially lattices, with a diagram using only two different slopes for its edges. For instance,
the 4-element cycle lattice can, of course, be drawn using only two slopes, yet it does not
have a two-directional point representation. On the other hand, there are ordered sets
(see Fig. 6) with no two-slope diagram (for nontrivial reasons) yet, which have a two-
directional point representation (see Fig. 7). Still, there is an obvious connection between
two-slope diagrams and point representations. If each vertex is allowed not just one of
two directions, but both of the two directions, then it is easy to verify that there is a two-
slope diagram. The converse, too, is obviously true.

Subdivision. Let P be an ordered set in which each element has at most two lower
covers. Even if P itself has no two-directional point representation, we will show that
there is an ordered set obtained from P by subdividing some edges of the diagram of P
at most once that, in turn, has a two-directional point representation.
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FIG. 6

Before we do this, let us record a rather simple transparent construction that, however,
proves less. We show that there is an ordered set P’ constructed from P by adjoining at
most two subdivision points along every covering edge which itself has a two-directional
point representation.

An example of this construction is iflustrated in Fig. 8.

Let L be a linear extension of P and arrange the elements of P as points at unit
intervals along the y = x line on the plane in the same increasing order as they occur in
L. We proceed by induction on the height of an element in L (that is, the size of the
longest chain in L from it to the bottom of L) to assign it successive directions, changing
at most twice, to produce a two-directional point representation. Suppose that the elements
of L labelled 4,, A,, - -+, A,,_, are already directed. Suppose that 4, is an upper cover
of A4,,. As A, has at most two lower covers in P either the eastward direction to 4, is
available or else the northward direction to 4, is available. Suppose then that the eastward
direction is available and is chosen from a single subdivision point on the (A4,,, 4,) edge
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(cf. Fig. 9). In fact, for any upper cover A, of A,, for which this eastward direction is
available we may choose a single subdivision point and direct 4,, northward, as before,
and direct the subdivision point eastward. Now, let C be an upper cover of A4,, for which
there already exists a point directed eastward toward it. In this case two subdivision points
along the (4,,, C) edge suffice: the first located north of 4,, at a point whose y-coordinate
is distinct from the y-coordinate of any other point already constructed; the second
located along the horizontal east from the first subdivision point and along the vertical
below C. Then direct the first eastward and the second northward. The same construction

can be carried out for any upper cover D of 4,, whose incoming northward direction is
available.

o>
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We turn now to the proof of Theorem 2. We first treat the special case that every
chain in P has at most two elements, that is, P has “height” at most two. Moreover, let
us assume that P has a quite specific structure. Indeed, suppose that P = P(G) is con-
structed from a graph G on the n vertices v;, v,, - -+ , v, with the minimal elements of
P corresponding to these » vertices of G and the maximal elements of P corresponding
precisely to those pairs w;; = (v;, v;) of vertices of G, joined by an edge in G. Then put
v; < w;; and v; < wy;. Evidently each element of P(G) has at most two lower covers.

We will now make P even more particular. Let P = P(K,,), where K,, stands for the
complete graph on # vertices, that is, every pair of vertices is joined by an edge. We will
show that there is an ordered set obtained from P(K,) by subdividing at most half of its
edges that has a two-directional point representation. To begin, select locations p;, p,, - -,
py for the vertices vy, v,, - - , v, on # horizontal lines with equations y = y,, y = y,, - -,
¥ = yu, say p; has coordinates (x;, y;),i =1, 2, - - - , n. We locate the vertices w;; beyond
(that is, to the right of) the vertical line x = max {x;|i = 1, 2, ---, n}. For each w;
satisfying i < j, choose a location p; on y = y; with coordinates (x;, y;) and define
another location pj;on y = y; at (x;, y;). We may suppose that all of these x-coordinates
x;; are distinct. Now, for each p; assign it the horizontal direction to the right and, for
each p; and pj; assign the vertical upward direction. The vertices pj; correspond to sub-
divisions of the corresponding edges from v; to w;; (see Fig. 10). In this way half of the
edges of P(K,) are subdivided and this resulting subdivision has a two-directional point
representation.

It is an easy consequence that, actually, for any graph G, some subdivision of the
ordered set P = P(G) also has a two-directional point representation. To see this, just
erase the points p;, pj; from the representation of the above described subdivision of
P(K,), n being the number of vertices of G, whenever v;, v; are not joined by an edge
inG.

We may now extend this idea to supply a two-directional point representation of
some subdivision of any ordered set P in which each maximum chain has at most two
elements. Indeed, just like the case for P(K,,), subdividing at most half of the edges is
enough. Locate the minimals of P, each on a different horizontal line. For each maximal
element with two lower covers we proceed as for the representation of P(G). In fact, if
all the maximals of P have two lower covers, then P = P(G), where possibly G has some
multiple edges (see Fig. 11).

If, on the other hand, there are maximals with just one lower cover, then it suffices
to locate these on the horizontal line corresponding to its unique lower cover and direct
it upward (see Fig. 12).

For this “bipartite” case, we have consistently directed the minimals horizontally
and the maximals, together with all subdivision points, vertically. Of course, we could
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have interchanged the two directions, with an appropriate change to all locations (a
reflection along the diagonal y = x).
We are now ready to treat the general case. First, we partition P into “levels’:

L, =min (P);

fori>1, L;=min (P- U Lj),
Jj<i

where min (P) stands for the minimals of P. Note that consecutive pairs L;, L,  deter-
mine bipartite orders, each of which does have a two-directional point representation.
In fact, as long as there are no covering relations between pairs of elements x € L;, y €
L;, jZ i+ 2, then we may successively locate positions for the elements of the levels,
alternating directions for the levels. Thus, if for L, U L, all vertices associated with L,
are directed horizontally, then the vertices of L,, as well as subdivision points, are directed
vertically. At the next step in L, U L3 each vertex in L; is directed horizontally just as
the subdivision points in L, U L3, and so on. Note that not all edges are subdivided; for
instance, no edge associated with the lower cover of an element with only one lower
cover is itself subdivided.

Let a two-directional point representation of a subdivision of the ordered set
(LU Ly))U(L3U L) U - - - be given. We suppose now that there are, however, covering
edges joining elements.in levels two or more apart. To this end let us suppose that x €

v1°‘—>“ 0---------0

vy vy v, vy Vy0—#----0----0
P A subdivision A two-directional point representation

of P of a subdivision of P
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L;,iodd say,and ye L;,j Z i + 2, are such elements. Let p,, p, stand for the corresponding
points in the representation of (L; U L,) U (L; U Ly) U - - - . Then each coordinate of
Dy is larger than the corresponding coordinate of p,. By hypothesis, y can have precisely
one other lower cover z # x and z € L;_, and, by construction, the covering edge y
above z is not subdivided. Now, p, is directed either horizontally or vertically. If hori-
zontally, like p,, then we insert a point p,,, directed upward, at the intersection of the
horizontal through p, and the vertical through p, (see Fig. 13). Now, if there is a point
D, already located on the vertical between py, and p,, it cannot be comparable to p,. As
no point in the representation of the subdivision can be directed upward to p., we may
shift p, slightly to the right. This results in a representation of the subdivision again, along
with the required comparability of x < y using a single subdivision. Otherwise, p, is
directed upward. As z is not itself a subdivision point, p, must be directed horizontally.
Then move p, slightly to the right, say a distance ¢ > 0. Insert a point p,,, directed
horizontally, at the intersection of the vertical through p, and the horizontal through p,,
that is, at the former location of p, itself. Also insert a point p,,, directed vertically at
the intersection of the horizontal through p, and the vertical through p,, (now shifted a
distance ¢ > 0 horizontally). We may suppose that no other points lie on the segment
between p,, and p, (otherwise, shift it horizontally by a small distance) (see Fig. 14). In
this fashion we can produce a two-directional point representation of a subdivision of
P. This completes the proof of Theorem 2.
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We now turn to the proof of Theorem 3 and first prove the second part. We construct
a family (P,|n = 7) of ordered sets, each member of which has no two-directional point
representation. We will also prove that if the diagram of P, is subdivided by adding
exactly one point along each covering edge, the ordered set O, thus obtained has no two-
directional point representation. Indeed, let P, = P(K,) (see Fig. 15). Of course, this
bipartite order P, itself has no two-directional point representation, for any # = 3, as it
certainly contains a simple cycle. We will show that adding exactly one subdivision point
along each edge of P,, n = 7, cannot produce an ordered set with such a representation.
Suppose, for a contradiction, that every ordered set Q,, n = 7, obtained from P, by
adding precisely one subdivision point (u#, uv) along every covering edge u to uv, does
have a two-directional point representation.

Our aim is to construct a particular two-colouring of the edges of P, based on the
representation of Q,. Let u be an arbitrary vertex of K,,. Note that, in the representation
of Q,, all but at most one of the upper covers of u have a direction different from that
assigned to u. Colour the edge from u to uv 1 if (u, uv) is directed eastward, otherwise
colour the edge 0. Note that the two incident edges of each maximal vertex uv of P,
carry distinct colours (see Fig. 16). On the other hand, among the # incident edges of
each minimal vertex u all, but at most one, receive the same colour. Now orient the
edges of K, according to this rule: # — v if the edge u to uv in P, has colour 1; v = u if
this edge # to uv in P, has colour O (see Fig. 17). Then for any vertex u of K,,, either all
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but at most one of the edges are directed away from u or, all but at most one of the edges
are directed into u. For each vertex u delete from K, n = 4, the minority edge, if it
exists. Then, for every vertex u of the induced subgraph, either every edge is directed
away from u or every edge is directed into u, that is, the induced subgraph must be
bipartite. In summary, we have shown that the removal of at most »n edges from K,
produces a bipartite graph. If n = 7 then one of the two parts of the bipartition contains
at least four vertices whose six edges must have been removed, according to the construc-
tion. This is impossible if only # edges are removed in all, each one incident to a distinct
vertex.

To prove the first part of Theorem 3, we will show that if P is a subdivision of P(K,,)
which has a two-directional representation, then there are at most n — 1 vertices w, ;
such that neither of the two original edges v; to w; ; or v; to w, ; is subdivided in P. For
contradiction, suppose that there are » such vertices w; ;. These n vertices together with
the 2# incident edges and all » minimal vertices of P(K,,) form a bipartite order on 2n
vertices with 2z edges. Such an order must contain a cycle, which contradicts Theorem 1.
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Abstract. The complete weight enumerator of a code enumerates the code words by the number of symbols
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1. Introduction. The complete weight enumerator (cwe) of a code enumerates the
code words by the number of symbols of each kind contained in each code word. As for
ordinary weight enumerators for linear codes, they satisfy a duality theorem. One appli-
cation for such a cwe is in determining the weight and distance structure of certain kinds
of concatenated codes. As an example it is sometimes of interest to obtain a binary code
from a g-ary code, ¢ = 2™, by replacing each field symbol with its binary representation
in some basis of F, over F,, where F, is the finite field of ¢ elements. The binary weight
enumerators of such binary image codes, obtained from certain representations of Reed-
Solomon codes, are considered by Kasami and Lin [2] and some of the references con-
tained therein. Such results can also be obtained from the more general approach using
cwe’s considered here. The problem addressed here is noted as research problem 11.2
in [4].

The next section reviews some results on Reed-Solomon codes and cwe’s that will
be of use in the sequel. The following three sections derive the cwe of particular realizations
of a Reed-Solomon code of dimensions two, three, and four, respectively. By the duality
theorem for cwe’s, these can be also obtained for dimensions #n — 2, n — 3, and n — 4.
Only Reed-Solomon codes over fields of characteristic two are considered in this work,
although many of the results hold for the more general case [3]. Section 6 considers
applications of the results derived.

2. Preliminaries. Throughout, let ¢ = 2" and n = ¢ — 1, and let « be a primitive
element of F,. Denote by RS,(n, k) the cyclic Reed-Solomon code of length » and
dimension k with generator polynomial

gr(x)=(x—a) (x—ab* 1) (x—abtn k1Y

The dual of RS,(n, k), RS§(n, k), is RS,_»+1(n, n — k). Let ERSy(q, k) be the
extended code obtained from RS,(n, k) by adding an overall parity check. Then
ERS3(q, k) = ERS,_5+1(q, ¢ — k). In like manner, the generator and parity check
matrices for these codes may be described. Let

0,=[1,a',a®, -+, a2,

* Received by the editors March 19, 1990; accepted for publication (in revised form) May 8, 1990.

+ Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada
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Then the parity check matrix for RS, (n, k), Hy, has as rows the vectors 0y, 0541, *** ,
0,_1+5—1 and the generator matrix G, has as rows the vectors 6,,_4., -+, 0,,_1, 0o,
e Bk p.

Using a notation similar to that of Kasami and Lin [2], let

V() =((1),f(a), - .fla?"?))eF;
for f( x) a polynomial over F, and
Ve(f(x))=(f(0),f(1), -+ ,f(a?"?))eF.
It is readily established that
RSy(n,k)={V(x""?*1f(x)),degree f<k}
and in particular that
RS|(n,k)={V(f(x)),degree f<k},and ERS (g,k)={V.(f(x)),degreef<k}.

That the extended code is of this form follows immediately from the fact that

q-2 — a— 1k
w_ l—a

S ak=—% -0

_ &
i=0 l-a

Reed-Solomon codes are examples of maximum distance separable (MDS) codes for
which the minimum distance is d = n — k + 1. The (ordinary) weight enumerator for
such codes is uniquely determined by the code parameters and is given by

-d -1 ,
Al=(q—1)(’;)2(—l)'( ; )q’—d—',lgd.
i=0

The cwe of a code enumerates code words according to the number of times each element
of the field appears in each code word. It will be convenient to use cwe for both the code
and individual code words. Denote the field elements by F, = {a’, j € B}, where B =

{*,0,1,---, g — 2} and by convention a* = 0. Also let F} denote F,\ {0} and
B* = B\ {*}.Foru = (u, -+, u,) € F}, let w[u] be the cwe of u defined as
wlul=zyz¥ - z423=1] z/,
jeB

where s; is the number of components of u equal to a’/, 2 3 5; = n. The cwe of a code €
is then

W‘ﬂ(z*,ZO9Zl, e >Zq—2)= W(g(Z)= z W[u]'

ue €

Let X, denote the character of F, given by X,(3) = (—1)°, where (3, is the zeroth com-
ponent of B € F, with respect to the polynomial basis generated by «. Then the
MacWilliams theorem for the cwe for a linear code [4] is

1
W%l(z*’20> e ’Zq—Z)zl_(g_lW‘g( Z Xl(a*as)zsa T, Z Xl(aq_za:)zs)'
seB seB

Unlike the ordinary weight enumerator, the cwe for Reed-Solomon codes depends on
the particular generator polynomial used. Some useful properties of code word cwe’s
follow from their definition. If wlu] = [, .4 z}”, A < B then the cwe of the scalar multiple
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of u, a*u, is obtained as

(1) wlaful= [I =z,

jef{k+A4}

where the addition in {k + A4 } is modulo g — 1 and k + * = . For convenience, denote
wla*u] as w[u]®. Note also that V' ( f(«"x)) is a cyclic shift by 4 positions of V' ( f(x))
and so

WV (f(a"x)]1=wlV (f(x)].

Let T(B) denote the trace of 8 € F, = Fam, T(B8) = 270" 8%, of F, over F,
and let By = {i, T(a') = 0} and By, = B\B,, where | By| = 2"~ '. Recall that B,
is a union of cyclotomic cosets and that T(x + y) = T(x) + T(y). Note also that the
quadratic x> + a;x + @ = 0 has solutions over F, if and only if T(ao/a}) = 0 and
that the cubic x>+ ax?>+ a;x+ao=0 has a unique solution if and only if
T({(ao + aia2)/(a, + a3)**}~") # T(1) [1].

3. The complete weight enumerator for RS,(n, 2) and ERS,(q, 2). The ordinary
weight enumerator for RS;(n, 2) is

Ao=1, A,-1=(¢—1)%, 4,=2(g—1)
and for ERS;(q,2)is

A0=13 Aq—l=q(q—l)a Aq:(q_1)~

The cwe’s of the code words of various weights are easily arrived at using the polynomial
description of RS|(n, 2). For fixed ao, a, € F, consider the values of the polynomial
ap + a,x as x runs through F}. If a; = 0 the corresponding code word contains a, in
each coordinate position, and the total contribution to the cwe is

-1
>z

jeB

this is the cwe of RS|(n, 1). If a; # 0 then as x runs through F, ao + a;x runs through
all values of F, except ap. If ay = &' then the contributions of such terms to the cwe are
of the form

H zi=v/z, ’Y==A=H2j

jeB,j#i jeB

and each such term appears (g — 1) times corresponding to the nonzero value of a;. The
cwe of RS,(n, 2) is then

_ 1
Wesina(2)= 2 2] ' +(g— 1)y T .
jeB ieB“i

The argument for ERS; (g, 2) is simpler. For a, = 0 the g code words corresponding
to the values of aq € F, are constant and contribute the terms

>zl

ieB
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to the cwe. For a; # 0, as x runs through F, the polynomial gy + a,x runs through F,.
The g(q — 1) terms of the cwe are then g(g — 1)+, and the cwe for ERS|(q, 2) is

Wirs,q2)(2)= 2 zi+q(g—1)v;
ieB

thus the first term is Wiggs,(4,1)(2).

4. The complete weight enumerator of RS,(n, 3) and ERS,(q, 3). The ordinary
weight enumerator for RS|(n, 3) is

qg—1

Ao=1, Ap-=(q~— 1)( )

), An-1=3(g—1)%, A,=q(g—1)*/2+3(g—1)

and for ERS,(q, 3)

q

Ao=1, Aq—2=(q_1)(
qg—

2), Ag-1=29(g—1), A,=(g—1)(g*—q+2)/2.

It is clear that RS,(n, 3) contains RS|(#, 2), and it is sufficient to consider code words
corresponding to polynomials of the form a,x? + a;x + ay, a # 0. It is possible to
identify the added code words (from RS, (7, 2) to RS|(n, 3)) in terms of their properties.
For example, the (g — 1)(,4,) words of weight ¢ — 2 correspond to the polynomials of
the form a(x + o;)(x + a2), a; # a,. However, such observations do not appear to be
useful in determining the corresponding code word cwe’s.

From (1) it is sufficient to consider the case of monic polynomials (a, = 1) and
consider first the case of a; # 0. In this case, transform the variable by x = g,y so that
x2+ a,x + ay becomes a3(y? + y + (ao/a?)) and it is sufficient to consider the polynomials
of the form 2 + y + a,. Scalar multiples will be considered later. To determine the
number of times the symbol n will appear in the code word corresponding to the poly-
nomial y? + y + ay, we require the number of solutions to y* + y + ao = 7. This will
have two solutions in F, if and only if 7(ap) = T(n) and, if ay = », the solutions are 0
and 1. Thus if we define

Bo=[1 z7andBo= [] z}

jeBy jeBy
then
WV (P4 -+ al)] = [ﬂio/z,'ieB_o'
Bo/ zii€ By

To consider scalar multiples of the code words corres_ponding to these polynomials,
it is convenient to define translations of the sets By and By as By = {k + By} and By =
{k + By}, where addition is modulo ¢ — 1 and j + * = . Further define

=112z} and Bi=1]]z;, keB.

J€By Jje Bk
The contributions to the cwe of the scalar multiples are then
Bi/zivk, 1€Bo

w[a"V(y2+y+ai)]=[_ .
Bk/zivk, i€By
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Each such contribution to the cwe appears (¢ — 1) times and hence of g(g — 1)? poly-
nomials under consideration their contribution to the cwe is

@13 { > By ——B—"—]
keB* lieByZi+k jeByZi+k
For the case where a; = 0 it is clear that it is sufficient to consider polynomials of the
form ay(x + ap)?. As x runs through F} the polynomial assumes all values except
a,a3 and again, since squaring in fields of characteristic two is an automorphism, the
contribution to the cwe of these g(¢ — 1) polynomials is

(q—l)v{zi].

jeB*%j

The cwe of RS|(q, 3) is then

Wrsin3)(2) = WRS,(n,z)(Z)+((]—1)[ > [ > "ﬁi‘*' > ﬂ]‘*“)’[ > l”

keB*licByZi+k jepyZi+k jeBZi

For ERS,(gq, 3) the same arguments are used, and the expressions simplify when
the summations are allowed to run over F, rather than F}. The resulting cwe is

(2) WERS](G,3)(Z)=WERSn(q,Z)(.Z_)+((q—l)q/z)[ > (ﬁk"'gk)]"‘(I(q_l)%

keB*

5. The complete weight enumerator for ERS,(q, 4). The complete weight enu-
merator for the four-dimensional case is a little more involved and, for the sake of sim-
plicity, is found here for the extended code only. Some computation in F, is required to
resolve this case. The ordinary weight enumerator for ERS|(n, 4) is given by

q q
, A,_2=3(g—1
q_3) q-2 (q )(q_

-1 - —1
Aq—4=q(q—1)[(13—((]1 )qz+(q2 l)q—(q3 )]

and again it is an easy matter to identify the contributions to the various weight classes
of the various types of polynomials. The cwe’s of code words corresponding to monic
polynomials x> + a,x2 + a,x + ao of degree three are first found and four subcases are
considered. Consider first the subcase where a, = 0 and a; # 0. By making the substitution
12z, this is equivalent, up to scalar multiples, to determining the cwe of z> + z +

Aq-3=(q—1)( 2), Ag—1=9(q—1)(¢*—q+6)/2,

X = a
ao. Denote by u,(z) the cwe of V(23 + z + 5) and although some observations on the
form of these cwe’s may be made, it appears they must largely be determined by com-
putation. For example, it will be seen that only one such cwe from each conjugacy class
need be determined. Also note that the total contribution of such polynomials to the
cwe is

(g—1) 2 ulz).

neF,
For the case a, = a; = 0 the polynomials are of the form x> + ao and let

0 (2)= WV(x*+N)].
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If mis even then 3|2” — landlet /= {3i,i=0,1,---,(2" —4)/3}. Then
vo(z)=z.[] 2}
iel
and if m is odd

vo(z) =y =vx(2).

The contribution to the cwe of terms of this form is

2. ux(2).

NeF,

For the case when a, # 0, by the substitution x = a,, x> + a,x? + a;x + a, can be
expressed as a scalar multiple of a polynomial of the form y* + y? + a,y + ao. Thus in
the case when a, # 0 and a, # 1, the further change of variable y = z(a; + 1)'/? + 1
is made to give the polynomial, up to scalar multiple, z> + z + a, a = (ap + a,)/
(a; + 1)%2, 1t is easily checked that as (ao, a,) runs through the g(g — 1) allowable
values, the coeflicient a runs through each value of F,, ¢ — 1 times. The contribution of
these g(g — 1)? polynomials is then

(a—1)* 2 u2).

nekFy

Finally, for the case where a, # 0 and a, = 1, the polynomial y> + y* + y + q¢ =
(y + 1) + (ao + 1), which, by transformation of the variable z = y + 1, gives z> + \.
The contribution of the g(g — 1) such polynomials to the cwe is of the form

(g—1) 2 v\(2).

NeFy

The contribution of the four cases is then

Hz)=q(qg—1) 2 ulz)+q 2 v\(2).

nekFy NeFy
Finally, the set of all scalar multiples of the polynomials considered is included as

(3) 2 r1V=a(g—1) Z 2 [u(DIV+q 2 Z [n()]Y

jeB* neky jeB* AeF, jeB*
and the cwe for ERS|(q, 4) is then
4) Wersia)(2) = Wers,a3(2) + 2 [r(2)]Y.

jeB*

A property of the cwe of a code word that will be computationally useful is as

follows. If w[u] = I1,c.4 z/, denote by
wlulw =1 23,
jeA

where again arithmetic is modulo g — 1, 2% =  and 20 = 0. Let f(x) = Z}-o a;x’
and fi(x) = Z]-o aj x/. Then w[V(fi(x))] = w[V(/f(x))]w- This follows since if
f(a') = a’ then fi(a") = «?. In particular, suppose coefficients @; of f(x) are in
F,,j=1,2,---,rand g € F,n Then the cwe’s of polynomials obtained by allow-
ing ao to range over its conjugacy class {a%’}, i=1,2,+-+, s are easily obtained as
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wiV(f(x)]@, i=1,2, -+, s. Thus, as mentioned, for polynomials of this form only
one cwe from each conjugacy class need be determined.

6. Applications. Two applications of the cwe are discussed in this section and the
cwe of ERS,(8, 4) found as a small example of the techniques of the previous section.

The problem discussed in [2] is to determine the binary weight enumerator of the
code obtained from the Reed-Solomon code by replacing each element of F, by its
binary m-tuple with respect to some basis. Similar results can be obtained by the cwe
approach. Let element o have a binary weight w; with respect to the chosen basis. If €
is a code over F, with cwe W¢ and € is the binary code obtained in the above manner,
then the (binary) weight enumerator of &, is given by

We(X)=We(2)| 2= xmicB)-

The results of [2], using results more tuned to that specific problem, give more detailed
information on the weight structure of 6,. With further analysis the cwe approach would
yield the same results.

As a second application of cwe’s, the problem of using Reed-Solomon codes with
M-ary phase shift keying is considered, where M = q. For convenience we use complex
notation and associate the symbol 0 € F, to 1 € € and map the symbol &' to the phase
Yl i=0,1,---,q— 2, { = e* /4 There are, of course, other ways of mapping the
symbols. The theoretical performance of such a system depends on the set of Euclidean
distances between code words, although to achieve this performance would require a so-
called soft decision decoding, which is at present unknown for such codes. The problem
is nonetheless of interest and may be approached using the cwe. If Wy(x) is the distance
enumerator of the Euclidean code obtained from % by the above mapping, whose coef-
ficient of x4 gives the number of code words at Euclidean distance squared d? from any
given code word, then

Wi(x)=We(2)| (2= xisi+ n-117.

To illustrate the techniques of the previous sections, the cwe of ERS|(8, 4) is de-
termined. Note first that since 3|g — 1 = 7 then va(2)Y) = v, for all j € B. It is easily
verified that By = {*, 1,2,4} and By = {0, 3, 5,6} and

b= 11 Zj B= 11 Zj.

Jje{k+Bo} {jeBo}
Equations (2), (3), and (4) give

Wirs,s.4(2)= 2 Z§+504’Y+28{ > (ﬁk+5k)]

ieB keB

+56 > X u(z)Y.

jeB*neF,

The cwe’s u,(z) are shown in Table 1 and the u,(z)"” are easily computed from these.
For example,

Us(2) = 2421252323 and u,s(2)P = z,25232423.

Thus all g* terms of the cwe of ERS, (8, 4) are readily obtained. Note that

Ue2(2) = U2)2) and u22(2) U 2)) (22
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TABLE 1
Complete weight enumerators u,(z).

Jn=al ul(z) = wlVex®+ x + n)]

2223232526
23232,224
2023232526
2023232523
2,232,232,
20232‘212 gZG
Z,212,232%
Z,21232422

AN DA W = O %

and
Ua6(2) = Ua3(2)(2) and U,52(2) = Ua3(2) (22);

i.e., it is only necessary to compute one cwe from each conjugacy class of F,. This
observation is particularly useful for larger fields.

7. Comments. The cwe’s of certain low dimensional Reed-Solomon codes have
been determined and, by duality, the corresponding high dimensional codes have also
been determined. It was pointed out in the previous section how such cwe’s might
be useful in certain applications and an example of the computation of the cwe of
ERS|(8, 4) was given. For the four dimensional codes the arguments considered several
cases as the polynomial coefficients assumed certain values, and it seems unlikely that
similar arguments for higher dimensions will be of interest to pursue. Yet the cwe’s of
the Reed-Solomon codes show considerable structure, which raises the question as to
whether another approach might be more successful. Clearly, the cwe possesses symmetries
that might be exploited to obtain more information on their structure. It is possible that
the cwe’s of doubly and triply extended codes might be obtained with the techniques
described, but this was not pursued.
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Abstract. In the k